linux/fs/btrfs/qgroup.c
Boris Burkov 2b8aa78cf1 btrfs: qgroup: fix qgroup id collision across mounts
If we delete subvolumes whose ID is the largest in the filesystem, then
unmount and mount again, then btrfs_init_root_free_objectid on the
tree_root will select a subvolid smaller than that one and thus allow
reusing it.

If we are also using qgroups (and particularly squotas) it is possible
to delete the subvol without deleting the qgroup. In that case, we will
be able to create a new subvol whose id already has a level 0 qgroup.
This will result in re-using that qgroup which would then lead to
incorrect accounting.

Fixes: 6ed05643ddb1 ("btrfs: create qgroup earlier in snapshot creation")
CC: stable@vger.kernel.org # 6.7+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-15 17:57:09 +02:00

4859 lines
128 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2011 STRATO. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/btrfs.h>
#include <linux/sched/mm.h>
#include "ctree.h"
#include "transaction.h"
#include "disk-io.h"
#include "locking.h"
#include "ulist.h"
#include "backref.h"
#include "extent_io.h"
#include "qgroup.h"
#include "block-group.h"
#include "sysfs.h"
#include "tree-mod-log.h"
#include "fs.h"
#include "accessors.h"
#include "extent-tree.h"
#include "root-tree.h"
#include "tree-checker.h"
enum btrfs_qgroup_mode btrfs_qgroup_mode(struct btrfs_fs_info *fs_info)
{
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return BTRFS_QGROUP_MODE_DISABLED;
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE)
return BTRFS_QGROUP_MODE_SIMPLE;
return BTRFS_QGROUP_MODE_FULL;
}
bool btrfs_qgroup_enabled(struct btrfs_fs_info *fs_info)
{
return btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_DISABLED;
}
bool btrfs_qgroup_full_accounting(struct btrfs_fs_info *fs_info)
{
return btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL;
}
/*
* Helpers to access qgroup reservation
*
* Callers should ensure the lock context and type are valid
*/
static u64 qgroup_rsv_total(const struct btrfs_qgroup *qgroup)
{
u64 ret = 0;
int i;
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++)
ret += qgroup->rsv.values[i];
return ret;
}
#ifdef CONFIG_BTRFS_DEBUG
static const char *qgroup_rsv_type_str(enum btrfs_qgroup_rsv_type type)
{
if (type == BTRFS_QGROUP_RSV_DATA)
return "data";
if (type == BTRFS_QGROUP_RSV_META_PERTRANS)
return "meta_pertrans";
if (type == BTRFS_QGROUP_RSV_META_PREALLOC)
return "meta_prealloc";
return NULL;
}
#endif
static void qgroup_rsv_add(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup, u64 num_bytes,
enum btrfs_qgroup_rsv_type type)
{
trace_qgroup_update_reserve(fs_info, qgroup, num_bytes, type);
qgroup->rsv.values[type] += num_bytes;
}
static void qgroup_rsv_release(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup, u64 num_bytes,
enum btrfs_qgroup_rsv_type type)
{
trace_qgroup_update_reserve(fs_info, qgroup, -(s64)num_bytes, type);
if (qgroup->rsv.values[type] >= num_bytes) {
qgroup->rsv.values[type] -= num_bytes;
return;
}
#ifdef CONFIG_BTRFS_DEBUG
WARN_RATELIMIT(1,
"qgroup %llu %s reserved space underflow, have %llu to free %llu",
qgroup->qgroupid, qgroup_rsv_type_str(type),
qgroup->rsv.values[type], num_bytes);
#endif
qgroup->rsv.values[type] = 0;
}
static void qgroup_rsv_add_by_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *dest,
struct btrfs_qgroup *src)
{
int i;
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++)
qgroup_rsv_add(fs_info, dest, src->rsv.values[i], i);
}
static void qgroup_rsv_release_by_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *dest,
struct btrfs_qgroup *src)
{
int i;
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++)
qgroup_rsv_release(fs_info, dest, src->rsv.values[i], i);
}
static void btrfs_qgroup_update_old_refcnt(struct btrfs_qgroup *qg, u64 seq,
int mod)
{
if (qg->old_refcnt < seq)
qg->old_refcnt = seq;
qg->old_refcnt += mod;
}
static void btrfs_qgroup_update_new_refcnt(struct btrfs_qgroup *qg, u64 seq,
int mod)
{
if (qg->new_refcnt < seq)
qg->new_refcnt = seq;
qg->new_refcnt += mod;
}
static inline u64 btrfs_qgroup_get_old_refcnt(struct btrfs_qgroup *qg, u64 seq)
{
if (qg->old_refcnt < seq)
return 0;
return qg->old_refcnt - seq;
}
static inline u64 btrfs_qgroup_get_new_refcnt(struct btrfs_qgroup *qg, u64 seq)
{
if (qg->new_refcnt < seq)
return 0;
return qg->new_refcnt - seq;
}
/*
* glue structure to represent the relations between qgroups.
*/
struct btrfs_qgroup_list {
struct list_head next_group;
struct list_head next_member;
struct btrfs_qgroup *group;
struct btrfs_qgroup *member;
};
static int
qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid,
int init_flags);
static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info);
/* must be called with qgroup_ioctl_lock held */
static struct btrfs_qgroup *find_qgroup_rb(struct btrfs_fs_info *fs_info,
u64 qgroupid)
{
struct rb_node *n = fs_info->qgroup_tree.rb_node;
struct btrfs_qgroup *qgroup;
while (n) {
qgroup = rb_entry(n, struct btrfs_qgroup, node);
if (qgroup->qgroupid < qgroupid)
n = n->rb_left;
else if (qgroup->qgroupid > qgroupid)
n = n->rb_right;
else
return qgroup;
}
return NULL;
}
/*
* Add qgroup to the filesystem's qgroup tree.
*
* Must be called with qgroup_lock held and @prealloc preallocated.
*
* The control on the lifespan of @prealloc would be transferred to this
* function, thus caller should no longer touch @prealloc.
*/
static struct btrfs_qgroup *add_qgroup_rb(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *prealloc,
u64 qgroupid)
{
struct rb_node **p = &fs_info->qgroup_tree.rb_node;
struct rb_node *parent = NULL;
struct btrfs_qgroup *qgroup;
/* Caller must have pre-allocated @prealloc. */
ASSERT(prealloc);
while (*p) {
parent = *p;
qgroup = rb_entry(parent, struct btrfs_qgroup, node);
if (qgroup->qgroupid < qgroupid) {
p = &(*p)->rb_left;
} else if (qgroup->qgroupid > qgroupid) {
p = &(*p)->rb_right;
} else {
kfree(prealloc);
return qgroup;
}
}
qgroup = prealloc;
qgroup->qgroupid = qgroupid;
INIT_LIST_HEAD(&qgroup->groups);
INIT_LIST_HEAD(&qgroup->members);
INIT_LIST_HEAD(&qgroup->dirty);
INIT_LIST_HEAD(&qgroup->iterator);
INIT_LIST_HEAD(&qgroup->nested_iterator);
rb_link_node(&qgroup->node, parent, p);
rb_insert_color(&qgroup->node, &fs_info->qgroup_tree);
return qgroup;
}
static void __del_qgroup_rb(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
struct btrfs_qgroup_list *list;
list_del(&qgroup->dirty);
while (!list_empty(&qgroup->groups)) {
list = list_first_entry(&qgroup->groups,
struct btrfs_qgroup_list, next_group);
list_del(&list->next_group);
list_del(&list->next_member);
kfree(list);
}
while (!list_empty(&qgroup->members)) {
list = list_first_entry(&qgroup->members,
struct btrfs_qgroup_list, next_member);
list_del(&list->next_group);
list_del(&list->next_member);
kfree(list);
}
}
/* must be called with qgroup_lock held */
static int del_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid)
{
struct btrfs_qgroup *qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup)
return -ENOENT;
rb_erase(&qgroup->node, &fs_info->qgroup_tree);
__del_qgroup_rb(fs_info, qgroup);
return 0;
}
/*
* Add relation specified by two qgroups.
*
* Must be called with qgroup_lock held, the ownership of @prealloc is
* transferred to this function and caller should not touch it anymore.
*
* Return: 0 on success
* -ENOENT if one of the qgroups is NULL
* <0 other errors
*/
static int __add_relation_rb(struct btrfs_qgroup_list *prealloc,
struct btrfs_qgroup *member,
struct btrfs_qgroup *parent)
{
if (!member || !parent) {
kfree(prealloc);
return -ENOENT;
}
prealloc->group = parent;
prealloc->member = member;
list_add_tail(&prealloc->next_group, &member->groups);
list_add_tail(&prealloc->next_member, &parent->members);
return 0;
}
/*
* Add relation specified by two qgroup ids.
*
* Must be called with qgroup_lock held.
*
* Return: 0 on success
* -ENOENT if one of the ids does not exist
* <0 other errors
*/
static int add_relation_rb(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup_list *prealloc,
u64 memberid, u64 parentid)
{
struct btrfs_qgroup *member;
struct btrfs_qgroup *parent;
member = find_qgroup_rb(fs_info, memberid);
parent = find_qgroup_rb(fs_info, parentid);
return __add_relation_rb(prealloc, member, parent);
}
/* Must be called with qgroup_lock held */
static int del_relation_rb(struct btrfs_fs_info *fs_info,
u64 memberid, u64 parentid)
{
struct btrfs_qgroup *member;
struct btrfs_qgroup *parent;
struct btrfs_qgroup_list *list;
member = find_qgroup_rb(fs_info, memberid);
parent = find_qgroup_rb(fs_info, parentid);
if (!member || !parent)
return -ENOENT;
list_for_each_entry(list, &member->groups, next_group) {
if (list->group == parent) {
list_del(&list->next_group);
list_del(&list->next_member);
kfree(list);
return 0;
}
}
return -ENOENT;
}
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
int btrfs_verify_qgroup_counts(struct btrfs_fs_info *fs_info, u64 qgroupid,
u64 rfer, u64 excl)
{
struct btrfs_qgroup *qgroup;
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup)
return -EINVAL;
if (qgroup->rfer != rfer || qgroup->excl != excl)
return -EINVAL;
return 0;
}
#endif
static void qgroup_mark_inconsistent(struct btrfs_fs_info *fs_info)
{
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
return;
fs_info->qgroup_flags |= (BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT |
BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN |
BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING);
}
static void qgroup_read_enable_gen(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf, int slot,
struct btrfs_qgroup_status_item *ptr)
{
ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
ASSERT(btrfs_item_size(leaf, slot) >= sizeof(*ptr));
fs_info->qgroup_enable_gen = btrfs_qgroup_status_enable_gen(leaf, ptr);
}
/*
* The full config is read in one go, only called from open_ctree()
* It doesn't use any locking, as at this point we're still single-threaded
*/
int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info)
{
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_root *quota_root = fs_info->quota_root;
struct btrfs_path *path = NULL;
struct extent_buffer *l;
int slot;
int ret = 0;
u64 flags = 0;
u64 rescan_progress = 0;
if (!fs_info->quota_root)
return 0;
fs_info->qgroup_ulist = ulist_alloc(GFP_KERNEL);
if (!fs_info->qgroup_ulist) {
ret = -ENOMEM;
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ret = btrfs_sysfs_add_qgroups(fs_info);
if (ret < 0)
goto out;
/* default this to quota off, in case no status key is found */
fs_info->qgroup_flags = 0;
/*
* pass 1: read status, all qgroup infos and limits
*/
key.objectid = 0;
key.type = 0;
key.offset = 0;
ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 1);
if (ret)
goto out;
while (1) {
struct btrfs_qgroup *qgroup;
slot = path->slots[0];
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
if (found_key.type == BTRFS_QGROUP_STATUS_KEY) {
struct btrfs_qgroup_status_item *ptr;
ptr = btrfs_item_ptr(l, slot,
struct btrfs_qgroup_status_item);
if (btrfs_qgroup_status_version(l, ptr) !=
BTRFS_QGROUP_STATUS_VERSION) {
btrfs_err(fs_info,
"old qgroup version, quota disabled");
goto out;
}
fs_info->qgroup_flags = btrfs_qgroup_status_flags(l, ptr);
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE) {
qgroup_read_enable_gen(fs_info, l, slot, ptr);
} else if (btrfs_qgroup_status_generation(l, ptr) != fs_info->generation) {
qgroup_mark_inconsistent(fs_info);
btrfs_err(fs_info,
"qgroup generation mismatch, marked as inconsistent");
}
rescan_progress = btrfs_qgroup_status_rescan(l, ptr);
goto next1;
}
if (found_key.type != BTRFS_QGROUP_INFO_KEY &&
found_key.type != BTRFS_QGROUP_LIMIT_KEY)
goto next1;
qgroup = find_qgroup_rb(fs_info, found_key.offset);
if ((qgroup && found_key.type == BTRFS_QGROUP_INFO_KEY) ||
(!qgroup && found_key.type == BTRFS_QGROUP_LIMIT_KEY)) {
btrfs_err(fs_info, "inconsistent qgroup config");
qgroup_mark_inconsistent(fs_info);
}
if (!qgroup) {
struct btrfs_qgroup *prealloc;
struct btrfs_root *tree_root = fs_info->tree_root;
prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
if (!prealloc) {
ret = -ENOMEM;
goto out;
}
qgroup = add_qgroup_rb(fs_info, prealloc, found_key.offset);
/*
* If a qgroup exists for a subvolume ID, it is possible
* that subvolume has been deleted, in which case
* re-using that ID would lead to incorrect accounting.
*
* Ensure that we skip any such subvol ids.
*
* We don't need to lock because this is only called
* during mount before we start doing things like creating
* subvolumes.
*/
if (is_fstree(qgroup->qgroupid) &&
qgroup->qgroupid > tree_root->free_objectid)
/*
* Don't need to check against BTRFS_LAST_FREE_OBJECTID,
* as it will get checked on the next call to
* btrfs_get_free_objectid.
*/
tree_root->free_objectid = qgroup->qgroupid + 1;
}
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0)
goto out;
switch (found_key.type) {
case BTRFS_QGROUP_INFO_KEY: {
struct btrfs_qgroup_info_item *ptr;
ptr = btrfs_item_ptr(l, slot,
struct btrfs_qgroup_info_item);
qgroup->rfer = btrfs_qgroup_info_rfer(l, ptr);
qgroup->rfer_cmpr = btrfs_qgroup_info_rfer_cmpr(l, ptr);
qgroup->excl = btrfs_qgroup_info_excl(l, ptr);
qgroup->excl_cmpr = btrfs_qgroup_info_excl_cmpr(l, ptr);
/* generation currently unused */
break;
}
case BTRFS_QGROUP_LIMIT_KEY: {
struct btrfs_qgroup_limit_item *ptr;
ptr = btrfs_item_ptr(l, slot,
struct btrfs_qgroup_limit_item);
qgroup->lim_flags = btrfs_qgroup_limit_flags(l, ptr);
qgroup->max_rfer = btrfs_qgroup_limit_max_rfer(l, ptr);
qgroup->max_excl = btrfs_qgroup_limit_max_excl(l, ptr);
qgroup->rsv_rfer = btrfs_qgroup_limit_rsv_rfer(l, ptr);
qgroup->rsv_excl = btrfs_qgroup_limit_rsv_excl(l, ptr);
break;
}
}
next1:
ret = btrfs_next_item(quota_root, path);
if (ret < 0)
goto out;
if (ret)
break;
}
btrfs_release_path(path);
/*
* pass 2: read all qgroup relations
*/
key.objectid = 0;
key.type = BTRFS_QGROUP_RELATION_KEY;
key.offset = 0;
ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 0);
if (ret)
goto out;
while (1) {
struct btrfs_qgroup_list *list = NULL;
slot = path->slots[0];
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
if (found_key.type != BTRFS_QGROUP_RELATION_KEY)
goto next2;
if (found_key.objectid > found_key.offset) {
/* parent <- member, not needed to build config */
/* FIXME should we omit the key completely? */
goto next2;
}
list = kzalloc(sizeof(*list), GFP_KERNEL);
if (!list) {
ret = -ENOMEM;
goto out;
}
ret = add_relation_rb(fs_info, list, found_key.objectid,
found_key.offset);
list = NULL;
if (ret == -ENOENT) {
btrfs_warn(fs_info,
"orphan qgroup relation 0x%llx->0x%llx",
found_key.objectid, found_key.offset);
ret = 0; /* ignore the error */
}
if (ret)
goto out;
next2:
ret = btrfs_next_item(quota_root, path);
if (ret < 0)
goto out;
if (ret)
break;
}
out:
btrfs_free_path(path);
fs_info->qgroup_flags |= flags;
if (ret >= 0) {
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON)
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN)
ret = qgroup_rescan_init(fs_info, rescan_progress, 0);
} else {
ulist_free(fs_info->qgroup_ulist);
fs_info->qgroup_ulist = NULL;
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
btrfs_sysfs_del_qgroups(fs_info);
}
return ret < 0 ? ret : 0;
}
/*
* Called in close_ctree() when quota is still enabled. This verifies we don't
* leak some reserved space.
