linux/arch/powerpc/kernel/rtas.c
Nathan Lynch 9581f8a007 powerpc/rtas: clean up includes
rtas.c used to host complex code related to pseries-specific guest
migration and suspend, which used atomics, completions, hcalls, and
CPU hotplug APIs. That's all been deleted or moved, so remove the
include directives that have been rendered unnecessary. Sort the
remainder (with linux/ before asm/) to impose some order on where
future additions go.

Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221118150751.469393-8-nathanl@linux.ibm.com
2022-12-07 22:40:42 +11:00

1448 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Procedures for interfacing to the RTAS on CHRP machines.
*
* Peter Bergner, IBM March 2001.
* Copyright (C) 2001 IBM.
*/
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stdarg.h>
#include <linux/syscalls.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <asm/delay.h>
#include <asm/firmware.h>
#include <asm/interrupt.h>
#include <asm/machdep.h>
#include <asm/mmu.h>
#include <asm/page.h>
#include <asm/rtas.h>
#include <asm/time.h>
#include <asm/udbg.h>
/* This is here deliberately so it's only used in this file */
void enter_rtas(unsigned long);
static inline void do_enter_rtas(unsigned long args)
{
unsigned long msr;
/*
* Make sure MSR[RI] is currently enabled as it will be forced later
* in enter_rtas.
*/
msr = mfmsr();
BUG_ON(!(msr & MSR_RI));
BUG_ON(!irqs_disabled());
hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
enter_rtas(args);
srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
}
struct rtas_t rtas = {
.lock = __ARCH_SPIN_LOCK_UNLOCKED
};
EXPORT_SYMBOL(rtas);
DEFINE_SPINLOCK(rtas_data_buf_lock);
EXPORT_SYMBOL(rtas_data_buf_lock);
char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
EXPORT_SYMBOL(rtas_data_buf);
unsigned long rtas_rmo_buf;
/*
* If non-NULL, this gets called when the kernel terminates.
* This is done like this so rtas_flash can be a module.
*/
void (*rtas_flash_term_hook)(int);
EXPORT_SYMBOL(rtas_flash_term_hook);
/* RTAS use home made raw locking instead of spin_lock_irqsave
* because those can be called from within really nasty contexts
* such as having the timebase stopped which would lockup with
* normal locks and spinlock debugging enabled
*/
static unsigned long lock_rtas(void)
{
unsigned long flags;
local_irq_save(flags);
preempt_disable();
arch_spin_lock(&rtas.lock);
return flags;
}
static void unlock_rtas(unsigned long flags)
{
arch_spin_unlock(&rtas.lock);
local_irq_restore(flags);
preempt_enable();
}
/*
* call_rtas_display_status and call_rtas_display_status_delay
* are designed only for very early low-level debugging, which
* is why the token is hard-coded to 10.
*/
static void call_rtas_display_status(unsigned char c)
{
unsigned long s;
if (!rtas.base)
return;
s = lock_rtas();
rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
unlock_rtas(s);
}
static void call_rtas_display_status_delay(char c)
{
static int pending_newline = 0; /* did last write end with unprinted newline? */
static int width = 16;
if (c == '\n') {
while (width-- > 0)
call_rtas_display_status(' ');
width = 16;
mdelay(500);
pending_newline = 1;
} else {
if (pending_newline) {
call_rtas_display_status('\r');
call_rtas_display_status('\n');
}
pending_newline = 0;
if (width--) {
call_rtas_display_status(c);
udelay(10000);
}
}
}
void __init udbg_init_rtas_panel(void)
{
udbg_putc = call_rtas_display_status_delay;
}
#ifdef CONFIG_UDBG_RTAS_CONSOLE
/* If you think you're dying before early_init_dt_scan_rtas() does its
* work, you can hard code the token values for your firmware here and
* hardcode rtas.base/entry etc.