*
* Return false if no reserved space is left.
* Return true if some reserved space is leaked.
*/
bool btrfs_check_quota_leak(struct btrfs_fs_info *fs_info)
{
struct rb_node *node;
bool ret = false;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_DISABLED)
return ret;
/*
* Since we're unmounting, there is no race and no need to grab qgroup
* lock. And here we don't go post-order to provide a more user
* friendly sorted result.
*/
for (node = rb_first(&fs_info->qgroup_tree); node; node = rb_next(node)) {
struct btrfs_qgroup *qgroup;
int i;
qgroup = rb_entry(node, struct btrfs_qgroup, node);
for (i = 0; i < BTRFS_QGROUP_RSV_LAST; i++) {
if (qgroup->rsv.values[i]) {
ret = true;
btrfs_warn(fs_info,
"qgroup %hu/%llu has unreleased space, type %d rsv %llu",
btrfs_qgroup_level(qgroup->qgroupid),
btrfs_qgroup_subvolid(qgroup->qgroupid),
i, qgroup->rsv.values[i]);
}
}
}
return ret;
}
/*
* This is called from close_ctree() or open_ctree() or btrfs_quota_disable(),
* first two are in single-threaded paths.And for the third one, we have set
* quota_root to be null with qgroup_lock held before, so it is safe to clean
* up the in-memory structures without qgroup_lock held.
*/
void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info)
{
struct rb_node *n;
struct btrfs_qgroup *qgroup;
while ((n = rb_first(&fs_info->qgroup_tree))) {
qgroup = rb_entry(n, struct btrfs_qgroup, node);
rb_erase(n, &fs_info->qgroup_tree);
__del_qgroup_rb(fs_info, qgroup);
btrfs_sysfs_del_one_qgroup(fs_info, qgroup);
kfree(qgroup);
}
/*
* We call btrfs_free_qgroup_config() when unmounting
* filesystem and disabling quota, so we set qgroup_ulist
* to be null here to avoid double free.
*/
ulist_free(fs_info->qgroup_ulist);
fs_info->qgroup_ulist = NULL;
btrfs_sysfs_del_qgroups(fs_info);
}
static int add_qgroup_relation_item(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
int ret;
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = src;
key.type = BTRFS_QGROUP_RELATION_KEY;
key.offset = dst;
ret = btrfs_insert_empty_item(trans, quota_root, path, &key, 0);
btrfs_mark_buffer_dirty(trans, path->nodes[0]);
btrfs_free_path(path);
return ret;
}
static int del_qgroup_relation_item(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
int ret;
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = src;
key.type = BTRFS_QGROUP_RELATION_KEY;
key.offset = dst;
ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, quota_root, path);
out:
btrfs_free_path(path);
return ret;
}
static int add_qgroup_item(struct btrfs_trans_handle *trans,
struct btrfs_root *quota_root, u64 qgroupid)
{
int ret;
struct btrfs_path *path;
struct btrfs_qgroup_info_item *qgroup_info;
struct btrfs_qgroup_limit_item *qgroup_limit;
struct extent_buffer *leaf;
struct btrfs_key key;
if (btrfs_is_testing(quota_root->fs_info))
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = 0;
key.type = BTRFS_QGROUP_INFO_KEY;
key.offset = qgroupid;
/*
* Avoid a transaction abort by catching -EEXIST here. In that
* case, we proceed by re-initializing the existing structure
* on disk.
*/
ret = btrfs_insert_empty_item(trans, quota_root, path, &key,
sizeof(*qgroup_info));
if (ret && ret != -EEXIST)
goto out;
leaf = path->nodes[0];
qgroup_info = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_qgroup_info_item);
btrfs_set_qgroup_info_generation(leaf, qgroup_info, trans->transid);
btrfs_set_qgroup_info_rfer(leaf, qgroup_info, 0);
btrfs_set_qgroup_info_rfer_cmpr(leaf, qgroup_info, 0);
btrfs_set_qgroup_info_excl(leaf, qgroup_info, 0);
btrfs_set_qgroup_info_excl_cmpr(leaf, qgroup_info, 0);
btrfs_mark_buffer_dirty(trans, leaf);
btrfs_release_path(path);
key.type = BTRFS_QGROUP_LIMIT_KEY;
ret = btrfs_insert_empty_item(trans, quota_root, path, &key,
sizeof(*qgroup_limit));
if (ret && ret != -EEXIST)
goto out;
leaf = path->nodes[0];
qgroup_limit = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_qgroup_limit_item);
btrfs_set_qgroup_limit_flags(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_max_rfer(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_max_excl(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_rsv_rfer(leaf, qgroup_limit, 0);
btrfs_set_qgroup_limit_rsv_excl(leaf, qgroup_limit, 0);
btrfs_mark_buffer_dirty(trans, leaf);
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
static int del_qgroup_item(struct btrfs_trans_handle *trans, u64 qgroupid)
{
int ret;
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = 0;
key.type = BTRFS_QGROUP_INFO_KEY;
key.offset = qgroupid;
ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, quota_root, path);
if (ret)
goto out;
btrfs_release_path(path);
key.type = BTRFS_QGROUP_LIMIT_KEY;
ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, quota_root, path);
out:
btrfs_free_path(path);
return ret;
}
static int update_qgroup_limit_item(struct btrfs_trans_handle *trans,
struct btrfs_qgroup *qgroup)
{
struct btrfs_root *quota_root = trans->fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_qgroup_limit_item *qgroup_limit;
int ret;
int slot;
key.objectid = 0;
key.type = BTRFS_QGROUP_LIMIT_KEY;
key.offset = qgroup->qgroupid;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, quota_root, &key, path, 0, 1);
if (ret > 0)
ret = -ENOENT;
if (ret)
goto out;
l = path->nodes[0];
slot = path->slots[0];
qgroup_limit = btrfs_item_ptr(l, slot, struct btrfs_qgroup_limit_item);
btrfs_set_qgroup_limit_flags(l, qgroup_limit, qgroup->lim_flags);
btrfs_set_qgroup_limit_max_rfer(l, qgroup_limit, qgroup->max_rfer);
btrfs_set_qgroup_limit_max_excl(l, qgroup_limit, qgroup->max_excl);
btrfs_set_qgroup_limit_rsv_rfer(l, qgroup_limit, qgroup->rsv_rfer);
btrfs_set_qgroup_limit_rsv_excl(l, qgroup_limit, qgroup->rsv_excl);
btrfs_mark_buffer_dirty(trans, l);
out:
btrfs_free_path(path);
return ret;
}
static int update_qgroup_info_item(struct btrfs_trans_handle *trans,
struct btrfs_qgroup *qgroup)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root = fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_qgroup_info_item *qgroup_info;
int ret;
int slot;
if (btrfs_is_testing(fs_info))
return 0;
key.objectid = 0;
key.type = BTRFS_QGROUP_INFO_KEY;
key.offset = qgroup->qgroupid;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, quota_root, &key, path, 0, 1);
if (ret > 0)
ret = -ENOENT;
if (ret)
goto out;
l = path->nodes[0];
slot = path->slots[0];
qgroup_info = btrfs_item_ptr(l, slot, struct btrfs_qgroup_info_item);
btrfs_set_qgroup_info_generation(l, qgroup_info, trans->transid);
btrfs_set_qgroup_info_rfer(l, qgroup_info, qgroup->rfer);
btrfs_set_qgroup_info_rfer_cmpr(l, qgroup_info, qgroup->rfer_cmpr);
btrfs_set_qgroup_info_excl(l, qgroup_info, qgroup->excl);
btrfs_set_qgroup_info_excl_cmpr(l, qgroup_info, qgroup->excl_cmpr);
btrfs_mark_buffer_dirty(trans, l);
out:
btrfs_free_path(path);
return ret;
}
static int update_qgroup_status_item(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root = fs_info->quota_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *l;
struct btrfs_qgroup_status_item *ptr;
int ret;
int slot;
key.objectid = 0;
key.type = BTRFS_QGROUP_STATUS_KEY;
key.offset = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, quota_root, &key, path, 0, 1);
if (ret > 0)
ret = -ENOENT;
if (ret)
goto out;
l = path->nodes[0];
slot = path->slots[0];
ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item);
btrfs_set_qgroup_status_flags(l, ptr, fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAGS_MASK);
btrfs_set_qgroup_status_generation(l, ptr, trans->transid);
btrfs_set_qgroup_status_rescan(l, ptr,
fs_info->qgroup_rescan_progress.objectid);
btrfs_mark_buffer_dirty(trans, l);
out:
btrfs_free_path(path);
return ret;
}
/*
* called with qgroup_lock held
*/
static int btrfs_clean_quota_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *leaf = NULL;
int ret;
int nr = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = 0;
key.offset = 0;
key.type = 0;
while (1) {
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nr = btrfs_header_nritems(leaf);
if (!nr)
break;
/*
* delete the leaf one by one
* since the whole tree is going
* to be deleted.
*/
path->slots[0] = 0;
ret = btrfs_del_items(trans, root, path, 0, nr);
if (ret)
goto out;
btrfs_release_path(path);
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
int btrfs_quota_enable(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_quota_ctl_args *quota_ctl_args)
{
struct btrfs_root *quota_root;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_path *path = NULL;
struct btrfs_qgroup_status_item *ptr;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_qgroup *qgroup = NULL;
struct btrfs_qgroup *prealloc = NULL;
struct btrfs_trans_handle *trans = NULL;
struct ulist *ulist = NULL;
const bool simple = (quota_ctl_args->cmd == BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA);
int ret = 0;
int slot;
/*
* We need to have subvol_sem write locked, to prevent races between
* concurrent tasks trying to enable quotas, because we will unlock
* and relock qgroup_ioctl_lock before setting fs_info->quota_root
* and before setting BTRFS_FS_QUOTA_ENABLED.
*/
lockdep_assert_held_write(&fs_info->subvol_sem);
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info,
"qgroups are currently unsupported in extent tree v2");
return -EINVAL;
}
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (fs_info->quota_root)
goto out;
ulist = ulist_alloc(GFP_KERNEL);
if (!ulist) {
ret = -ENOMEM;
goto out;
}
ret = btrfs_sysfs_add_qgroups(fs_info);
if (ret < 0)
goto out;
/*
* Unlock qgroup_ioctl_lock before starting the transaction. This is to
* avoid lock acquisition inversion problems (reported by lockdep) between
* qgroup_ioctl_lock and the vfs freeze semaphores, acquired when we
* start a transaction.
* After we started the transaction lock qgroup_ioctl_lock again and
* check if someone else created the quota root in the meanwhile. If so,
* just return success and release the transaction handle.
*
* Also we don't need to worry about someone else calling
* btrfs_sysfs_add_qgroups() after we unlock and getting an error because
* that function returns 0 (success) when the sysfs entries already exist.
*/
mutex_unlock(&fs_info->qgroup_ioctl_lock);
/*
* 1 for quota root item
* 1 for BTRFS_QGROUP_STATUS item
*
* Yet we also need 2*n items for a QGROUP_INFO/QGROUP_LIMIT items
* per subvolume. However those are not currently reserved since it
* would be a lot of overkill.
*/
trans = btrfs_start_transaction(tree_root, 2);
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
if (fs_info->quota_root)
goto out;
fs_info->qgroup_ulist = ulist;
ulist = NULL;
/*
* initially create the quota tree
*/
quota_root = btrfs_create_tree(trans, BTRFS_QUOTA_TREE_OBJECTID);
if (IS_ERR(quota_root)) {
ret = PTR_ERR(quota_root);
btrfs_abort_transaction(trans, ret);
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
btrfs_abort_transaction(trans, ret);
goto out_free_root;
}
key.objectid = 0;
key.type = BTRFS_QGROUP_STATUS_KEY;
key.offset = 0;
ret = btrfs_insert_empty_item(trans, quota_root, path, &key,
sizeof(*ptr));
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
leaf = path->nodes[0];
ptr = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_qgroup_status_item);
btrfs_set_qgroup_status_generation(leaf, ptr, trans->transid);
btrfs_set_qgroup_status_version(leaf, ptr, BTRFS_QGROUP_STATUS_VERSION);
fs_info->qgroup_flags = BTRFS_QGROUP_STATUS_FLAG_ON;
if (simple) {
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE;
btrfs_set_qgroup_status_enable_gen(leaf, ptr, trans->transid);
} else {
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
}
btrfs_set_qgroup_status_flags(leaf, ptr, fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAGS_MASK);
btrfs_set_qgroup_status_rescan(leaf, ptr, 0);
btrfs_mark_buffer_dirty(trans, leaf);
key.objectid = 0;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = 0;
btrfs_release_path(path);
ret = btrfs_search_slot_for_read(tree_root, &key, path, 1, 0);
if (ret > 0)
goto out_add_root;
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
while (1) {
slot = path->slots[0];
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.type == BTRFS_ROOT_REF_KEY) {
/* Release locks on tree_root before we access quota_root */
btrfs_release_path(path);
/* We should not have a stray @prealloc pointer. */
ASSERT(prealloc == NULL);
prealloc = kzalloc(sizeof(*prealloc), GFP_NOFS);
if (!prealloc) {
ret = -ENOMEM;
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
ret = add_qgroup_item(trans, quota_root,
found_key.offset);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
qgroup = add_qgroup_rb(fs_info, prealloc, found_key.offset);
prealloc = NULL;
if (IS_ERR(qgroup)) {
ret = PTR_ERR(qgroup);
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
ret = btrfs_search_slot_for_read(tree_root, &found_key,
path, 1, 0);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
if (ret > 0) {
/*
* Shouldn't happen, but in case it does we
* don't need to do the btrfs_next_item, just
* continue.
*/
continue;
}
}
ret = btrfs_next_item(tree_root, path);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
if (ret)
break;
}
out_add_root:
btrfs_release_path(path);
ret = add_qgroup_item(trans, quota_root, BTRFS_FS_TREE_OBJECTID);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
ASSERT(prealloc == NULL);
prealloc = kzalloc(sizeof(*prealloc), GFP_NOFS);
if (!prealloc) {
ret = -ENOMEM;
goto out_free_path;
}
qgroup = add_qgroup_rb(fs_info, prealloc, BTRFS_FS_TREE_OBJECTID);
prealloc = NULL;
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out_free_path;
}
fs_info->qgroup_enable_gen = trans->transid;
mutex_unlock(&fs_info->qgroup_ioctl_lock);
/*
* Commit the transaction while not holding qgroup_ioctl_lock, to avoid
* a deadlock with tasks concurrently doing other qgroup operations, such
* adding/removing qgroups or adding/deleting qgroup relations for example,
* because all qgroup operations first start or join a transaction and then
* lock the qgroup_ioctl_lock mutex.
* We are safe from a concurrent task trying to enable quotas, by calling
* this function, since we are serialized by fs_info->subvol_sem.
*/
ret = btrfs_commit_transaction(trans);
trans = NULL;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (ret)
goto out_free_path;
/*
* Set quota enabled flag after committing the transaction, to avoid
* deadlocks on fs_info->qgroup_ioctl_lock with concurrent snapshot
* creation.
*/
spin_lock(&fs_info->qgroup_lock);
fs_info->quota_root = quota_root;
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
if (simple)
btrfs_set_fs_incompat(fs_info, SIMPLE_QUOTA);
spin_unlock(&fs_info->qgroup_lock);
/* Skip rescan for simple qgroups. */
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
goto out_free_path;
ret = qgroup_rescan_init(fs_info, 0, 1);
if (!ret) {
qgroup_rescan_zero_tracking(fs_info);
fs_info->qgroup_rescan_running = true;
btrfs_queue_work(fs_info->qgroup_rescan_workers,
&fs_info->qgroup_rescan_work);
} else {
/*
* We have set both BTRFS_FS_QUOTA_ENABLED and
* BTRFS_QGROUP_STATUS_FLAG_ON, so we can only fail with
* -EINPROGRESS. That can happen because someone started the
* rescan worker by calling quota rescan ioctl before we
* attempted to initialize the rescan worker. Failure due to
* quotas disabled in the meanwhile is not possible, because
* we are holding a write lock on fs_info->subvol_sem, which
* is also acquired when disabling quotas.
* Ignore such error, and any other error would need to undo
* everything we did in the transaction we just committed.
*/
ASSERT(ret == -EINPROGRESS);
ret = 0;
}
out_free_path:
btrfs_free_path(path);
out_free_root:
if (ret)
btrfs_put_root(quota_root);
out:
if (ret) {
ulist_free(fs_info->qgroup_ulist);
fs_info->qgroup_ulist = NULL;
btrfs_sysfs_del_qgroups(fs_info);
}
mutex_unlock(&fs_info->qgroup_ioctl_lock);
if (ret && trans)
btrfs_end_transaction(trans);
else if (trans)
ret = btrfs_end_transaction(trans);
ulist_free(ulist);
kfree(prealloc);
return ret;
}
/*
* It is possible to have outstanding ordered extents which reserved bytes
* before we disabled. We need to fully flush delalloc, ordered extents, and a
* commit to ensure that we don't leak such reservations, only to have them
* come back if we re-enable.
*
* - enable simple quotas
* - reserve space
* - release it, store rsv_bytes in OE
* - disable quotas
* - enable simple quotas (qgroup rsv are all 0)
* - OE finishes
* - run delayed refs
* - free rsv_bytes, resulting in miscounting or even underflow
*/
static int flush_reservations(struct btrfs_fs_info *fs_info)
{
struct btrfs_trans_handle *trans;
int ret;
ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
if (ret)
return ret;
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
trans = btrfs_join_transaction(fs_info->tree_root);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_commit_transaction(trans);
return ret;
}
int btrfs_quota_disable(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *quota_root;
struct btrfs_trans_handle *trans = NULL;
int ret = 0;
/*
* We need to have subvol_sem write locked to prevent races with
* snapshot creation.
*/
lockdep_assert_held_write(&fs_info->subvol_sem);
/*
* Relocation will mess with backrefs, so make sure we have the
* cleaner_mutex held to protect us from relocate.
*/
lockdep_assert_held(&fs_info->cleaner_mutex);
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root)
goto out;
/*
* Unlock the qgroup_ioctl_lock mutex before waiting for the rescan worker to
* complete. Otherwise we can deadlock because btrfs_remove_qgroup() needs
* to lock that mutex while holding a transaction handle and the rescan
* worker needs to commit a transaction.
*/
mutex_unlock(&fs_info->qgroup_ioctl_lock);
/*
* Request qgroup rescan worker to complete and wait for it. This wait
* must be done before transaction start for quota disable since it may
* deadlock with transaction by the qgroup rescan worker.
*/
clear_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
btrfs_qgroup_wait_for_completion(fs_info, false);
/*
* We have nothing held here and no trans handle, just return the error
* if there is one.
*/
ret = flush_reservations(fs_info);
if (ret)
return ret;
/*
* 1 For the root item
*
* We should also reserve enough items for the quota tree deletion in
* btrfs_clean_quota_tree but this is not done.
*
* Also, we must always start a transaction without holding the mutex
* qgroup_ioctl_lock, see btrfs_quota_enable().
*/
trans = btrfs_start_transaction(fs_info->tree_root, 1);
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
goto out;
}
if (!fs_info->quota_root)
goto out;
spin_lock(&fs_info->qgroup_lock);
quota_root = fs_info->quota_root;
fs_info->quota_root = NULL;
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON;
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE;
fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
spin_unlock(&fs_info->qgroup_lock);
btrfs_free_qgroup_config(fs_info);
ret = btrfs_clean_quota_tree(trans, quota_root);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_del_root(trans, &quota_root->root_key);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
spin_lock(&fs_info->trans_lock);
list_del(&quota_root->dirty_list);
spin_unlock(&fs_info->trans_lock);
btrfs_tree_lock(quota_root->node);
btrfs_clear_buffer_dirty(trans, quota_root->node);
btrfs_tree_unlock(quota_root->node);
btrfs_free_tree_block(trans, btrfs_root_id(quota_root),
quota_root->node, 0, 1);
btrfs_put_root(quota_root);
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
if (ret && trans)
btrfs_end_transaction(trans);
else if (trans)
ret = btrfs_commit_transaction(trans);
return ret;
}
static void qgroup_dirty(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
if (list_empty(&qgroup->dirty))
list_add(&qgroup->dirty, &fs_info->dirty_qgroups);
}
static void qgroup_iterator_add(struct list_head *head, struct btrfs_qgroup *qgroup)
{
if (!list_empty(&qgroup->iterator))
return;
list_add_tail(&qgroup->iterator, head);
}
static void qgroup_iterator_clean(struct list_head *head)
{
while (!list_empty(head)) {
struct btrfs_qgroup *qgroup;
qgroup = list_first_entry(head, struct btrfs_qgroup, iterator);
list_del_init(&qgroup->iterator);
}
}
/*
* The easy accounting, we're updating qgroup relationship whose child qgroup
* only has exclusive extents.
*
* In this case, all exclusive extents will also be exclusive for parent, so
* excl/rfer just get added/removed.
*
* So is qgroup reservation space, which should also be added/removed to
* parent.
* Or when child tries to release reservation space, parent will underflow its
* reservation (for relationship adding case).
*
* Caller should hold fs_info->qgroup_lock.
*/
static int __qgroup_excl_accounting(struct btrfs_fs_info *fs_info, u64 ref_root,
struct btrfs_qgroup *src, int sign)
{
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup *cur;
LIST_HEAD(qgroup_list);
u64 num_bytes = src->excl;
int ret = 0;
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
qgroup_iterator_add(&qgroup_list, qgroup);
list_for_each_entry(cur, &qgroup_list, iterator) {
struct btrfs_qgroup_list *glist;
qgroup->rfer += sign * num_bytes;
qgroup->rfer_cmpr += sign * num_bytes;
WARN_ON(sign < 0 && qgroup->excl < num_bytes);
qgroup->excl += sign * num_bytes;
qgroup->excl_cmpr += sign * num_bytes;
if (sign > 0)
qgroup_rsv_add_by_qgroup(fs_info, qgroup, src);
else
qgroup_rsv_release_by_qgroup(fs_info, qgroup, src);
qgroup_dirty(fs_info, qgroup);
/* Append parent qgroups to @qgroup_list. */
list_for_each_entry(glist, &qgroup->groups, next_group)
qgroup_iterator_add(&qgroup_list, glist->group);
}
ret = 0;
out:
qgroup_iterator_clean(&qgroup_list);
return ret;
}
/*
* Quick path for updating qgroup with only excl refs.
*
* In that case, just update all parent will be enough.
* Or we needs to do a full rescan.
* Caller should also hold fs_info->qgroup_lock.
*
* Return 0 for quick update, return >0 for need to full rescan
* and mark INCONSISTENT flag.
* Return < 0 for other error.
*/
static int quick_update_accounting(struct btrfs_fs_info *fs_info,
u64 src, u64 dst, int sign)
{
struct btrfs_qgroup *qgroup;
int ret = 1;
qgroup = find_qgroup_rb(fs_info, src);
if (!qgroup)
goto out;
if (qgroup->excl == qgroup->rfer) {
ret = __qgroup_excl_accounting(fs_info, dst, qgroup, sign);
if (ret < 0)
goto out;
ret = 0;
}
out:
if (ret)
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
return ret;
}
int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans, u64 src, u64 dst)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *parent;
struct btrfs_qgroup *member;
struct btrfs_qgroup_list *list;
struct btrfs_qgroup_list *prealloc = NULL;
int ret = 0;
/* Check the level of src and dst first */
if (btrfs_qgroup_level(src) >= btrfs_qgroup_level(dst))
return -EINVAL;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
member = find_qgroup_rb(fs_info, src);
parent = find_qgroup_rb(fs_info, dst);
if (!member || !parent) {
ret = -EINVAL;
goto out;
}
/* check if such qgroup relation exist firstly */
list_for_each_entry(list, &member->groups, next_group) {
if (list->group == parent) {
ret = -EEXIST;
goto out;
}
}
prealloc = kzalloc(sizeof(*list), GFP_NOFS);
if (!prealloc) {
ret = -ENOMEM;
goto out;
}
ret = add_qgroup_relation_item(trans, src, dst);
if (ret)
goto out;
ret = add_qgroup_relation_item(trans, dst, src);
if (ret) {
del_qgroup_relation_item(trans, src, dst);
goto out;
}
spin_lock(&fs_info->qgroup_lock);
ret = __add_relation_rb(prealloc, member, parent);
prealloc = NULL;
if (ret < 0) {
spin_unlock(&fs_info->qgroup_lock);
goto out;
}
ret = quick_update_accounting(fs_info, src, dst, 1);
spin_unlock(&fs_info->qgroup_lock);
out:
kfree(prealloc);
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
static int __del_qgroup_relation(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *parent;
struct btrfs_qgroup *member;
struct btrfs_qgroup_list *list;
bool found = false;
int ret = 0;
int ret2;
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
member = find_qgroup_rb(fs_info, src);
parent = find_qgroup_rb(fs_info, dst);
/*
* The parent/member pair doesn't exist, then try to delete the dead
* relation items only.
*/
if (!member || !parent)
goto delete_item;
/* check if such qgroup relation exist firstly */
list_for_each_entry(list, &member->groups, next_group) {
if (list->group == parent) {
found = true;
break;
}
}
delete_item:
ret = del_qgroup_relation_item(trans, src, dst);
if (ret < 0 && ret != -ENOENT)
goto out;
ret2 = del_qgroup_relation_item(trans, dst, src);
if (ret2 < 0 && ret2 != -ENOENT)
goto out;
/* At least one deletion succeeded, return 0 */
if (!ret || !ret2)
ret = 0;
if (found) {
spin_lock(&fs_info->qgroup_lock);
del_relation_rb(fs_info, src, dst);
ret = quick_update_accounting(fs_info, src, dst, -1);
spin_unlock(&fs_info->qgroup_lock);
}
out:
return ret;
}
int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans, u64 src,
u64 dst)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = 0;
mutex_lock(&fs_info->qgroup_ioctl_lock);
ret = __del_qgroup_relation(trans, src, dst);
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
int btrfs_create_qgroup(struct btrfs_trans_handle *trans, u64 qgroupid)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root;
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup *prealloc = NULL;
int ret = 0;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_DISABLED)
return 0;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
quota_root = fs_info->quota_root;
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (qgroup) {
ret = -EEXIST;
goto out;
}
prealloc = kzalloc(sizeof(*prealloc), GFP_NOFS);
if (!prealloc) {
ret = -ENOMEM;
goto out;
}
ret = add_qgroup_item(trans, quota_root, qgroupid);
if (ret)
goto out;
spin_lock(&fs_info->qgroup_lock);
qgroup = add_qgroup_rb(fs_info, prealloc, qgroupid);
spin_unlock(&fs_info->qgroup_lock);
prealloc = NULL;
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
kfree(prealloc);
return ret;
}
static bool qgroup_has_usage(struct btrfs_qgroup *qgroup)
{
return (qgroup->rfer > 0 || qgroup->rfer_cmpr > 0 ||
qgroup->excl > 0 || qgroup->excl_cmpr > 0 ||
qgroup->rsv.values[BTRFS_QGROUP_RSV_DATA] > 0 ||
qgroup->rsv.values[BTRFS_QGROUP_RSV_META_PREALLOC] > 0 ||
qgroup->rsv.values[BTRFS_QGROUP_RSV_META_PERTRANS] > 0);
}
int btrfs_remove_qgroup(struct btrfs_trans_handle *trans, u64 qgroupid)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup_list *list;
int ret = 0;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup) {
ret = -ENOENT;
goto out;
}
if (is_fstree(qgroupid) && qgroup_has_usage(qgroup)) {
ret = -EBUSY;
goto out;
}
/* Check if there are no children of this qgroup */
if (!list_empty(&qgroup->members)) {
ret = -EBUSY;
goto out;
}
ret = del_qgroup_item(trans, qgroupid);
if (ret && ret != -ENOENT)
goto out;
while (!list_empty(&qgroup->groups)) {
list = list_first_entry(&qgroup->groups,
struct btrfs_qgroup_list, next_group);
ret = __del_qgroup_relation(trans, qgroupid,
list->group->qgroupid);
if (ret)
goto out;
}
spin_lock(&fs_info->qgroup_lock);
del_qgroup_rb(fs_info, qgroupid);
spin_unlock(&fs_info->qgroup_lock);
/*
* Remove the qgroup from sysfs now without holding the qgroup_lock
* spinlock, since the sysfs_remove_group() function needs to take
* the mutex kernfs_mutex through kernfs_remove_by_name_ns().
*/
btrfs_sysfs_del_one_qgroup(fs_info, qgroup);
kfree(qgroup);
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
int btrfs_limit_qgroup(struct btrfs_trans_handle *trans, u64 qgroupid,
struct btrfs_qgroup_limit *limit)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup *qgroup;
int ret = 0;
/* Sometimes we would want to clear the limit on this qgroup.
* To meet this requirement, we treat the -1 as a special value
* which tell kernel to clear the limit on this qgroup.
*/
const u64 CLEAR_VALUE = -1;
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root) {
ret = -ENOTCONN;
goto out;
}
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup) {
ret = -ENOENT;
goto out;
}
spin_lock(&fs_info->qgroup_lock);
if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_RFER) {
if (limit->max_rfer == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_MAX_RFER;
limit->flags &= ~BTRFS_QGROUP_LIMIT_MAX_RFER;
qgroup->max_rfer = 0;
} else {
qgroup->max_rfer = limit->max_rfer;
}
}
if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) {
if (limit->max_excl == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_MAX_EXCL;
limit->flags &= ~BTRFS_QGROUP_LIMIT_MAX_EXCL;
qgroup->max_excl = 0;
} else {
qgroup->max_excl = limit->max_excl;
}
}
if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_RFER) {
if (limit->rsv_rfer == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_RSV_RFER;
limit->flags &= ~BTRFS_QGROUP_LIMIT_RSV_RFER;
qgroup->rsv_rfer = 0;
} else {
qgroup->rsv_rfer = limit->rsv_rfer;
}
}
if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_EXCL) {
if (limit->rsv_excl == CLEAR_VALUE) {
qgroup->lim_flags &= ~BTRFS_QGROUP_LIMIT_RSV_EXCL;
limit->flags &= ~BTRFS_QGROUP_LIMIT_RSV_EXCL;
qgroup->rsv_excl = 0;
} else {
qgroup->rsv_excl = limit->rsv_excl;
}
}
qgroup->lim_flags |= limit->flags;
spin_unlock(&fs_info->qgroup_lock);
ret = update_qgroup_limit_item(trans, qgroup);
if (ret) {
qgroup_mark_inconsistent(fs_info);
btrfs_info(fs_info, "unable to update quota limit for %llu",
qgroupid);
}
out:
mutex_unlock(&fs_info->qgroup_ioctl_lock);
return ret;
}
/*
* Inform qgroup to trace one dirty extent, its info is recorded in @record.