*/
static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
static void udbg_rtascon_putc(char c)
{
int tries;
if (!rtas.base)
return;
/* Add CRs before LFs */
if (c == '\n')
udbg_rtascon_putc('\r');
/* if there is more than one character to be displayed, wait a bit */
for (tries = 0; tries < 16; tries++) {
if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
break;
udelay(1000);
}
}
static int udbg_rtascon_getc_poll(void)
{
int c;
if (!rtas.base)
return -1;
if (rtas_call(rtas_getchar_token, 0, 2, &c))
return -1;
return c;
}
static int udbg_rtascon_getc(void)
{
int c;
while ((c = udbg_rtascon_getc_poll()) == -1)
;
return c;
}
void __init udbg_init_rtas_console(void)
{
udbg_putc = udbg_rtascon_putc;
udbg_getc = udbg_rtascon_getc;
udbg_getc_poll = udbg_rtascon_getc_poll;
}
#endif /* CONFIG_UDBG_RTAS_CONSOLE */
void rtas_progress(char *s, unsigned short hex)
{
struct device_node *root;
int width;
const __be32 *p;
char *os;
static int display_character, set_indicator;
static int display_width, display_lines, form_feed;
static const int *row_width;
static DEFINE_SPINLOCK(progress_lock);
static int current_line;
static int pending_newline = 0; /* did last write end with unprinted newline? */
if (!rtas.base)
return;
if (display_width == 0) {
display_width = 0x10;
if ((root = of_find_node_by_path("/rtas"))) {
if ((p = of_get_property(root,
"ibm,display-line-length", NULL)))
display_width = be32_to_cpu(*p);
if ((p = of_get_property(root,
"ibm,form-feed", NULL)))
form_feed = be32_to_cpu(*p);
if ((p = of_get_property(root,
"ibm,display-number-of-lines", NULL)))
display_lines = be32_to_cpu(*p);
row_width = of_get_property(root,
"ibm,display-truncation-length", NULL);
of_node_put(root);
}
display_character = rtas_token("display-character");
set_indicator = rtas_token("set-indicator");
}
if (display_character == RTAS_UNKNOWN_SERVICE) {
/* use hex display if available */
if (set_indicator != RTAS_UNKNOWN_SERVICE)
rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
return;
}
spin_lock(&progress_lock);
/*
* Last write ended with newline, but we didn't print it since
* it would just clear the bottom line of output. Print it now
* instead.
*
* If no newline is pending and form feed is supported, clear the
* display with a form feed; otherwise, print a CR to start output
* at the beginning of the line.
*/
if (pending_newline) {
rtas_call(display_character, 1, 1, NULL, '\r');
rtas_call(display_character, 1, 1, NULL, '\n');
pending_newline = 0;
} else {
current_line = 0;
if (form_feed)
rtas_call(display_character, 1, 1, NULL,
(char)form_feed);
else
rtas_call(display_character, 1, 1, NULL, '\r');
}
if (row_width)
width = row_width[current_line];
else
width = display_width;
os = s;
while (*os) {
if (*os == '\n' || *os == '\r') {
/* If newline is the last character, save it
* until next call to avoid bumping up the
* display output.
*/
if (*os == '\n' && !os[1]) {
pending_newline = 1;
current_line++;
if (current_line > display_lines-1)
current_line = display_lines-1;
spin_unlock(&progress_lock);
return;
}
/* RTAS wants CR-LF, not just LF */
if (*os == '\n') {
rtas_call(display_character, 1, 1, NULL, '\r');
rtas_call(display_character, 1, 1, NULL, '\n');
} else {
/* CR might be used to re-draw a line, so we'll
* leave it alone and not add LF.
*/
rtas_call(display_character, 1, 1, NULL, *os);
}
if (row_width)
width = row_width[current_line];
else
width = display_width;
} else {
width--;
rtas_call(display_character, 1, 1, NULL, *os);
}
os++;
/* if we overwrite the screen length */
if (width <= 0)
while ((*os != 0) && (*os != '\n') && (*os != '\r'))
os++;
}
spin_unlock(&progress_lock);
}
EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */
int rtas_token(const char *service)
{
const __be32 *tokp;
if (rtas.dev == NULL)
return RTAS_UNKNOWN_SERVICE;
tokp = of_get_property(rtas.dev, service, NULL);
return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
}
EXPORT_SYMBOL(rtas_token);
int rtas_service_present(const char *service)
{
return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
}
EXPORT_SYMBOL(rtas_service_present);
#ifdef CONFIG_RTAS_ERROR_LOGGING
static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
/*
* Return the firmware-specified size of the error log buffer
* for all rtas calls that require an error buffer argument.
* This includes 'check-exception' and 'rtas-last-error'.
*/
int rtas_get_error_log_max(void)
{
return rtas_error_log_max;
}
EXPORT_SYMBOL(rtas_get_error_log_max);
static void __init init_error_log_max(void)
{
static const char propname[] __initconst = "rtas-error-log-max";
u32 max;
if (of_property_read_u32(rtas.dev, propname, &max)) {
pr_warn("%s not found, using default of %u\n",
propname, RTAS_ERROR_LOG_MAX);
max = RTAS_ERROR_LOG_MAX;
}
if (max > RTAS_ERROR_LOG_MAX) {
pr_warn("%s = %u, clamping max error log size to %u\n",
propname, max, RTAS_ERROR_LOG_MAX);
max = RTAS_ERROR_LOG_MAX;
}
rtas_error_log_max = max;
}
static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
static int rtas_last_error_token;
/** Return a copy of the detailed error text associated with the
* most recent failed call to rtas. Because the error text
* might go stale if there are any other intervening rtas calls,
* this routine must be called atomically with whatever produced
* the error (i.e. with rtas.lock still held from the previous call).
*/
static char *__fetch_rtas_last_error(char *altbuf)
{
struct rtas_args err_args, save_args;
u32 bufsz;
char *buf = NULL;
if (rtas_last_error_token == -1)
return NULL;
bufsz = rtas_get_error_log_max();
err_args.token = cpu_to_be32(rtas_last_error_token);
err_args.nargs = cpu_to_be32(2);
err_args.nret = cpu_to_be32(1);
err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
err_args.args[1] = cpu_to_be32(bufsz);
err_args.args[2] = 0;
save_args = rtas.args;
rtas.args = err_args;
do_enter_rtas(__pa(&rtas.args));
err_args = rtas.args;
rtas.args = save_args;
/* Log the error in the unlikely case that there was one. */
if (unlikely(err_args.args[2] == 0)) {
if (altbuf) {
buf = altbuf;
} else {
buf = rtas_err_buf;
if (slab_is_available())
buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
}
if (buf)
memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
}
return buf;
}
#define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
#else /* CONFIG_RTAS_ERROR_LOGGING */
#define __fetch_rtas_last_error(x) NULL
#define get_errorlog_buffer() NULL
static void __init init_error_log_max(void) {}
#endif
static void
va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
va_list list)
{
int i;
args->token = cpu_to_be32(token);
args->nargs = cpu_to_be32(nargs);
args->nret = cpu_to_be32(nret);
args->rets = &(args->args[nargs]);
for (i = 0; i < nargs; ++i)
args->args[i] = cpu_to_be32(va_arg(list, __u32));
for (i = 0; i < nret; ++i)
args->rets[i] = 0;
do_enter_rtas(__pa(args));
}
void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
{
va_list list;
va_start(list, nret);
va_rtas_call_unlocked(args, token, nargs, nret, list);
va_end(list);
}
static int ibm_open_errinjct_token;
static int ibm_errinjct_token;
/**
* rtas_call() - Invoke an RTAS firmware function.
* @token: Identifies the function being invoked.
* @nargs: Number of input parameters. Does not include token.
* @nret: Number of output parameters, including the call status.
* @outputs: Array of @nret output words.
* @....: List of @nargs input parameters.
*
* Invokes the RTAS function indicated by @token, which the caller
* should obtain via rtas_token().
*
* The @nargs and @nret arguments must match the number of input and
* output parameters specified for the RTAS function.
*
* rtas_call() returns RTAS status codes, not conventional Linux errno
* values. Callers must translate any failure to an appropriate errno
* in syscall context. Most callers of RTAS functions that can return
* -2 or 990x should use rtas_busy_delay() to correctly handle those
* statuses before calling again.
*
* The return value descriptions are adapted from 7.2.8 [RTAS] Return
* Codes of the PAPR and CHRP specifications.
*
* Context: Process context preferably, interrupt context if
* necessary. Acquires an internal spinlock and may perform
* GFP_ATOMIC slab allocation in error path. Unsafe for NMI
* context.
* Return:
* * 0 - RTAS function call succeeded.
* * -1 - RTAS function encountered a hardware or
* platform error, or the token is invalid,
* or the function is restricted by kernel policy.
* * -2 - Specs say "A necessary hardware device was busy,
* and the requested function could not be
* performed. The operation should be retried at
* a later time." This is misleading, at least with
* respect to current RTAS implementations. What it
* usually means in practice is that the function
* could not be completed while meeting RTAS's
* deadline for returning control to the OS (250us
* for PAPR/PowerVM, typically), but the call may be
* immediately reattempted to resume work on it.
* * -3 - Parameter error.
* * -7 - Unexpected state change.
* * 9000...9899 - Vendor-specific success codes.
* * 9900...9905 - Advisory extended delay. Caller should try
* again after ~10^x ms has elapsed, where x is
* the last digit of the status [0-5]. Again going
* beyond the PAPR text, 990x on PowerVM indicates
* contention for RTAS-internal resources. Other
* RTAS call sequences in progress should be
* allowed to complete before reattempting the
* call.