* So qgroup can account it at transaction committing time.
*
* No lock version, caller must acquire delayed ref lock and allocated memory,
* then call btrfs_qgroup_trace_extent_post() after exiting lock context.
*
* Return 0 for success insert
* Return >0 for existing record, caller can free @record safely.
* Error is not possible
*/
int btrfs_qgroup_trace_extent_nolock(struct btrfs_fs_info *fs_info,
struct btrfs_delayed_ref_root *delayed_refs,
struct btrfs_qgroup_extent_record *record)
{
struct rb_node **p = &delayed_refs->dirty_extent_root.rb_node;
struct rb_node *parent_node = NULL;
struct btrfs_qgroup_extent_record *entry;
u64 bytenr = record->bytenr;
if (!btrfs_qgroup_full_accounting(fs_info))
return 1;
lockdep_assert_held(&delayed_refs->lock);
trace_btrfs_qgroup_trace_extent(fs_info, record);
while (*p) {
parent_node = *p;
entry = rb_entry(parent_node, struct btrfs_qgroup_extent_record,
node);
if (bytenr < entry->bytenr) {
p = &(*p)->rb_left;
} else if (bytenr > entry->bytenr) {
p = &(*p)->rb_right;
} else {
if (record->data_rsv && !entry->data_rsv) {
entry->data_rsv = record->data_rsv;
entry->data_rsv_refroot =
record->data_rsv_refroot;
}
return 1;
}
}
rb_link_node(&record->node, parent_node, p);
rb_insert_color(&record->node, &delayed_refs->dirty_extent_root);
return 0;
}
/*
* Post handler after qgroup_trace_extent_nolock().
*
* NOTE: Current qgroup does the expensive backref walk at transaction
* committing time with TRANS_STATE_COMMIT_DOING, this blocks incoming
* new transaction.
* This is designed to allow btrfs_find_all_roots() to get correct new_roots
* result.
*
* However for old_roots there is no need to do backref walk at that time,
* since we search commit roots to walk backref and result will always be
* correct.
*
* Due to the nature of no lock version, we can't do backref there.
* So we must call btrfs_qgroup_trace_extent_post() after exiting
* spinlock context.
*
* TODO: If we can fix and prove btrfs_find_all_roots() can get correct result
* using current root, then we can move all expensive backref walk out of
* transaction committing, but not now as qgroup accounting will be wrong again.
*/
int btrfs_qgroup_trace_extent_post(struct btrfs_trans_handle *trans,
struct btrfs_qgroup_extent_record *qrecord)
{
struct btrfs_backref_walk_ctx ctx = { 0 };
int ret;
if (!btrfs_qgroup_full_accounting(trans->fs_info))
return 0;
/*
* We are always called in a context where we are already holding a
* transaction handle. Often we are called when adding a data delayed
* reference from btrfs_truncate_inode_items() (truncating or unlinking),
* in which case we will be holding a write lock on extent buffer from a
* subvolume tree. In this case we can't allow btrfs_find_all_roots() to
* acquire fs_info->commit_root_sem, because that is a higher level lock
* that must be acquired before locking any extent buffers.
*
* So we want btrfs_find_all_roots() to not acquire the commit_root_sem
* but we can't pass it a non-NULL transaction handle, because otherwise
* it would not use commit roots and would lock extent buffers, causing
* a deadlock if it ends up trying to read lock the same extent buffer
* that was previously write locked at btrfs_truncate_inode_items().
*
* So pass a NULL transaction handle to btrfs_find_all_roots() and
* explicitly tell it to not acquire the commit_root_sem - if we are
* holding a transaction handle we don't need its protection.
*/
ASSERT(trans != NULL);
if (trans->fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING)
return 0;
ctx.bytenr = qrecord->bytenr;
ctx.fs_info = trans->fs_info;
ret = btrfs_find_all_roots(&ctx, true);
if (ret < 0) {
qgroup_mark_inconsistent(trans->fs_info);
btrfs_warn(trans->fs_info,
"error accounting new delayed refs extent (err code: %d), quota inconsistent",
ret);
return 0;
}
/*
* Here we don't need to get the lock of
* trans->transaction->delayed_refs, since inserted qrecord won't
* be deleted, only qrecord->node may be modified (new qrecord insert)
*
* So modifying qrecord->old_roots is safe here
*/
qrecord->old_roots = ctx.roots;
return 0;
}
/*
* Inform qgroup to trace one dirty extent, specified by @bytenr and
* @num_bytes.
* So qgroup can account it at commit trans time.
*
* Better encapsulated version, with memory allocation and backref walk for
* commit roots.
* So this can sleep.
*
* Return 0 if the operation is done.
* Return <0 for error, like memory allocation failure or invalid parameter
* (NULL trans)
*/
int btrfs_qgroup_trace_extent(struct btrfs_trans_handle *trans, u64 bytenr,
u64 num_bytes)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup_extent_record *record;
struct btrfs_delayed_ref_root *delayed_refs;
int ret;
if (!btrfs_qgroup_full_accounting(fs_info) || bytenr == 0 || num_bytes == 0)
return 0;
record = kzalloc(sizeof(*record), GFP_NOFS);
if (!record)
return -ENOMEM;
delayed_refs = &trans->transaction->delayed_refs;
record->bytenr = bytenr;
record->num_bytes = num_bytes;
record->old_roots = NULL;
spin_lock(&delayed_refs->lock);
ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, record);
spin_unlock(&delayed_refs->lock);
if (ret > 0) {
kfree(record);
return 0;
}
return btrfs_qgroup_trace_extent_post(trans, record);
}
/*
* Inform qgroup to trace all leaf items of data
*
* Return 0 for success
* Return <0 for error(ENOMEM)
*/
int btrfs_qgroup_trace_leaf_items(struct btrfs_trans_handle *trans,
struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int nr = btrfs_header_nritems(eb);
int i, extent_type, ret;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
u64 bytenr, num_bytes;
/* We can be called directly from walk_up_proc() */
if (!btrfs_qgroup_full_accounting(fs_info))
return 0;
for (i = 0; i < nr; i++) {
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
/* filter out non qgroup-accountable extents */
extent_type = btrfs_file_extent_type(eb, fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
if (!bytenr)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
ret = btrfs_qgroup_trace_extent(trans, bytenr, num_bytes);
if (ret)
return ret;
}
cond_resched();
return 0;
}
/*
* Walk up the tree from the bottom, freeing leaves and any interior
* nodes which have had all slots visited. If a node (leaf or
* interior) is freed, the node above it will have it's slot
* incremented. The root node will never be freed.
*
* At the end of this function, we should have a path which has all
* slots incremented to the next position for a search. If we need to
* read a new node it will be NULL and the node above it will have the
* correct slot selected for a later read.
*
* If we increment the root nodes slot counter past the number of
* elements, 1 is returned to signal completion of the search.
*/
static int adjust_slots_upwards(struct btrfs_path *path, int root_level)
{
int level = 0;
int nr, slot;
struct extent_buffer *eb;
if (root_level == 0)
return 1;
while (level <= root_level) {
eb = path->nodes[level];
nr = btrfs_header_nritems(eb);
path->slots[level]++;
slot = path->slots[level];
if (slot >= nr || level == 0) {
/*
* Don't free the root - we will detect this
* condition after our loop and return a
* positive value for caller to stop walking the tree.
*/
if (level != root_level) {
btrfs_tree_unlock_rw(eb, path->locks[level]);
path->locks[level] = 0;
free_extent_buffer(eb);
path->nodes[level] = NULL;
path->slots[level] = 0;
}
} else {
/*
* We have a valid slot to walk back down
* from. Stop here so caller can process these
* new nodes.
*/
break;
}
level++;
}
eb = path->nodes[root_level];
if (path->slots[root_level] >= btrfs_header_nritems(eb))
return 1;
return 0;
}
/*
* Helper function to trace a subtree tree block swap.
*
* The swap will happen in highest tree block, but there may be a lot of
* tree blocks involved.
*
* For example:
* OO = Old tree blocks
* NN = New tree blocks allocated during balance
*
* File tree (257) Reloc tree for 257
* L2 OO NN
* / \ / \
* L1 OO OO (a) OO NN (a)
* / \ / \ / \ / \
* L0 OO OO OO OO OO OO NN NN
* (b) (c) (b) (c)
*
* When calling qgroup_trace_extent_swap(), we will pass:
* @src_eb = OO(a)
* @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ]
* @dst_level = 0
* @root_level = 1
*
* In that case, qgroup_trace_extent_swap() will search from OO(a) to
* reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty.
*
* The main work of qgroup_trace_extent_swap() can be split into 3 parts:
*
* 1) Tree search from @src_eb
* It should acts as a simplified btrfs_search_slot().
* The key for search can be extracted from @dst_path->nodes[dst_level]
* (first key).
*
* 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty
* NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty.
* They should be marked during previous (@dst_level = 1) iteration.
*
* 3) Mark file extents in leaves dirty
* We don't have good way to pick out new file extents only.
* So we still follow the old method by scanning all file extents in
* the leave.
*
* This function can free us from keeping two paths, thus later we only need
* to care about how to iterate all new tree blocks in reloc tree.
*/
static int qgroup_trace_extent_swap(struct btrfs_trans_handle* trans,
struct extent_buffer *src_eb,
struct btrfs_path *dst_path,
int dst_level, int root_level,
bool trace_leaf)
{
struct btrfs_key key;
struct btrfs_path *src_path;
struct btrfs_fs_info *fs_info = trans->fs_info;
u32 nodesize = fs_info->nodesize;
int cur_level = root_level;
int ret;
BUG_ON(dst_level > root_level);
/* Level mismatch */
if (btrfs_header_level(src_eb) != root_level)
return -EINVAL;
src_path = btrfs_alloc_path();
if (!src_path) {
ret = -ENOMEM;
goto out;
}
if (dst_level)
btrfs_node_key_to_cpu(dst_path->nodes[dst_level], &key, 0);
else
btrfs_item_key_to_cpu(dst_path->nodes[dst_level], &key, 0);
/* For src_path */
atomic_inc(&src_eb->refs);
src_path->nodes[root_level] = src_eb;
src_path->slots[root_level] = dst_path->slots[root_level];
src_path->locks[root_level] = 0;
/* A simplified version of btrfs_search_slot() */
while (cur_level >= dst_level) {
struct btrfs_key src_key;
struct btrfs_key dst_key;
if (src_path->nodes[cur_level] == NULL) {
struct extent_buffer *eb;
int parent_slot;
eb = src_path->nodes[cur_level + 1];
parent_slot = src_path->slots[cur_level + 1];
eb = btrfs_read_node_slot(eb, parent_slot);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
goto out;
}
src_path->nodes[cur_level] = eb;
btrfs_tree_read_lock(eb);
src_path->locks[cur_level] = BTRFS_READ_LOCK;
}
src_path->slots[cur_level] = dst_path->slots[cur_level];
if (cur_level) {
btrfs_node_key_to_cpu(dst_path->nodes[cur_level],
&dst_key, dst_path->slots[cur_level]);
btrfs_node_key_to_cpu(src_path->nodes[cur_level],
&src_key, src_path->slots[cur_level]);
} else {
btrfs_item_key_to_cpu(dst_path->nodes[cur_level],
&dst_key, dst_path->slots[cur_level]);
btrfs_item_key_to_cpu(src_path->nodes[cur_level],
&src_key, src_path->slots[cur_level]);
}
/* Content mismatch, something went wrong */
if (btrfs_comp_cpu_keys(&dst_key, &src_key)) {
ret = -ENOENT;
goto out;
}
cur_level--;
}
/*
* Now both @dst_path and @src_path have been populated, record the tree
* blocks for qgroup accounting.
*/
ret = btrfs_qgroup_trace_extent(trans, src_path->nodes[dst_level]->start,
nodesize);
if (ret < 0)
goto out;
ret = btrfs_qgroup_trace_extent(trans, dst_path->nodes[dst_level]->start,
nodesize);
if (ret < 0)
goto out;
/* Record leaf file extents */
if (dst_level == 0 && trace_leaf) {
ret = btrfs_qgroup_trace_leaf_items(trans, src_path->nodes[0]);
if (ret < 0)
goto out;
ret = btrfs_qgroup_trace_leaf_items(trans, dst_path->nodes[0]);
}
out:
btrfs_free_path(src_path);
return ret;
}
/*
* Helper function to do recursive generation-aware depth-first search, to
* locate all new tree blocks in a subtree of reloc tree.
*
* E.g. (OO = Old tree blocks, NN = New tree blocks, whose gen == last_snapshot)
* reloc tree
* L2 NN (a)
* / \
* L1 OO NN (b)
* / \ / \
* L0 OO OO OO NN
* (c) (d)
* If we pass:
* @dst_path = [ nodes[1] = NN(b), nodes[0] = NULL ],
* @cur_level = 1
* @root_level = 1
*
* We will iterate through tree blocks NN(b), NN(d) and info qgroup to trace
* above tree blocks along with their counter parts in file tree.
* While during search, old tree blocks OO(c) will be skipped as tree block swap
* won't affect OO(c).
*/
static int qgroup_trace_new_subtree_blocks(struct btrfs_trans_handle* trans,
struct extent_buffer *src_eb,
struct btrfs_path *dst_path,
int cur_level, int root_level,
u64 last_snapshot, bool trace_leaf)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct extent_buffer *eb;
bool need_cleanup = false;
int ret = 0;
int i;
/* Level sanity check */
if (cur_level < 0 || cur_level >= BTRFS_MAX_LEVEL - 1 ||
root_level < 0 || root_level >= BTRFS_MAX_LEVEL - 1 ||
root_level < cur_level) {
btrfs_err_rl(fs_info,
"%s: bad levels, cur_level=%d root_level=%d",
__func__, cur_level, root_level);
return -EUCLEAN;
}
/* Read the tree block if needed */
if (dst_path->nodes[cur_level] == NULL) {
int parent_slot;
u64 child_gen;
/*
* dst_path->nodes[root_level] must be initialized before
* calling this function.
*/
if (cur_level == root_level) {
btrfs_err_rl(fs_info,
"%s: dst_path->nodes[%d] not initialized, root_level=%d cur_level=%d",
__func__, root_level, root_level, cur_level);
return -EUCLEAN;
}
/*
* We need to get child blockptr/gen from parent before we can
* read it.