* * -9000 - Multi-level isolation error.
* * -9999...-9004 - Vendor-specific error codes.
* * Additional negative values - Function-specific error.
* * Additional positive values - Function-specific success.
*/
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
{
va_list list;
int i;
unsigned long s;
struct rtas_args *rtas_args;
char *buff_copy = NULL;
int ret;
if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
return -1;
if (token == ibm_open_errinjct_token || token == ibm_errinjct_token) {
/*
* It would be nicer to not discard the error value
* from security_locked_down(), but callers expect an
* RTAS status, not an errno.
*/
if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
return -1;
}
if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
WARN_ON_ONCE(1);
return -1;
}
s = lock_rtas();
/* We use the global rtas args buffer */
rtas_args = &rtas.args;
va_start(list, outputs);
va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
va_end(list);
/* A -1 return code indicates that the last command couldn't
be completed due to a hardware error. */
if (be32_to_cpu(rtas_args->rets[0]) == -1)
buff_copy = __fetch_rtas_last_error(NULL);
if (nret > 1 && outputs != NULL)
for (i = 0; i < nret-1; ++i)
outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
unlock_rtas(s);
if (buff_copy) {
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
if (slab_is_available())
kfree(buff_copy);
}
return ret;
}
EXPORT_SYMBOL(rtas_call);
/**
* rtas_busy_delay_time() - From an RTAS status value, calculate the
* suggested delay time in milliseconds.
*
* @status: a value returned from rtas_call() or similar APIs which return
* the status of a RTAS function call.
*
* Context: Any context.
*
* Return:
* * 100000 - If @status is 9905.
* * 10000 - If @status is 9904.
* * 1000 - If @status is 9903.
* * 100 - If @status is 9902.
* * 10 - If @status is 9901.
* * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but
* some callers depend on this behavior, and the worst outcome
* is that they will delay for longer than necessary.
* * 0 - If @status is not a busy or extended delay value.
*/
unsigned int rtas_busy_delay_time(int status)
{
int order;
unsigned int ms = 0;
if (status == RTAS_BUSY) {
ms = 1;
} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
status <= RTAS_EXTENDED_DELAY_MAX) {
order = status - RTAS_EXTENDED_DELAY_MIN;
for (ms = 1; order > 0; order--)
ms *= 10;
}
return ms;
}
EXPORT_SYMBOL(rtas_busy_delay_time);
/**
* rtas_busy_delay() - helper for RTAS busy and extended delay statuses
*
* @status: a value returned from rtas_call() or similar APIs which return
* the status of a RTAS function call.
*
* Context: Process context. May sleep or schedule.
*
* Return:
* * true - @status is RTAS_BUSY or an extended delay hint. The
* caller may assume that the CPU has been yielded if necessary,
* and that an appropriate delay for @status has elapsed.
* Generally the caller should reattempt the RTAS call which
* yielded @status.
*
* * false - @status is not @RTAS_BUSY nor an extended delay hint. The
* caller is responsible for handling @status.
*/
bool rtas_busy_delay(int status)
{
unsigned int ms;
bool ret;
switch (status) {
case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
ret = true;
ms = rtas_busy_delay_time(status);
/*
* The extended delay hint can be as high as 100 seconds.
* Surely any function returning such a status is either
* buggy or isn't going to be significantly slowed by us
* polling at 1HZ. Clamp the sleep time to one second.
*/
ms = clamp(ms, 1U, 1000U);
/*
* The delay hint is an order-of-magnitude suggestion, not
* a minimum. It is fine, possibly even advantageous, for
* us to pause for less time than hinted. For small values,
* use usleep_range() to ensure we don't sleep much longer
* than actually needed.
*
* See Documentation/timers/timers-howto.rst for
* explanation of the threshold used here. In effect we use
* usleep_range() for 9900 and 9901, msleep() for
* 9902-9905.
*/
if (ms <= 20)
usleep_range(ms * 100, ms * 1000);
else
msleep(ms);
break;
case RTAS_BUSY:
ret = true;
/*
* We should call again immediately if there's no other
* work to do.
*/
cond_resched();
break;
default:
ret = false;
/*
* Not a busy or extended delay status; the caller should
* handle @status itself. Ensure we warn on misuses in
* atomic context regardless.