*/
eb = dst_path->nodes[cur_level + 1];
parent_slot = dst_path->slots[cur_level + 1];
child_gen = btrfs_node_ptr_generation(eb, parent_slot);
/* This node is old, no need to trace */
if (child_gen < last_snapshot)
goto out;
eb = btrfs_read_node_slot(eb, parent_slot);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
goto out;
}
dst_path->nodes[cur_level] = eb;
dst_path->slots[cur_level] = 0;
btrfs_tree_read_lock(eb);
dst_path->locks[cur_level] = BTRFS_READ_LOCK;
need_cleanup = true;
}
/* Now record this tree block and its counter part for qgroups */
ret = qgroup_trace_extent_swap(trans, src_eb, dst_path, cur_level,
root_level, trace_leaf);
if (ret < 0)
goto cleanup;
eb = dst_path->nodes[cur_level];
if (cur_level > 0) {
/* Iterate all child tree blocks */
for (i = 0; i < btrfs_header_nritems(eb); i++) {
/* Skip old tree blocks as they won't be swapped */
if (btrfs_node_ptr_generation(eb, i) < last_snapshot)
continue;
dst_path->slots[cur_level] = i;
/* Recursive call (at most 7 times) */
ret = qgroup_trace_new_subtree_blocks(trans, src_eb,
dst_path, cur_level - 1, root_level,
last_snapshot, trace_leaf);
if (ret < 0)
goto cleanup;
}
}
cleanup:
if (need_cleanup) {
/* Clean up */
btrfs_tree_unlock_rw(dst_path->nodes[cur_level],
dst_path->locks[cur_level]);
free_extent_buffer(dst_path->nodes[cur_level]);
dst_path->nodes[cur_level] = NULL;
dst_path->slots[cur_level] = 0;
dst_path->locks[cur_level] = 0;
}
out:
return ret;
}
static int qgroup_trace_subtree_swap(struct btrfs_trans_handle *trans,
struct extent_buffer *src_eb,
struct extent_buffer *dst_eb,
u64 last_snapshot, bool trace_leaf)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_path *dst_path = NULL;
int level;
int ret;
if (!btrfs_qgroup_full_accounting(fs_info))
return 0;
/* Wrong parameter order */
if (btrfs_header_generation(src_eb) > btrfs_header_generation(dst_eb)) {
btrfs_err_rl(fs_info,
"%s: bad parameter order, src_gen=%llu dst_gen=%llu", __func__,
btrfs_header_generation(src_eb),
btrfs_header_generation(dst_eb));
return -EUCLEAN;
}
if (!extent_buffer_uptodate(src_eb) || !extent_buffer_uptodate(dst_eb)) {
ret = -EIO;
goto out;
}
level = btrfs_header_level(dst_eb);
dst_path = btrfs_alloc_path();
if (!dst_path) {
ret = -ENOMEM;
goto out;
}
/* For dst_path */
atomic_inc(&dst_eb->refs);
dst_path->nodes[level] = dst_eb;
dst_path->slots[level] = 0;
dst_path->locks[level] = 0;
/* Do the generation aware breadth-first search */
ret = qgroup_trace_new_subtree_blocks(trans, src_eb, dst_path, level,
level, last_snapshot, trace_leaf);
if (ret < 0)
goto out;
ret = 0;
out:
btrfs_free_path(dst_path);
if (ret < 0)
qgroup_mark_inconsistent(fs_info);
return ret;
}
/*
* Inform qgroup to trace a whole subtree, including all its child tree
* blocks and data.
* The root tree block is specified by @root_eb.
*
* Normally used by relocation(tree block swap) and subvolume deletion.
*
* Return 0 for success
* Return <0 for error(ENOMEM or tree search error)
*/
int btrfs_qgroup_trace_subtree(struct btrfs_trans_handle *trans,
struct extent_buffer *root_eb,
u64 root_gen, int root_level)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = 0;
int level;
u8 drop_subptree_thres;
struct extent_buffer *eb = root_eb;
struct btrfs_path *path = NULL;
ASSERT(0 <= root_level && root_level < BTRFS_MAX_LEVEL);
ASSERT(root_eb != NULL);
if (!btrfs_qgroup_full_accounting(fs_info))
return 0;
spin_lock(&fs_info->qgroup_lock);
drop_subptree_thres = fs_info->qgroup_drop_subtree_thres;
spin_unlock(&fs_info->qgroup_lock);
/*
* This function only gets called for snapshot drop, if we hit a high
* node here, it means we are going to change ownership for quite a lot
* of extents, which will greatly slow down btrfs_commit_transaction().
*
* So here if we find a high tree here, we just skip the accounting and
* mark qgroup inconsistent.
*/
if (root_level >= drop_subptree_thres) {
qgroup_mark_inconsistent(fs_info);
return 0;
}
if (!extent_buffer_uptodate(root_eb)) {
struct btrfs_tree_parent_check check = {
.has_first_key = false,
.transid = root_gen,
.level = root_level
};
ret = btrfs_read_extent_buffer(root_eb, &check);
if (ret)
goto out;
}
if (root_level == 0) {
ret = btrfs_qgroup_trace_leaf_items(trans, root_eb);
goto out;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* Walk down the tree. Missing extent blocks are filled in as
* we go. Metadata is accounted every time we read a new
* extent block.
*
* When we reach a leaf, we account for file extent items in it,
* walk back up the tree (adjusting slot pointers as we go)
* and restart the search process.
*/
atomic_inc(&root_eb->refs); /* For path */
path->nodes[root_level] = root_eb;
path->slots[root_level] = 0;
path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
walk_down:
level = root_level;
while (level >= 0) {
if (path->nodes[level] == NULL) {
int parent_slot;
u64 child_bytenr;
/*
* We need to get child blockptr from parent before we
* can read it.
*/
eb = path->nodes[level + 1];
parent_slot = path->slots[level + 1];
child_bytenr = btrfs_node_blockptr(eb, parent_slot);
eb = btrfs_read_node_slot(eb, parent_slot);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
goto out;
}
path->nodes[level] = eb;
path->slots[level] = 0;
btrfs_tree_read_lock(eb);
path->locks[level] = BTRFS_READ_LOCK;
ret = btrfs_qgroup_trace_extent(trans, child_bytenr,
fs_info->nodesize);
if (ret)
goto out;
}
if (level == 0) {
ret = btrfs_qgroup_trace_leaf_items(trans,
path->nodes[level]);
if (ret)
goto out;
/* Nonzero return here means we completed our search */
ret = adjust_slots_upwards(path, root_level);
if (ret)
break;
/* Restart search with new slots */
goto walk_down;
}
level--;
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
static void qgroup_iterator_nested_add(struct list_head *head, struct btrfs_qgroup *qgroup)
{
if (!list_empty(&qgroup->nested_iterator))
return;
list_add_tail(&qgroup->nested_iterator, head);
}
static void qgroup_iterator_nested_clean(struct list_head *head)
{
while (!list_empty(head)) {
struct btrfs_qgroup *qgroup;
qgroup = list_first_entry(head, struct btrfs_qgroup, nested_iterator);
list_del_init(&qgroup->nested_iterator);
}
}
#define UPDATE_NEW 0
#define UPDATE_OLD 1
/*
* Walk all of the roots that points to the bytenr and adjust their refcnts.
*/
static void qgroup_update_refcnt(struct btrfs_fs_info *fs_info,
struct ulist *roots, struct list_head *qgroups,
u64 seq, int update_old)
{
struct ulist_node *unode;
struct ulist_iterator uiter;
struct btrfs_qgroup *qg;
if (!roots)
return;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
LIST_HEAD(tmp);
qg = find_qgroup_rb(fs_info, unode->val);
if (!qg)
continue;
qgroup_iterator_nested_add(qgroups, qg);
qgroup_iterator_add(&tmp, qg);
list_for_each_entry(qg, &tmp, iterator) {
struct btrfs_qgroup_list *glist;
if (update_old)
btrfs_qgroup_update_old_refcnt(qg, seq, 1);
else
btrfs_qgroup_update_new_refcnt(qg, seq, 1);
list_for_each_entry(glist, &qg->groups, next_group) {
qgroup_iterator_nested_add(qgroups, glist->group);
qgroup_iterator_add(&tmp, glist->group);
}
}
qgroup_iterator_clean(&tmp);
}
}
/*
* Update qgroup rfer/excl counters.
* Rfer update is easy, codes can explain themselves.
*
* Excl update is tricky, the update is split into 2 parts.
* Part 1: Possible exclusive <-> sharing detect:
* | A | !A |
* -------------------------------------
* B | * | - |
* -------------------------------------
* !B | + | ** |
* -------------------------------------
*
* Conditions:
* A: cur_old_roots < nr_old_roots (not exclusive before)
* !A: cur_old_roots == nr_old_roots (possible exclusive before)
* B: cur_new_roots < nr_new_roots (not exclusive now)
* !B: cur_new_roots == nr_new_roots (possible exclusive now)
*
* Results:
* +: Possible sharing -> exclusive -: Possible exclusive -> sharing
* *: Definitely not changed. **: Possible unchanged.
*
* For !A and !B condition, the exception is cur_old/new_roots == 0 case.
*
* To make the logic clear, we first use condition A and B to split
* combination into 4 results.
*
* Then, for result "+" and "-", check old/new_roots == 0 case, as in them
* only on variant maybe 0.
*
* Lastly, check result **, since there are 2 variants maybe 0, split them
* again(2x2).
* But this time we don't need to consider other things, the codes and logic
* is easy to understand now.
*/
static void qgroup_update_counters(struct btrfs_fs_info *fs_info,
struct list_head *qgroups, u64 nr_old_roots,
u64 nr_new_roots, u64 num_bytes, u64 seq)
{
struct btrfs_qgroup *qg;
list_for_each_entry(qg, qgroups, nested_iterator) {
u64 cur_new_count, cur_old_count;
bool dirty = false;
cur_old_count = btrfs_qgroup_get_old_refcnt(qg, seq);
cur_new_count = btrfs_qgroup_get_new_refcnt(qg, seq);
trace_qgroup_update_counters(fs_info, qg, cur_old_count,
cur_new_count);
/* Rfer update part */
if (cur_old_count == 0 && cur_new_count > 0) {
qg->rfer += num_bytes;
qg->rfer_cmpr += num_bytes;
dirty = true;
}
if (cur_old_count > 0 && cur_new_count == 0) {
qg->rfer -= num_bytes;
qg->rfer_cmpr -= num_bytes;
dirty = true;
}
/* Excl update part */
/* Exclusive/none -> shared case */
if (cur_old_count == nr_old_roots &&
cur_new_count < nr_new_roots) {
/* Exclusive -> shared */
if (cur_old_count != 0) {
qg->excl -= num_bytes;
qg->excl_cmpr -= num_bytes;
dirty = true;
}
}
/* Shared -> exclusive/none case */
if (cur_old_count < nr_old_roots &&
cur_new_count == nr_new_roots) {
/* Shared->exclusive */
if (cur_new_count != 0) {
qg->excl += num_bytes;
qg->excl_cmpr += num_bytes;
dirty = true;
}
}
/* Exclusive/none -> exclusive/none case */
if (cur_old_count == nr_old_roots &&
cur_new_count == nr_new_roots) {
if (cur_old_count == 0) {
/* None -> exclusive/none */
if (cur_new_count != 0) {
/* None -> exclusive */
qg->excl += num_bytes;
qg->excl_cmpr += num_bytes;
dirty = true;
}
/* None -> none, nothing changed */
} else {
/* Exclusive -> exclusive/none */
if (cur_new_count == 0) {
/* Exclusive -> none */
qg->excl -= num_bytes;
qg->excl_cmpr -= num_bytes;
dirty = true;
}
/* Exclusive -> exclusive, nothing changed */
}
}
if (dirty)
qgroup_dirty(fs_info, qg);
}
}
/*
* Check if the @roots potentially is a list of fs tree roots
*
* Return 0 for definitely not a fs/subvol tree roots ulist
* Return 1 for possible fs/subvol tree roots in the list (considering an empty
* one as well)
*/
static int maybe_fs_roots(struct ulist *roots)
{
struct ulist_node *unode;
struct ulist_iterator uiter;
/* Empty one, still possible for fs roots */
if (!roots || roots->nnodes == 0)
return 1;
ULIST_ITER_INIT(&uiter);
unode = ulist_next(roots, &uiter);
if (!unode)
return 1;
/*
* If it contains fs tree roots, then it must belong to fs/subvol
* trees.
* If it contains a non-fs tree, it won't be shared with fs/subvol trees.
*/
return is_fstree(unode->val);
}
int btrfs_qgroup_account_extent(struct btrfs_trans_handle *trans, u64 bytenr,
u64 num_bytes, struct ulist *old_roots,
struct ulist *new_roots)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
LIST_HEAD(qgroups);
u64 seq;
u64 nr_new_roots = 0;
u64 nr_old_roots = 0;
int ret = 0;
/*
* If quotas get disabled meanwhile, the resources need to be freed and
* we can't just exit here.
*/
if (!btrfs_qgroup_full_accounting(fs_info) ||
fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING)
goto out_free;
if (new_roots) {
if (!maybe_fs_roots(new_roots))
goto out_free;
nr_new_roots = new_roots->nnodes;
}
if (old_roots) {
if (!maybe_fs_roots(old_roots))
goto out_free;
nr_old_roots = old_roots->nnodes;
}
/* Quick exit, either not fs tree roots, or won't affect any qgroup */
if (nr_old_roots == 0 && nr_new_roots == 0)
goto out_free;
trace_btrfs_qgroup_account_extent(fs_info, trans->transid, bytenr,
num_bytes, nr_old_roots, nr_new_roots);
mutex_lock(&fs_info->qgroup_rescan_lock);
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
if (fs_info->qgroup_rescan_progress.objectid <= bytenr) {
mutex_unlock(&fs_info->qgroup_rescan_lock);
ret = 0;
goto out_free;
}
}
mutex_unlock(&fs_info->qgroup_rescan_lock);
spin_lock(&fs_info->qgroup_lock);
seq = fs_info->qgroup_seq;
/* Update old refcnts using old_roots */
qgroup_update_refcnt(fs_info, old_roots, &qgroups, seq, UPDATE_OLD);
/* Update new refcnts using new_roots */
qgroup_update_refcnt(fs_info, new_roots, &qgroups, seq, UPDATE_NEW);
qgroup_update_counters(fs_info, &qgroups, nr_old_roots, nr_new_roots,
num_bytes, seq);
/*
* We're done using the iterator, release all its qgroups while holding
* fs_info->qgroup_lock so that we don't race with btrfs_remove_qgroup()
* and trigger use-after-free accesses to qgroups.
*/
qgroup_iterator_nested_clean(&qgroups);
/*
* Bump qgroup_seq to avoid seq overlap
*/
fs_info->qgroup_seq += max(nr_old_roots, nr_new_roots) + 1;
spin_unlock(&fs_info->qgroup_lock);
out_free:
ulist_free(old_roots);
ulist_free(new_roots);
return ret;
}
int btrfs_qgroup_account_extents(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_qgroup_extent_record *record;
struct btrfs_delayed_ref_root *delayed_refs;
struct ulist *new_roots = NULL;
struct rb_node *node;
u64 num_dirty_extents = 0;
u64 qgroup_to_skip;
int ret = 0;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
return 0;
delayed_refs = &trans->transaction->delayed_refs;
qgroup_to_skip = delayed_refs->qgroup_to_skip;
while ((node = rb_first(&delayed_refs->dirty_extent_root))) {
record = rb_entry(node, struct btrfs_qgroup_extent_record,
node);
num_dirty_extents++;
trace_btrfs_qgroup_account_extents(fs_info, record);
if (!ret && !(fs_info->qgroup_flags &
BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING)) {
struct btrfs_backref_walk_ctx ctx = { 0 };
ctx.bytenr = record->bytenr;
ctx.fs_info = fs_info;
/*
* Old roots should be searched when inserting qgroup
* extent record.
*
* But for INCONSISTENT (NO_ACCOUNTING) -> rescan case,
* we may have some record inserted during
* NO_ACCOUNTING (thus no old_roots populated), but
* later we start rescan, which clears NO_ACCOUNTING,
* leaving some inserted records without old_roots
* populated.
*
* Those cases are rare and should not cause too much
* time spent during commit_transaction().
*/
if (!record->old_roots) {
/* Search commit root to find old_roots */
ret = btrfs_find_all_roots(&ctx, false);
if (ret < 0)
goto cleanup;
record->old_roots = ctx.roots;
ctx.roots = NULL;
}
/*
* Use BTRFS_SEQ_LAST as time_seq to do special search,
* which doesn't lock tree or delayed_refs and search
* current root. It's safe inside commit_transaction().
*/
ctx.trans = trans;
ctx.time_seq = BTRFS_SEQ_LAST;
ret = btrfs_find_all_roots(&ctx, false);
if (ret < 0)
goto cleanup;
new_roots = ctx.roots;
if (qgroup_to_skip) {
ulist_del(new_roots, qgroup_to_skip, 0);
ulist_del(record->old_roots, qgroup_to_skip,
0);
}
ret = btrfs_qgroup_account_extent(trans, record->bytenr,
record->num_bytes,
record->old_roots,
new_roots);
record->old_roots = NULL;
new_roots = NULL;
}
/* Free the reserved data space */
btrfs_qgroup_free_refroot(fs_info,
record->data_rsv_refroot,
record->data_rsv,
BTRFS_QGROUP_RSV_DATA);
cleanup:
ulist_free(record->old_roots);
ulist_free(new_roots);
new_roots = NULL;
rb_erase(node, &delayed_refs->dirty_extent_root);
kfree(record);
}
trace_qgroup_num_dirty_extents(fs_info, trans->transid,
num_dirty_extents);
return ret;
}
/*
* Writes all changed qgroups to disk.
* Called by the transaction commit path and the qgroup assign ioctl.
*/
int btrfs_run_qgroups(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = 0;
/*
* In case we are called from the qgroup assign ioctl, assert that we
* are holding the qgroup_ioctl_lock, otherwise we can race with a quota
* disable operation (ioctl) and access a freed quota root.
*/
if (trans->transaction->state != TRANS_STATE_COMMIT_DOING)
lockdep_assert_held(&fs_info->qgroup_ioctl_lock);
if (!fs_info->quota_root)
return ret;
spin_lock(&fs_info->qgroup_lock);
while (!list_empty(&fs_info->dirty_qgroups)) {
struct btrfs_qgroup *qgroup;
qgroup = list_first_entry(&fs_info->dirty_qgroups,
struct btrfs_qgroup, dirty);
list_del_init(&qgroup->dirty);
spin_unlock(&fs_info->qgroup_lock);
ret = update_qgroup_info_item(trans, qgroup);
if (ret)
qgroup_mark_inconsistent(fs_info);
ret = update_qgroup_limit_item(trans, qgroup);
if (ret)
qgroup_mark_inconsistent(fs_info);
spin_lock(&fs_info->qgroup_lock);
}
if (btrfs_qgroup_enabled(fs_info))
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_ON;
else
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON;
spin_unlock(&fs_info->qgroup_lock);
ret = update_qgroup_status_item(trans);
if (ret)
qgroup_mark_inconsistent(fs_info);
return ret;
}
int btrfs_qgroup_check_inherit(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup_inherit *inherit,
size_t size)
{
if (!btrfs_qgroup_enabled(fs_info))
return 0;
if (inherit->flags & ~BTRFS_QGROUP_INHERIT_FLAGS_SUPP)
return -EOPNOTSUPP;
if (size < sizeof(*inherit) || size > PAGE_SIZE)
return -EINVAL;
/*
* In the past we allowed btrfs_qgroup_inherit to specify to copy
* rfer/excl numbers directly from other qgroups. This behavior has
* been disabled in userspace for a very long time, but here we should
* also disable it in kernel, as this behavior is known to mark qgroup
* inconsistent, and a rescan would wipe out the changes anyway.
*
* Reject any btrfs_qgroup_inherit with num_ref_copies or num_excl_copies.
*/
if (inherit->num_ref_copies > 0 || inherit->num_excl_copies > 0)
return -EINVAL;
if (size != struct_size(inherit, qgroups, inherit->num_qgroups))
return -EINVAL;
/*
* Now check all the remaining qgroups, they should all:
*
* - Exist
* - Be higher level qgroups.
*/
for (int i = 0; i < inherit->num_qgroups; i++) {
struct btrfs_qgroup *qgroup;
u64 qgroupid = inherit->qgroups[i];
if (btrfs_qgroup_level(qgroupid) == 0)
return -EINVAL;
spin_lock(&fs_info->qgroup_lock);
qgroup = find_qgroup_rb(fs_info, qgroupid);
if (!qgroup) {
spin_unlock(&fs_info->qgroup_lock);
return -ENOENT;
}
spin_unlock(&fs_info->qgroup_lock);
}
return 0;
}
static int qgroup_auto_inherit(struct btrfs_fs_info *fs_info,
u64 inode_rootid,
struct btrfs_qgroup_inherit **inherit)
{
int i = 0;
u64 num_qgroups = 0;
struct btrfs_qgroup *inode_qg;
struct btrfs_qgroup_list *qg_list;
struct btrfs_qgroup_inherit *res;
size_t struct_sz;
u64 *qgids;
if (*inherit)
return -EEXIST;
inode_qg = find_qgroup_rb(fs_info, inode_rootid);
if (!inode_qg)
return -ENOENT;
num_qgroups = list_count_nodes(&inode_qg->groups);
if (!num_qgroups)
return 0;
struct_sz = struct_size(res, qgroups, num_qgroups);
if (struct_sz == SIZE_MAX)
return -ERANGE;
res = kzalloc(struct_sz, GFP_NOFS);
if (!res)
return -ENOMEM;
res->num_qgroups = num_qgroups;
qgids = res->qgroups;
list_for_each_entry(qg_list, &inode_qg->groups, next_group)
qgids[i++] = qg_list->group->qgroupid;
*inherit = res;
return 0;
}
/*
* Check if we can skip rescan when inheriting qgroups. If @src has a single
* @parent, and that @parent is owning all its bytes exclusively, we can skip
* the full rescan, by just adding nodesize to the @parent's excl/rfer.
*
* Return <0 for fatal errors (like srcid/parentid has no qgroup).
* Return 0 if a quick inherit is done.
* Return >0 if a quick inherit is not possible, and a full rescan is needed.
*/
static int qgroup_snapshot_quick_inherit(struct btrfs_fs_info *fs_info,
u64 srcid, u64 parentid)
{
struct btrfs_qgroup *src;
struct btrfs_qgroup *parent;
struct btrfs_qgroup_list *list;
int nr_parents = 0;
src = find_qgroup_rb(fs_info, srcid);
if (!src)
return -ENOENT;
parent = find_qgroup_rb(fs_info, parentid);
if (!parent)
return -ENOENT;
/*
* Source has no parent qgroup, but our new qgroup would have one.
* Qgroup numbers would become inconsistent.
*/
if (list_empty(&src->groups))
return 1;
list_for_each_entry(list, &src->groups, next_group) {
/* The parent is not the same, quick update is not possible. */
if (list->group->qgroupid != parentid)
return 1;
nr_parents++;
/*
* More than one parent qgroup, we can't be sure about accounting
* consistency.
*/
if (nr_parents > 1)
return 1;
}
/*
* The parent is not exclusively owning all its bytes. We're not sure
* if the source has any bytes not fully owned by the parent.
*/
if (parent->excl != parent->rfer)
return 1;
parent->excl += fs_info->nodesize;
parent->rfer += fs_info->nodesize;
return 0;
}
/*
* Copy the accounting information between qgroups. This is necessary
* when a snapshot or a subvolume is created. Throwing an error will
* cause a transaction abort so we take extra care here to only error
* when a readonly fs is a reasonable outcome.
*/
int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans, u64 srcid,
u64 objectid, u64 inode_rootid,
struct btrfs_qgroup_inherit *inherit)
{
int ret = 0;
int i;
u64 *i_qgroups;
bool committing = false;
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *quota_root;
struct btrfs_qgroup *srcgroup;
struct btrfs_qgroup *dstgroup;
struct btrfs_qgroup *prealloc;
struct btrfs_qgroup_list **qlist_prealloc = NULL;
bool free_inherit = false;
bool need_rescan = false;
u32 level_size = 0;
u64 nums;
prealloc = kzalloc(sizeof(*prealloc), GFP_NOFS);
if (!prealloc)
return -ENOMEM;
/*
* There are only two callers of this function.
*
* One in create_subvol() in the ioctl context, which needs to hold
* the qgroup_ioctl_lock.
*
* The other one in create_pending_snapshot() where no other qgroup
* code can modify the fs as they all need to either start a new trans
* or hold a trans handler, thus we don't need to hold
* qgroup_ioctl_lock.
* This would avoid long and complex lock chain and make lockdep happy.
*/
spin_lock(&fs_info->trans_lock);
if (trans->transaction->state == TRANS_STATE_COMMIT_DOING)
committing = true;
spin_unlock(&fs_info->trans_lock);
if (!committing)
mutex_lock(&fs_info->qgroup_ioctl_lock);
if (!btrfs_qgroup_enabled(fs_info))
goto out;
quota_root = fs_info->quota_root;
if (!quota_root) {
ret = -EINVAL;
goto out;
}
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE && !inherit) {
ret = qgroup_auto_inherit(fs_info, inode_rootid, &inherit);
if (ret)
goto out;
free_inherit = true;
}
if (inherit) {
i_qgroups = (u64 *)(inherit + 1);
nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2 * inherit->num_excl_copies;
for (i = 0; i < nums; ++i) {
srcgroup = find_qgroup_rb(fs_info, *i_qgroups);
/*
* Zero out invalid groups so we can ignore
* them later.
*/
if (!srcgroup ||
((srcgroup->qgroupid >> 48) <= (objectid >> 48)))
*i_qgroups = 0ULL;
++i_qgroups;
}
}
/*
* create a tracking group for the subvol itself
*/
ret = add_qgroup_item(trans, quota_root, objectid);
if (ret)
goto out;
/*
* add qgroup to all inherited groups
*/
if (inherit) {
i_qgroups = (u64 *)(inherit + 1);
for (i = 0; i < inherit->num_qgroups; ++i, ++i_qgroups) {
if (*i_qgroups == 0)
continue;
ret = add_qgroup_relation_item(trans, objectid,
*i_qgroups);
if (ret && ret != -EEXIST)
goto out;
ret = add_qgroup_relation_item(trans, *i_qgroups,
objectid);
if (ret && ret != -EEXIST)
goto out;
}
ret = 0;
qlist_prealloc = kcalloc(inherit->num_qgroups,
sizeof(struct btrfs_qgroup_list *),
GFP_NOFS);
if (!qlist_prealloc) {
ret = -ENOMEM;
goto out;
}
for (int i = 0; i < inherit->num_qgroups; i++) {
qlist_prealloc[i] = kzalloc(sizeof(struct btrfs_qgroup_list),
GFP_NOFS);
if (!qlist_prealloc[i]) {
ret = -ENOMEM;
goto out;
}
}
}
spin_lock(&fs_info->qgroup_lock);
dstgroup = add_qgroup_rb(fs_info, prealloc, objectid);
prealloc = NULL;
if (inherit && inherit->flags & BTRFS_QGROUP_INHERIT_SET_LIMITS) {
dstgroup->lim_flags = inherit->lim.flags;
dstgroup->max_rfer = inherit->lim.max_rfer;
dstgroup->max_excl = inherit->lim.max_excl;
dstgroup->rsv_rfer = inherit->lim.rsv_rfer;
dstgroup->rsv_excl = inherit->lim.rsv_excl;
qgroup_dirty(fs_info, dstgroup);
}
if (srcid && btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) {
srcgroup = find_qgroup_rb(fs_info, srcid);
if (!srcgroup)
goto unlock;
/*
* We call inherit after we clone the root in order to make sure
* our counts don't go crazy, so at this point the only
* difference between the two roots should be the root node.
*/
level_size = fs_info->nodesize;
dstgroup->rfer = srcgroup->rfer;
dstgroup->rfer_cmpr = srcgroup->rfer_cmpr;
dstgroup->excl = level_size;
dstgroup->excl_cmpr = level_size;
srcgroup->excl = level_size;
srcgroup->excl_cmpr = level_size;
/* inherit the limit info */
dstgroup->lim_flags = srcgroup->lim_flags;
dstgroup->max_rfer = srcgroup->max_rfer;
dstgroup->max_excl = srcgroup->max_excl;
dstgroup->rsv_rfer = srcgroup->rsv_rfer;
dstgroup->rsv_excl = srcgroup->rsv_excl;
qgroup_dirty(fs_info, dstgroup);
qgroup_dirty(fs_info, srcgroup);
/*
* If the source qgroup has parent but the new one doesn't,
* we need a full rescan.
*/
if (!inherit && !list_empty(&srcgroup->groups))
need_rescan = true;
}
if (!inherit)
goto unlock;
i_qgroups = (u64 *)(inherit + 1);
for (i = 0; i < inherit->num_qgroups; ++i) {
if (*i_qgroups) {
ret = add_relation_rb(fs_info, qlist_prealloc[i], objectid,
*i_qgroups);
qlist_prealloc[i] = NULL;
if (ret)
goto unlock;
}
if (srcid) {
/* Check if we can do a quick inherit. */
ret = qgroup_snapshot_quick_inherit(fs_info, srcid, *i_qgroups);
if (ret < 0)
goto unlock;
if (ret > 0)
need_rescan = true;
ret = 0;
}
++i_qgroups;
}
for (i = 0; i < inherit->num_ref_copies; ++i, i_qgroups += 2) {
struct btrfs_qgroup *src;
struct btrfs_qgroup *dst;
if (!i_qgroups[0] || !i_qgroups[1])
continue;
src = find_qgroup_rb(fs_info, i_qgroups[0]);
dst = find_qgroup_rb(fs_info, i_qgroups[1]);
if (!src || !dst) {
ret = -EINVAL;
goto unlock;
}
dst->rfer = src->rfer - level_size;
dst->rfer_cmpr = src->rfer_cmpr - level_size;
/* Manually tweaking numbers certainly needs a rescan */
need_rescan = true;
}
for (i = 0; i < inherit->num_excl_copies; ++i, i_qgroups += 2) {
struct btrfs_qgroup *src;
struct btrfs_qgroup *dst;
if (!i_qgroups[0] || !i_qgroups[1])
continue;
src = find_qgroup_rb(fs_info, i_qgroups[0]);
dst = find_qgroup_rb(fs_info, i_qgroups[1]);
if (!src || !dst) {
ret = -EINVAL;
goto unlock;
}
dst->excl = src->excl + level_size;
dst->excl_cmpr = src->excl_cmpr + level_size;
need_rescan = true;
}
unlock:
spin_unlock(&fs_info->qgroup_lock);
if (!ret)
ret = btrfs_sysfs_add_one_qgroup(fs_info, dstgroup);
out:
if (!committing)
mutex_unlock(&fs_info->qgroup_ioctl_lock);
if (need_rescan)
qgroup_mark_inconsistent(fs_info);
if (qlist_prealloc) {
for (int i = 0; i < inherit->num_qgroups; i++)
kfree(qlist_prealloc[i]);
kfree(qlist_prealloc);
}
if (free_inherit)
kfree(inherit);
kfree(prealloc);
return ret;
}
static bool qgroup_check_limits(const struct btrfs_qgroup *qg, u64 num_bytes)
{
if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_RFER) &&
qgroup_rsv_total(qg) + (s64)qg->rfer + num_bytes > qg->max_rfer)
return false;
if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) &&
qgroup_rsv_total(qg) + (s64)qg->excl + num_bytes > qg->max_excl)
return false;
return true;
}
static int qgroup_reserve(struct btrfs_root *root, u64 num_bytes, bool enforce,
enum btrfs_qgroup_rsv_type type)
{
struct btrfs_qgroup *qgroup;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 ref_root = btrfs_root_id(root);
int ret = 0;
LIST_HEAD(qgroup_list);
if (!is_fstree(ref_root))
return 0;
if (num_bytes == 0)
return 0;
if (test_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags) &&
capable(CAP_SYS_RESOURCE))
enforce = false;
spin_lock(&fs_info->qgroup_lock);
if (!fs_info->quota_root)
goto out;
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
qgroup_iterator_add(&qgroup_list, qgroup);
list_for_each_entry(qgroup, &qgroup_list, iterator) {
struct btrfs_qgroup_list *glist;
if (enforce && !qgroup_check_limits(qgroup, num_bytes)) {
ret = -EDQUOT;
goto out;
}
list_for_each_entry(glist, &qgroup->groups, next_group)
qgroup_iterator_add(&qgroup_list, glist->group);
}
ret = 0;
/*
* no limits exceeded, now record the reservation into all qgroups
*/
list_for_each_entry(qgroup, &qgroup_list, iterator)
qgroup_rsv_add(fs_info, qgroup, num_bytes, type);
out:
qgroup_iterator_clean(&qgroup_list);
spin_unlock(&fs_info->qgroup_lock);
return ret;
}
/*
* Free @num_bytes of reserved space with @type for qgroup. (Normally level 0
* qgroup).