*/
might_sleep();
break;
}
return ret;
}
EXPORT_SYMBOL(rtas_busy_delay);
static int rtas_error_rc(int rtas_rc)
{
int rc;
switch (rtas_rc) {
case -1: /* Hardware Error */
rc = -EIO;
break;
case -3: /* Bad indicator/domain/etc */
rc = -EINVAL;
break;
case -9000: /* Isolation error */
rc = -EFAULT;
break;
case -9001: /* Outstanding TCE/PTE */
rc = -EEXIST;
break;
case -9002: /* No usable slot */
rc = -ENODEV;
break;
default:
printk(KERN_ERR "%s: unexpected RTAS error %d\n",
__func__, rtas_rc);
rc = -ERANGE;
break;
}
return rc;
}
int rtas_get_power_level(int powerdomain, int *level)
{
int token = rtas_token("get-power-level");
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
udelay(1);
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL(rtas_get_power_level);
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
{
int token = rtas_token("set-power-level");
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
do {
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
} while (rtas_busy_delay(rc));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL(rtas_set_power_level);
int rtas_get_sensor(int sensor, int index, int *state)
{
int token = rtas_token("get-sensor-state");
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
do {
rc = rtas_call(token, 2, 2, state, sensor, index);
} while (rtas_busy_delay(rc));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL(rtas_get_sensor);
int rtas_get_sensor_fast(int sensor, int index, int *state)
{
int token = rtas_token("get-sensor-state");
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
rc = rtas_call(token, 2, 2, state, sensor, index);
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
rc <= RTAS_EXTENDED_DELAY_MAX));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
bool rtas_indicator_present(int token, int *maxindex)
{
int proplen, count, i;
const struct indicator_elem {
__be32 token;
__be32 maxindex;
} *indicators;
indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
if (!indicators)
return false;
count = proplen / sizeof(struct indicator_elem);
for (i = 0; i < count; i++) {
if (__be32_to_cpu(indicators[i].token) != token)
continue;
if (maxindex)
*maxindex = __be32_to_cpu(indicators[i].maxindex);
return true;
}
return false;
}
EXPORT_SYMBOL(rtas_indicator_present);
int rtas_set_indicator(int indicator, int index, int new_value)
{
int token = rtas_token("set-indicator");
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
do {
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
} while (rtas_busy_delay(rc));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL(rtas_set_indicator);
/*
* Ignoring RTAS extended delay
*/
int rtas_set_indicator_fast(int indicator, int index, int new_value)
{
int rc;
int token = rtas_token("set-indicator");
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
rc <= RTAS_EXTENDED_DELAY_MAX));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
/**
* rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
*
* @fw_status: RTAS call status will be placed here if not NULL.
*
* rtas_ibm_suspend_me() should be called only on a CPU which has
* received H_CONTINUE from the H_JOIN hcall. All other active CPUs
* should be waiting to return from H_JOIN.
*
* rtas_ibm_suspend_me() may suspend execution of the OS
* indefinitely. Callers should take appropriate measures upon return, such as
* resetting watchdog facilities.
*
* Callers may choose to retry this call if @fw_status is
* %RTAS_THREADS_ACTIVE.
*
* Return:
* 0 - The partition has resumed from suspend, possibly after
* migration to a different host.
* -ECANCELED - The operation was aborted.
* -EAGAIN - There were other CPUs not in H_JOIN at the time of the call.
* -EBUSY - Some other condition prevented the suspend from succeeding.
* -EIO - Hardware/platform error.
*/
int rtas_ibm_suspend_me(int *fw_status)
{
int fwrc;
int ret;
fwrc = rtas_call(rtas_token("ibm,suspend-me"), 0, 1, NULL);
switch (fwrc) {
case 0:
ret = 0;
break;
case RTAS_SUSPEND_ABORTED:
ret = -ECANCELED;
break;
case RTAS_THREADS_ACTIVE:
ret = -EAGAIN;
break;
case RTAS_NOT_SUSPENDABLE:
case RTAS_OUTSTANDING_COPROC:
ret = -EBUSY;
break;
case -1:
default:
ret = -EIO;
break;
}
if (fw_status)
*fw_status = fwrc;
return ret;
}
void __noreturn rtas_restart(char *cmd)
{
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_RESTART);
printk("RTAS system-reboot returned %d\n",
rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
for (;;);
}
void rtas_power_off(void)
{
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_POWER_OFF);
/* allow power on only with power button press */
printk("RTAS power-off returned %d\n",
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
for (;;);
}
void __noreturn rtas_halt(void)
{
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_HALT);
/* allow power on only with power button press */
printk("RTAS power-off returned %d\n",
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
for (;;);
}
/* Must be in the RMO region, so we place it here */
static char rtas_os_term_buf[2048];
static s32 ibm_os_term_token = RTAS_UNKNOWN_SERVICE;
void rtas_os_term(char *str)
{
int status;
/*
* Firmware with the ibm,extended-os-term property is guaranteed
* to always return from an ibm,os-term call. Earlier versions without
* this property may terminate the partition which we want to avoid
* since it interferes with panic_timeout.