*
* Will handle all higher level qgroup too.
*
* NOTE: If @num_bytes is (u64)-1, this means to free all bytes of this qgroup.
* This special case is only used for META_PERTRANS type.
*/
void btrfs_qgroup_free_refroot(struct btrfs_fs_info *fs_info,
u64 ref_root, u64 num_bytes,
enum btrfs_qgroup_rsv_type type)
{
struct btrfs_qgroup *qgroup;
LIST_HEAD(qgroup_list);
if (!is_fstree(ref_root))
return;
if (num_bytes == 0)
return;
if (num_bytes == (u64)-1 && type != BTRFS_QGROUP_RSV_META_PERTRANS) {
WARN(1, "%s: Invalid type to free", __func__);
return;
}
spin_lock(&fs_info->qgroup_lock);
if (!fs_info->quota_root)
goto out;
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
if (num_bytes == (u64)-1)
/*
* We're freeing all pertrans rsv, get reserved value from
* level 0 qgroup as real num_bytes to free.
*/
num_bytes = qgroup->rsv.values[type];
qgroup_iterator_add(&qgroup_list, qgroup);
list_for_each_entry(qgroup, &qgroup_list, iterator) {
struct btrfs_qgroup_list *glist;
qgroup_rsv_release(fs_info, qgroup, num_bytes, type);
list_for_each_entry(glist, &qgroup->groups, next_group) {
qgroup_iterator_add(&qgroup_list, glist->group);
}
}
out:
qgroup_iterator_clean(&qgroup_list);
spin_unlock(&fs_info->qgroup_lock);
}
/*
* Check if the leaf is the last leaf. Which means all node pointers
* are at their last position.
*/
static bool is_last_leaf(struct btrfs_path *path)
{
int i;
for (i = 1; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
if (path->slots[i] != btrfs_header_nritems(path->nodes[i]) - 1)
return false;
}
return true;
}
/*
* returns < 0 on error, 0 when more leafs are to be scanned.
* returns 1 when done.
*/
static int qgroup_rescan_leaf(struct btrfs_trans_handle *trans,
struct btrfs_path *path)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *extent_root;
struct btrfs_key found;
struct extent_buffer *scratch_leaf = NULL;
u64 num_bytes;
bool done;
int slot;
int ret;
if (!btrfs_qgroup_full_accounting(fs_info))
return 1;
mutex_lock(&fs_info->qgroup_rescan_lock);
extent_root = btrfs_extent_root(fs_info,
fs_info->qgroup_rescan_progress.objectid);
ret = btrfs_search_slot_for_read(extent_root,
&fs_info->qgroup_rescan_progress,
path, 1, 0);
btrfs_debug(fs_info,
"current progress key (%llu %u %llu), search_slot ret %d",
fs_info->qgroup_rescan_progress.objectid,
fs_info->qgroup_rescan_progress.type,
fs_info->qgroup_rescan_progress.offset, ret);
if (ret) {
/*
* The rescan is about to end, we will not be scanning any
* further blocks. We cannot unset the RESCAN flag here, because
* we want to commit the transaction if everything went well.
* To make the live accounting work in this phase, we set our
* scan progress pointer such that every real extent objectid
* will be smaller.
*/
fs_info->qgroup_rescan_progress.objectid = (u64)-1;
btrfs_release_path(path);
mutex_unlock(&fs_info->qgroup_rescan_lock);
return ret;
}
done = is_last_leaf(path);
btrfs_item_key_to_cpu(path->nodes[0], &found,
btrfs_header_nritems(path->nodes[0]) - 1);
fs_info->qgroup_rescan_progress.objectid = found.objectid + 1;
scratch_leaf = btrfs_clone_extent_buffer(path->nodes[0]);
if (!scratch_leaf) {
ret = -ENOMEM;
mutex_unlock(&fs_info->qgroup_rescan_lock);
goto out;
}
slot = path->slots[0];
btrfs_release_path(path);
mutex_unlock(&fs_info->qgroup_rescan_lock);
for (; slot < btrfs_header_nritems(scratch_leaf); ++slot) {
struct btrfs_backref_walk_ctx ctx = { 0 };
btrfs_item_key_to_cpu(scratch_leaf, &found, slot);
if (found.type != BTRFS_EXTENT_ITEM_KEY &&
found.type != BTRFS_METADATA_ITEM_KEY)
continue;
if (found.type == BTRFS_METADATA_ITEM_KEY)
num_bytes = fs_info->nodesize;
else
num_bytes = found.offset;
ctx.bytenr = found.objectid;
ctx.fs_info = fs_info;
ret = btrfs_find_all_roots(&ctx, false);
if (ret < 0)
goto out;
/* For rescan, just pass old_roots as NULL */
ret = btrfs_qgroup_account_extent(trans, found.objectid,
num_bytes, NULL, ctx.roots);
if (ret < 0)
goto out;
}
out:
if (scratch_leaf)
free_extent_buffer(scratch_leaf);
if (done && !ret) {
ret = 1;
fs_info->qgroup_rescan_progress.objectid = (u64)-1;
}
return ret;
}
static bool rescan_should_stop(struct btrfs_fs_info *fs_info)
{
if (btrfs_fs_closing(fs_info))
return true;
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
return true;
if (!btrfs_qgroup_enabled(fs_info))
return true;
if (fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN)
return true;
return false;
}
static void btrfs_qgroup_rescan_worker(struct btrfs_work *work)
{
struct btrfs_fs_info *fs_info = container_of(work, struct btrfs_fs_info,
qgroup_rescan_work);
struct btrfs_path *path;
struct btrfs_trans_handle *trans = NULL;
int ret = 0;
bool stopped = false;
bool did_leaf_rescans = false;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
return;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
/*
* Rescan should only search for commit root, and any later difference
* should be recorded by qgroup
*/
path->search_commit_root = 1;
path->skip_locking = 1;
while (!ret && !(stopped = rescan_should_stop(fs_info))) {
trans = btrfs_start_transaction(fs_info->fs_root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = qgroup_rescan_leaf(trans, path);
did_leaf_rescans = true;
if (ret > 0)
btrfs_commit_transaction(trans);
else
btrfs_end_transaction(trans);
}
out:
btrfs_free_path(path);
mutex_lock(&fs_info->qgroup_rescan_lock);
if (ret > 0 &&
fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT) {
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
} else if (ret < 0 || stopped) {
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT;
}
mutex_unlock(&fs_info->qgroup_rescan_lock);
/*
* Only update status, since the previous part has already updated the
* qgroup info, and only if we did any actual work. This also prevents
* race with a concurrent quota disable, which has already set
* fs_info->quota_root to NULL and cleared BTRFS_FS_QUOTA_ENABLED at
* btrfs_quota_disable().
*/
if (did_leaf_rescans) {
trans = btrfs_start_transaction(fs_info->quota_root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
btrfs_err(fs_info,
"fail to start transaction for status update: %d",
ret);
}
} else {
trans = NULL;
}
mutex_lock(&fs_info->qgroup_rescan_lock);
if (!stopped ||
fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN)
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
if (trans) {
int ret2 = update_qgroup_status_item(trans);
if (ret2 < 0) {
ret = ret2;
btrfs_err(fs_info, "fail to update qgroup status: %d", ret);
}
}
fs_info->qgroup_rescan_running = false;
fs_info->qgroup_flags &= ~BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN;
complete_all(&fs_info->qgroup_rescan_completion);
mutex_unlock(&fs_info->qgroup_rescan_lock);
if (!trans)
return;
btrfs_end_transaction(trans);
if (stopped) {
btrfs_info(fs_info, "qgroup scan paused");
} else if (fs_info->qgroup_flags & BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN) {
btrfs_info(fs_info, "qgroup scan cancelled");
} else if (ret >= 0) {
btrfs_info(fs_info, "qgroup scan completed%s",
ret > 0 ? " (inconsistency flag cleared)" : "");
} else {
btrfs_err(fs_info, "qgroup scan failed with %d", ret);
}
}
/*
* Checks that (a) no rescan is running and (b) quota is enabled. Allocates all
* memory required for the rescan context.
*/
static int
qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid,
int init_flags)
{
int ret = 0;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
btrfs_warn(fs_info, "qgroup rescan init failed, running in simple mode");
return -EINVAL;
}
if (!init_flags) {
/* we're resuming qgroup rescan at mount time */
if (!(fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAG_RESCAN)) {
btrfs_debug(fs_info,
"qgroup rescan init failed, qgroup rescan is not queued");
ret = -EINVAL;
} else if (!(fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAG_ON)) {
btrfs_debug(fs_info,
"qgroup rescan init failed, qgroup is not enabled");
ret = -ENOTCONN;
}
if (ret)
return ret;
}
mutex_lock(&fs_info->qgroup_rescan_lock);
if (init_flags) {
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
ret = -EINPROGRESS;
} else if (!(fs_info->qgroup_flags &
BTRFS_QGROUP_STATUS_FLAG_ON)) {
btrfs_debug(fs_info,
"qgroup rescan init failed, qgroup is not enabled");
ret = -ENOTCONN;
} else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_DISABLED) {
/* Quota disable is in progress */
ret = -EBUSY;
}
if (ret) {
mutex_unlock(&fs_info->qgroup_rescan_lock);
return ret;
}
fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN;
}
memset(&fs_info->qgroup_rescan_progress, 0,
sizeof(fs_info->qgroup_rescan_progress));
fs_info->qgroup_flags &= ~(BTRFS_QGROUP_RUNTIME_FLAG_CANCEL_RESCAN |
BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING);
fs_info->qgroup_rescan_progress.objectid = progress_objectid;
init_completion(&fs_info->qgroup_rescan_completion);
mutex_unlock(&fs_info->qgroup_rescan_lock);
btrfs_init_work(&fs_info->qgroup_rescan_work,
btrfs_qgroup_rescan_worker, NULL);
return 0;
}
static void
qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info)
{
struct rb_node *n;
struct btrfs_qgroup *qgroup;
spin_lock(&fs_info->qgroup_lock);
/* clear all current qgroup tracking information */
for (n = rb_first(&fs_info->qgroup_tree); n; n = rb_next(n)) {
qgroup = rb_entry(n, struct btrfs_qgroup, node);
qgroup->rfer = 0;
qgroup->rfer_cmpr = 0;
qgroup->excl = 0;
qgroup->excl_cmpr = 0;
qgroup_dirty(fs_info, qgroup);
}
spin_unlock(&fs_info->qgroup_lock);
}
int
btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info)
{
int ret = 0;
struct btrfs_trans_handle *trans;
ret = qgroup_rescan_init(fs_info, 0, 1);
if (ret)
return ret;
/*
* We have set the rescan_progress to 0, which means no more
* delayed refs will be accounted by btrfs_qgroup_account_ref.
* However, btrfs_qgroup_account_ref may be right after its call
* to btrfs_find_all_roots, in which case it would still do the
* accounting.
* To solve this, we're committing the transaction, which will
* ensure we run all delayed refs and only after that, we are
* going to clear all tracking information for a clean start.
*/
trans = btrfs_attach_transaction_barrier(fs_info->fs_root);
if (IS_ERR(trans) && trans != ERR_PTR(-ENOENT)) {
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
return PTR_ERR(trans);
} else if (trans != ERR_PTR(-ENOENT)) {
ret = btrfs_commit_transaction(trans);
if (ret) {
fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN;
return ret;
}
}
qgroup_rescan_zero_tracking(fs_info);
mutex_lock(&fs_info->qgroup_rescan_lock);
fs_info->qgroup_rescan_running = true;
btrfs_queue_work(fs_info->qgroup_rescan_workers,
&fs_info->qgroup_rescan_work);
mutex_unlock(&fs_info->qgroup_rescan_lock);
return 0;
}
int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info,
bool interruptible)
{
int running;
int ret = 0;
mutex_lock(&fs_info->qgroup_rescan_lock);
running = fs_info->qgroup_rescan_running;
mutex_unlock(&fs_info->qgroup_rescan_lock);
if (!running)
return 0;
if (interruptible)
ret = wait_for_completion_interruptible(
&fs_info->qgroup_rescan_completion);
else
wait_for_completion(&fs_info->qgroup_rescan_completion);
return ret;
}
/*
* this is only called from open_ctree where we're still single threaded, thus
* locking is omitted here.
*/
void
btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info)
{
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
mutex_lock(&fs_info->qgroup_rescan_lock);
fs_info->qgroup_rescan_running = true;
btrfs_queue_work(fs_info->qgroup_rescan_workers,
&fs_info->qgroup_rescan_work);
mutex_unlock(&fs_info->qgroup_rescan_lock);
}
}
#define rbtree_iterate_from_safe(node, next, start) \
for (node = start; node && ({ next = rb_next(node); 1;}); node = next)
static int qgroup_unreserve_range(struct btrfs_inode *inode,
struct extent_changeset *reserved, u64 start,
u64 len)
{
struct rb_node *node;
struct rb_node *next;
struct ulist_node *entry;
int ret = 0;
node = reserved->range_changed.root.rb_node;
if (!node)
return 0;
while (node) {
entry = rb_entry(node, struct ulist_node, rb_node);
if (entry->val < start)
node = node->rb_right;
else
node = node->rb_left;
}
if (entry->val > start && rb_prev(&entry->rb_node))
entry = rb_entry(rb_prev(&entry->rb_node), struct ulist_node,
rb_node);
rbtree_iterate_from_safe(node, next, &entry->rb_node) {
u64 entry_start;
u64 entry_end;
u64 entry_len;
int clear_ret;
entry = rb_entry(node, struct ulist_node, rb_node);
entry_start = entry->val;
entry_end = entry->aux;
entry_len = entry_end - entry_start + 1;
if (entry_start >= start + len)
break;
if (entry_start + entry_len <= start)
continue;
/*
* Now the entry is in [start, start + len), revert the
* EXTENT_QGROUP_RESERVED bit.
*/
clear_ret = clear_extent_bits(&inode->io_tree, entry_start,
entry_end, EXTENT_QGROUP_RESERVED);
if (!ret && clear_ret < 0)
ret = clear_ret;
ulist_del(&reserved->range_changed, entry->val, entry->aux);
if (likely(reserved->bytes_changed >= entry_len)) {
reserved->bytes_changed -= entry_len;
} else {
WARN_ON(1);
reserved->bytes_changed = 0;
}
}
return ret;
}
/*
* Try to free some space for qgroup.
*
* For qgroup, there are only 3 ways to free qgroup space:
* - Flush nodatacow write
* Any nodatacow write will free its reserved data space at run_delalloc_range().
* In theory, we should only flush nodatacow inodes, but it's not yet
* possible, so we need to flush the whole root.
*
* - Wait for ordered extents
* When ordered extents are finished, their reserved metadata is finally
* converted to per_trans status, which can be freed by later commit
* transaction.
*
* - Commit transaction
* This would free the meta_per_trans space.
* In theory this shouldn't provide much space, but any more qgroup space
* is needed.