*/
if (ibm_os_term_token == RTAS_UNKNOWN_SERVICE)
return;
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
/*
* Keep calling as long as RTAS returns a "try again" status,
* but don't use rtas_busy_delay(), which potentially
* schedules.
*/
do {
status = rtas_call(ibm_os_term_token, 1, 1, NULL,
__pa(rtas_os_term_buf));
} while (rtas_busy_delay_time(status));
if (status != 0)
printk(KERN_EMERG "ibm,os-term call failed %d\n", status);
}
/**
* rtas_activate_firmware() - Activate a new version of firmware.
*
* Context: This function may sleep.
*
* Activate a new version of partition firmware. The OS must call this
* after resuming from a partition hibernation or migration in order
* to maintain the ability to perform live firmware updates. It's not
* catastrophic for this method to be absent or to fail; just log the
* condition in that case.
*/
void rtas_activate_firmware(void)
{
int token;
int fwrc;
token = rtas_token("ibm,activate-firmware");
if (token == RTAS_UNKNOWN_SERVICE) {
pr_notice("ibm,activate-firmware method unavailable\n");
return;
}
do {
fwrc = rtas_call(token, 0, 1, NULL);
} while (rtas_busy_delay(fwrc));
if (fwrc)
pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
}
/**
* get_pseries_errorlog() - Find a specific pseries error log in an RTAS
* extended event log.
* @log: RTAS error/event log
* @section_id: two character section identifier
*
* Return: A pointer to the specified errorlog or NULL if not found.
*/
noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
uint16_t section_id)
{
struct rtas_ext_event_log_v6 *ext_log =
(struct rtas_ext_event_log_v6 *)log->buffer;
struct pseries_errorlog *sect;
unsigned char *p, *log_end;
uint32_t ext_log_length = rtas_error_extended_log_length(log);
uint8_t log_format = rtas_ext_event_log_format(ext_log);
uint32_t company_id = rtas_ext_event_company_id(ext_log);
/* Check that we understand the format */
if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
company_id != RTAS_V6EXT_COMPANY_ID_IBM)
return NULL;
log_end = log->buffer + ext_log_length;
p = ext_log->vendor_log;
while (p < log_end) {
sect = (struct pseries_errorlog *)p;
if (pseries_errorlog_id(sect) == section_id)
return sect;
p += pseries_errorlog_length(sect);
}
return NULL;
}
#ifdef CONFIG_PPC_RTAS_FILTER
/*
* The sys_rtas syscall, as originally designed, allows root to pass
* arbitrary physical addresses to RTAS calls. A number of RTAS calls
* can be abused to write to arbitrary memory and do other things that
* are potentially harmful to system integrity, and thus should only
* be used inside the kernel and not exposed to userspace.
*
* All known legitimate users of the sys_rtas syscall will only ever
* pass addresses that fall within the RMO buffer, and use a known
* subset of RTAS calls.
*
* Accordingly, we filter RTAS requests to check that the call is
* permitted, and that provided pointers fall within the RMO buffer.
* The rtas_filters list contains an entry for each permitted call,
* with the indexes of the parameters which are expected to contain
* addresses and sizes of buffers allocated inside the RMO buffer.
*/
struct rtas_filter {
const char *name;
int token;
/* Indexes into the args buffer, -1 if not used */
int buf_idx1;
int size_idx1;
int buf_idx2;
int size_idx2;
int fixed_size;
};
static struct rtas_filter rtas_filters[] __ro_after_init = {
{ "ibm,activate-firmware", -1, -1, -1, -1, -1 },
{ "ibm,configure-connector", -1, 0, -1, 1, -1, 4096 }, /* Special cased */
{ "display-character", -1, -1, -1, -1, -1 },
{ "ibm,display-message", -1, 0, -1, -1, -1 },
{ "ibm,errinjct", -1, 2, -1, -1, -1, 1024 },
{ "ibm,close-errinjct", -1, -1, -1, -1, -1 },
{ "ibm,open-errinjct", -1, -1, -1, -1, -1 },
{ "ibm,get-config-addr-info2", -1, -1, -1, -1, -1 },
{ "ibm,get-dynamic-sensor-state", -1, 1, -1, -1, -1 },
{ "ibm,get-indices", -1, 2, 3, -1, -1 },
{ "get-power-level", -1, -1, -1, -1, -1 },
{ "get-sensor-state", -1, -1, -1, -1, -1 },
{ "ibm,get-system-parameter", -1, 1, 2, -1, -1 },
{ "get-time-of-day", -1, -1, -1, -1, -1 },
{ "ibm,get-vpd", -1, 0, -1, 1, 2 },
{ "ibm,lpar-perftools", -1, 2, 3, -1, -1 },
{ "ibm,platform-dump", -1, 4, 5, -1, -1 }, /* Special cased */
{ "ibm,read-slot-reset-state", -1, -1, -1, -1, -1 },
{ "ibm,scan-log-dump", -1, 0, 1, -1, -1 },
{ "ibm,set-dynamic-indicator", -1, 2, -1, -1, -1 },
{ "ibm,set-eeh-option", -1, -1, -1, -1, -1 },
{ "set-indicator", -1, -1, -1, -1, -1 },
{ "set-power-level", -1, -1, -1, -1, -1 },
{ "set-time-for-power-on", -1, -1, -1, -1, -1 },
{ "ibm,set-system-parameter", -1, 1, -1, -1, -1 },
{ "set-time-of-day", -1, -1, -1, -1, -1 },
#ifdef CONFIG_CPU_BIG_ENDIAN
{ "ibm,suspend-me", -1, -1, -1, -1, -1 },
{ "ibm,update-nodes", -1, 0, -1, -1, -1, 4096 },
{ "ibm,update-properties", -1, 0, -1, -1, -1, 4096 },
#endif
{ "ibm,physical-attestation", -1, 0, 1, -1, -1 },
};
static bool in_rmo_buf(u32 base, u32 end)
{
return base >= rtas_rmo_buf &&
base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
base <= end &&
end >= rtas_rmo_buf &&
end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
}
static bool block_rtas_call(int token, int nargs,
struct rtas_args *args)
{
int i;
for (i = 0; i < ARRAY_SIZE(rtas_filters); i++) {
struct rtas_filter *f = &rtas_filters[i];
u32 base, size, end;
if (token != f->token)
continue;
if (f->buf_idx1 != -1) {
base = be32_to_cpu(args->args[f->buf_idx1]);
if (f->size_idx1 != -1)
size = be32_to_cpu(args->args[f->size_idx1]);
else if (f->fixed_size)
size = f->fixed_size;
else
size = 1;
end = base + size - 1;
/*
* Special case for ibm,platform-dump - NULL buffer
* address is used to indicate end of dump processing
*/
if (!strcmp(f->name, "ibm,platform-dump") &&
base == 0)
return false;
if (!in_rmo_buf(base, end))
goto err;
}
if (f->buf_idx2 != -1) {
base = be32_to_cpu(args->args[f->buf_idx2]);
if (f->size_idx2 != -1)
size = be32_to_cpu(args->args[f->size_idx2]);
else if (f->fixed_size)
size = f->fixed_size;
else
size = 1;
end = base + size - 1;
/*
* Special case for ibm,configure-connector where the
* address can be 0
*/
if (!strcmp(f->name, "ibm,configure-connector") &&
base == 0)
return false;
if (!in_rmo_buf(base, end))
goto err;
}
return false;
}
err:
pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
token, nargs, current->comm);
return true;
}
static void __init rtas_syscall_filter_init(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(rtas_filters); i++)
rtas_filters[i].token = rtas_token(rtas_filters[i].name);
}
#else
static bool block_rtas_call(int token, int nargs,
struct rtas_args *args)
{
return false;
}
static void __init rtas_syscall_filter_init(void)
{
}
#endif /* CONFIG_PPC_RTAS_FILTER */
/* We assume to be passed big endian arguments */
SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
{
struct rtas_args args;
unsigned long flags;
char *buff_copy, *errbuf = NULL;
int nargs, nret, token;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!rtas.entry)
return -EINVAL;
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
return -EFAULT;
nargs = be32_to_cpu(args.nargs);
nret = be32_to_cpu(args.nret);
token = be32_to_cpu(args.token);
if (nargs >= ARRAY_SIZE(args.args)
|| nret > ARRAY_SIZE(args.args)
|| nargs + nret > ARRAY_SIZE(args.args))
return -EINVAL;
/* Copy in args. */
if (copy_from_user(args.args, uargs->args,
nargs * sizeof(rtas_arg_t)) != 0)
return -EFAULT;
if (token == RTAS_UNKNOWN_SERVICE)
return -EINVAL;
args.rets = &args.args[nargs];
memset(args.rets, 0, nret * sizeof(rtas_arg_t));
if (block_rtas_call(token, nargs, &args))
return -EINVAL;
if (token == ibm_open_errinjct_token || token == ibm_errinjct_token) {
int err;
err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
if (err)
return err;
}
/* Need to handle ibm,suspend_me call specially */
if (token == rtas_token("ibm,suspend-me")) {
/*
* rtas_ibm_suspend_me assumes the streamid handle is in cpu
* endian, or at least the hcall within it requires it.
*/
int rc = 0;
u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
| be32_to_cpu(args.args[1]);
rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
if (rc == -EAGAIN)
args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
else if (rc == -EIO)
args.rets[0] = cpu_to_be32(-1);
else if (rc)
return rc;
goto copy_return;
}
buff_copy = get_errorlog_buffer();
flags = lock_rtas();
rtas.args = args;
do_enter_rtas(__pa(&rtas.args));
args = rtas.args;
/* A -1 return code indicates that the last command couldn't
be completed due to a hardware error. */
if (be32_to_cpu(args.rets[0]) == -1)
errbuf = __fetch_rtas_last_error(buff_copy);
unlock_rtas(flags);
if (buff_copy) {
if (errbuf)
log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
kfree(buff_copy);
}
copy_return:
/* Copy out args. */
if (copy_to_user(uargs->args + nargs,
args.args + nargs,
nret * sizeof(rtas_arg_t)) != 0)
return -EFAULT;
return 0;
}
/*
* Call early during boot, before mem init, to retrieve the RTAS
* information from the device-tree and allocate the RMO buffer for userland
* accesses.
*/
void __init rtas_initialize(void)
{
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
u32 base, size, entry;
int no_base, no_size, no_entry;
/* Get RTAS dev node and fill up our "rtas" structure with infos
* about it.
*/
rtas.dev = of_find_node_by_name(NULL, "rtas");
if (!rtas.dev)
return;
no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
if (no_base || no_size) {
of_node_put(rtas.dev);
rtas.dev = NULL;
return;
}
rtas.base = base;
rtas.size = size;
no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
rtas.entry = no_entry ? rtas.base : entry;
init_error_log_max();
/*
* Discover these now to avoid device tree lookups in the
* panic path.
*/
if (of_property_read_bool(rtas.dev, "ibm,extended-os-term"))
ibm_os_term_token = rtas_token("ibm,os-term");
/* If RTAS was found, allocate the RMO buffer for it and look for
* the stop-self token if any
*/
#ifdef CONFIG_PPC64
if (firmware_has_feature(FW_FEATURE_LPAR))
rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
#endif
rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
0, rtas_region);
if (!rtas_rmo_buf)
panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
PAGE_SIZE, &rtas_region);
#ifdef CONFIG_RTAS_ERROR_LOGGING
rtas_last_error_token = rtas_token("rtas-last-error");
#endif
ibm_open_errinjct_token = rtas_token("ibm,open-errinjct");
ibm_errinjct_token = rtas_token("ibm,errinjct");
rtas_syscall_filter_init();
}
int __init early_init_dt_scan_rtas(unsigned long node,
const char *uname, int depth, void *data)
{
const u32 *basep, *entryp, *sizep;
if (depth != 1 || strcmp(uname, "rtas") != 0)
return 0;
basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
#ifdef CONFIG_PPC64
/* need this feature to decide the crashkernel offset */
if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
powerpc_firmware_features |= FW_FEATURE_LPAR;
#endif
if (basep && entryp && sizep) {
rtas.base = *basep;
rtas.entry = *entryp;
rtas.size = *sizep;
}
#ifdef CONFIG_UDBG_RTAS_CONSOLE
basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
if (basep)
rtas_putchar_token = *basep;
basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
if (basep)
rtas_getchar_token = *basep;
if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
udbg_init_rtas_console();
#endif
/* break now */
return 1;
}
static arch_spinlock_t timebase_lock;
static u64 timebase = 0;
void rtas_give_timebase(void)
{
unsigned long flags;
local_irq_save(flags);
hard_irq_disable();
arch_spin_lock(&timebase_lock);
rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
timebase = get_tb();
arch_spin_unlock(&timebase_lock);
while (timebase)
barrier();
rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
local_irq_restore(flags);
}
void rtas_take_timebase(void)
{
while (!timebase)
barrier();
arch_spin_lock(&timebase_lock);
set_tb(timebase >> 32, timebase & 0xffffffff);
timebase = 0;
arch_spin_unlock(&timebase_lock);
}