*/
static int try_flush_qgroup(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
int ret;
/* Can't hold an open transaction or we run the risk of deadlocking. */
ASSERT(current->journal_info == NULL);
if (WARN_ON(current->journal_info))
return 0;
/*
* We don't want to run flush again and again, so if there is a running
* one, we won't try to start a new flush, but exit directly.
*/
if (test_and_set_bit(BTRFS_ROOT_QGROUP_FLUSHING, &root->state)) {
wait_event(root->qgroup_flush_wait,
!test_bit(BTRFS_ROOT_QGROUP_FLUSHING, &root->state));
return 0;
}
ret = btrfs_start_delalloc_snapshot(root, true);
if (ret < 0)
goto out;
btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
trans = btrfs_attach_transaction_barrier(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
if (ret == -ENOENT)
ret = 0;
goto out;
}
ret = btrfs_commit_transaction(trans);
out:
clear_bit(BTRFS_ROOT_QGROUP_FLUSHING, &root->state);
wake_up(&root->qgroup_flush_wait);
return ret;
}
static int qgroup_reserve_data(struct btrfs_inode *inode,
struct extent_changeset **reserved_ret, u64 start,
u64 len)
{
struct btrfs_root *root = inode->root;
struct extent_changeset *reserved;
bool new_reserved = false;
u64 orig_reserved;
u64 to_reserve;
int ret;
if (btrfs_qgroup_mode(root->fs_info) == BTRFS_QGROUP_MODE_DISABLED ||
!is_fstree(btrfs_root_id(root)) || len == 0)
return 0;
/* @reserved parameter is mandatory for qgroup */
if (WARN_ON(!reserved_ret))
return -EINVAL;
if (!*reserved_ret) {
new_reserved = true;
*reserved_ret = extent_changeset_alloc();
if (!*reserved_ret)
return -ENOMEM;
}
reserved = *reserved_ret;
/* Record already reserved space */
orig_reserved = reserved->bytes_changed;
ret = set_record_extent_bits(&inode->io_tree, start,
start + len -1, EXTENT_QGROUP_RESERVED, reserved);
/* Newly reserved space */
to_reserve = reserved->bytes_changed - orig_reserved;
trace_btrfs_qgroup_reserve_data(&inode->vfs_inode, start, len,
to_reserve, QGROUP_RESERVE);
if (ret < 0)
goto out;
ret = qgroup_reserve(root, to_reserve, true, BTRFS_QGROUP_RSV_DATA);
if (ret < 0)
goto cleanup;
return ret;
cleanup:
qgroup_unreserve_range(inode, reserved, start, len);
out:
if (new_reserved) {
extent_changeset_free(reserved);
*reserved_ret = NULL;
}
return ret;
}
/*
* Reserve qgroup space for range [start, start + len).
*
* This function will either reserve space from related qgroups or do nothing
* if the range is already reserved.
*
* Return 0 for successful reservation
* Return <0 for error (including -EQUOT)
*
* NOTE: This function may sleep for memory allocation, dirty page flushing and
* commit transaction. So caller should not hold any dirty page locked.
*/
int btrfs_qgroup_reserve_data(struct btrfs_inode *inode,
struct extent_changeset **reserved_ret, u64 start,
u64 len)
{
int ret;
ret = qgroup_reserve_data(inode, reserved_ret, start, len);
if (ret <= 0 && ret != -EDQUOT)
return ret;
ret = try_flush_qgroup(inode->root);
if (ret < 0)
return ret;
return qgroup_reserve_data(inode, reserved_ret, start, len);
}
/* Free ranges specified by @reserved, normally in error path */
static int qgroup_free_reserved_data(struct btrfs_inode *inode,
struct extent_changeset *reserved,
u64 start, u64 len, u64 *freed_ret)
{
struct btrfs_root *root = inode->root;
struct ulist_node *unode;
struct ulist_iterator uiter;
struct extent_changeset changeset;
u64 freed = 0;
int ret;
extent_changeset_init(&changeset);
len = round_up(start + len, root->fs_info->sectorsize);
start = round_down(start, root->fs_info->sectorsize);
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(&reserved->range_changed, &uiter))) {
u64 range_start = unode->val;
/* unode->aux is the inclusive end */
u64 range_len = unode->aux - range_start + 1;
u64 free_start;
u64 free_len;
extent_changeset_release(&changeset);
/* Only free range in range [start, start + len) */
if (range_start >= start + len ||
range_start + range_len <= start)
continue;
free_start = max(range_start, start);
free_len = min(start + len, range_start + range_len) -
free_start;
/*
* TODO: To also modify reserved->ranges_reserved to reflect
* the modification.
*
* However as long as we free qgroup reserved according to
* EXTENT_QGROUP_RESERVED, we won't double free.
* So not need to rush.
*/
ret = clear_record_extent_bits(&inode->io_tree, free_start,
free_start + free_len - 1,
EXTENT_QGROUP_RESERVED, &changeset);
if (ret < 0)
goto out;
freed += changeset.bytes_changed;
}
btrfs_qgroup_free_refroot(root->fs_info, btrfs_root_id(root), freed,
BTRFS_QGROUP_RSV_DATA);
if (freed_ret)
*freed_ret = freed;
ret = 0;
out:
extent_changeset_release(&changeset);
return ret;
}
static int __btrfs_qgroup_release_data(struct btrfs_inode *inode,
struct extent_changeset *reserved, u64 start, u64 len,
u64 *released, int free)
{
struct extent_changeset changeset;
int trace_op = QGROUP_RELEASE;
int ret;
if (btrfs_qgroup_mode(inode->root->fs_info) == BTRFS_QGROUP_MODE_DISABLED) {
extent_changeset_init(&changeset);
return clear_record_extent_bits(&inode->io_tree, start,
start + len - 1,
EXTENT_QGROUP_RESERVED, &changeset);
}
/* In release case, we shouldn't have @reserved */
WARN_ON(!free && reserved);
if (free && reserved)
return qgroup_free_reserved_data(inode, reserved, start, len, released);
extent_changeset_init(&changeset);
ret = clear_record_extent_bits(&inode->io_tree, start, start + len -1,
EXTENT_QGROUP_RESERVED, &changeset);
if (ret < 0)
goto out;
if (free)
trace_op = QGROUP_FREE;
trace_btrfs_qgroup_release_data(&inode->vfs_inode, start, len,
changeset.bytes_changed, trace_op);
if (free)
btrfs_qgroup_free_refroot(inode->root->fs_info,
btrfs_root_id(inode->root),
changeset.bytes_changed, BTRFS_QGROUP_RSV_DATA);
if (released)
*released = changeset.bytes_changed;
out:
extent_changeset_release(&changeset);
return ret;
}
/*
* Free a reserved space range from io_tree and related qgroups
*
* Should be called when a range of pages get invalidated before reaching disk.
* Or for error cleanup case.
* if @reserved is given, only reserved range in [@start, @start + @len) will
* be freed.
*
* For data written to disk, use btrfs_qgroup_release_data().
*
* NOTE: This function may sleep for memory allocation.
*/
int btrfs_qgroup_free_data(struct btrfs_inode *inode,
struct extent_changeset *reserved,
u64 start, u64 len, u64 *freed)
{
return __btrfs_qgroup_release_data(inode, reserved, start, len, freed, 1);
}
/*
* Release a reserved space range from io_tree only.
*
* Should be called when a range of pages get written to disk and corresponding
* FILE_EXTENT is inserted into corresponding root.
*
* Since new qgroup accounting framework will only update qgroup numbers at
* commit_transaction() time, its reserved space shouldn't be freed from
* related qgroups.
*
* But we should release the range from io_tree, to allow further write to be
* COWed.
*
* NOTE: This function may sleep for memory allocation.
*/
int btrfs_qgroup_release_data(struct btrfs_inode *inode, u64 start, u64 len, u64 *released)
{
return __btrfs_qgroup_release_data(inode, NULL, start, len, released, 0);
}
static void add_root_meta_rsv(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type)
{
if (type != BTRFS_QGROUP_RSV_META_PREALLOC &&
type != BTRFS_QGROUP_RSV_META_PERTRANS)
return;
if (num_bytes == 0)
return;
spin_lock(&root->qgroup_meta_rsv_lock);
if (type == BTRFS_QGROUP_RSV_META_PREALLOC)
root->qgroup_meta_rsv_prealloc += num_bytes;
else
root->qgroup_meta_rsv_pertrans += num_bytes;
spin_unlock(&root->qgroup_meta_rsv_lock);
}
static int sub_root_meta_rsv(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type)
{
if (type != BTRFS_QGROUP_RSV_META_PREALLOC &&
type != BTRFS_QGROUP_RSV_META_PERTRANS)
return 0;
if (num_bytes == 0)
return 0;
spin_lock(&root->qgroup_meta_rsv_lock);
if (type == BTRFS_QGROUP_RSV_META_PREALLOC) {
num_bytes = min_t(u64, root->qgroup_meta_rsv_prealloc,
num_bytes);
root->qgroup_meta_rsv_prealloc -= num_bytes;
} else {
num_bytes = min_t(u64, root->qgroup_meta_rsv_pertrans,
num_bytes);
root->qgroup_meta_rsv_pertrans -= num_bytes;
}
spin_unlock(&root->qgroup_meta_rsv_lock);
return num_bytes;
}
int btrfs_qgroup_reserve_meta(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type, bool enforce)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_DISABLED ||
!is_fstree(btrfs_root_id(root)) || num_bytes == 0)
return 0;
BUG_ON(num_bytes != round_down(num_bytes, fs_info->nodesize));
trace_qgroup_meta_reserve(root, (s64)num_bytes, type);
ret = qgroup_reserve(root, num_bytes, enforce, type);
if (ret < 0)
return ret;
/*
* Record what we have reserved into root.
*
* To avoid quota disabled->enabled underflow.
* In that case, we may try to free space we haven't reserved
* (since quota was disabled), so record what we reserved into root.
* And ensure later release won't underflow this number.
*/
add_root_meta_rsv(root, num_bytes, type);
return ret;
}
int __btrfs_qgroup_reserve_meta(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type, bool enforce,
bool noflush)
{
int ret;
ret = btrfs_qgroup_reserve_meta(root, num_bytes, type, enforce);
if ((ret <= 0 && ret != -EDQUOT) || noflush)
return ret;
ret = try_flush_qgroup(root);
if (ret < 0)
return ret;
return btrfs_qgroup_reserve_meta(root, num_bytes, type, enforce);
}
/*
* Per-transaction meta reservation should be all freed at transaction commit
* time
*/
void btrfs_qgroup_free_meta_all_pertrans(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_DISABLED ||
!is_fstree(btrfs_root_id(root)))
return;
/* TODO: Update trace point to handle such free */
trace_qgroup_meta_free_all_pertrans(root);
/* Special value -1 means to free all reserved space */
btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(root), (u64)-1,
BTRFS_QGROUP_RSV_META_PERTRANS);
}
void __btrfs_qgroup_free_meta(struct btrfs_root *root, int num_bytes,
enum btrfs_qgroup_rsv_type type)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_DISABLED ||
!is_fstree(btrfs_root_id(root)))
return;
/*
* reservation for META_PREALLOC can happen before quota is enabled,
* which can lead to underflow.
* Here ensure we will only free what we really have reserved.
*/
num_bytes = sub_root_meta_rsv(root, num_bytes, type);
BUG_ON(num_bytes != round_down(num_bytes, fs_info->nodesize));
trace_qgroup_meta_reserve(root, -(s64)num_bytes, type);
btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(root), num_bytes, type);
}
static void qgroup_convert_meta(struct btrfs_fs_info *fs_info, u64 ref_root,
int num_bytes)
{
struct btrfs_qgroup *qgroup;
LIST_HEAD(qgroup_list);
if (num_bytes == 0)
return;
if (!fs_info->quota_root)
return;
spin_lock(&fs_info->qgroup_lock);
qgroup = find_qgroup_rb(fs_info, ref_root);
if (!qgroup)
goto out;
qgroup_iterator_add(&qgroup_list, qgroup);
list_for_each_entry(qgroup, &qgroup_list, iterator) {
struct btrfs_qgroup_list *glist;
qgroup_rsv_release(fs_info, qgroup, num_bytes,
BTRFS_QGROUP_RSV_META_PREALLOC);
if (!sb_rdonly(fs_info->sb))
qgroup_rsv_add(fs_info, qgroup, num_bytes,
BTRFS_QGROUP_RSV_META_PERTRANS);
list_for_each_entry(glist, &qgroup->groups, next_group)
qgroup_iterator_add(&qgroup_list, glist->group);
}
out:
qgroup_iterator_clean(&qgroup_list);
spin_unlock(&fs_info->qgroup_lock);
}
/*
* Convert @num_bytes of META_PREALLOCATED reservation to META_PERTRANS.
*
* This is called when preallocated meta reservation needs to be used.
* Normally after btrfs_join_transaction() call.
*/
void btrfs_qgroup_convert_reserved_meta(struct btrfs_root *root, int num_bytes)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_DISABLED ||
!is_fstree(btrfs_root_id(root)))
return;
/* Same as btrfs_qgroup_free_meta_prealloc() */
num_bytes = sub_root_meta_rsv(root, num_bytes,
BTRFS_QGROUP_RSV_META_PREALLOC);
trace_qgroup_meta_convert(root, num_bytes);
qgroup_convert_meta(fs_info, btrfs_root_id(root), num_bytes);
if (!sb_rdonly(fs_info->sb))
add_root_meta_rsv(root, num_bytes, BTRFS_QGROUP_RSV_META_PERTRANS);
}
/*
* Check qgroup reserved space leaking, normally at destroy inode
* time
*/
void btrfs_qgroup_check_reserved_leak(struct btrfs_inode *inode)
{
struct extent_changeset changeset;
struct ulist_node *unode;
struct ulist_iterator iter;
int ret;
extent_changeset_init(&changeset);
ret = clear_record_extent_bits(&inode->io_tree, 0, (u64)-1,
EXTENT_QGROUP_RESERVED, &changeset);
WARN_ON(ret < 0);
if (WARN_ON(changeset.bytes_changed)) {
ULIST_ITER_INIT(&iter);
while ((unode = ulist_next(&changeset.range_changed, &iter))) {
btrfs_warn(inode->root->fs_info,
"leaking qgroup reserved space, ino: %llu, start: %llu, end: %llu",
btrfs_ino(inode), unode->val, unode->aux);
}
btrfs_qgroup_free_refroot(inode->root->fs_info,
btrfs_root_id(inode->root),
changeset.bytes_changed, BTRFS_QGROUP_RSV_DATA);
}
extent_changeset_release(&changeset);
}
void btrfs_qgroup_init_swapped_blocks(
struct btrfs_qgroup_swapped_blocks *swapped_blocks)
{
int i;
spin_lock_init(&swapped_blocks->lock);
for (i = 0; i < BTRFS_MAX_LEVEL; i++)
swapped_blocks->blocks[i] = RB_ROOT;
swapped_blocks->swapped = false;
}
/*
* Delete all swapped blocks record of @root.
* Every record here means we skipped a full subtree scan for qgroup.
*
* Gets called when committing one transaction.
*/
void btrfs_qgroup_clean_swapped_blocks(struct btrfs_root *root)
{
struct btrfs_qgroup_swapped_blocks *swapped_blocks;
int i;
swapped_blocks = &root->swapped_blocks;
spin_lock(&swapped_blocks->lock);
if (!swapped_blocks->swapped)
goto out;
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
struct rb_root *cur_root = &swapped_blocks->blocks[i];
struct btrfs_qgroup_swapped_block *entry;
struct btrfs_qgroup_swapped_block *next;
rbtree_postorder_for_each_entry_safe(entry, next, cur_root,
node)
kfree(entry);
swapped_blocks->blocks[i] = RB_ROOT;
}
swapped_blocks->swapped = false;
out:
spin_unlock(&swapped_blocks->lock);
}
/*
* Add subtree roots record into @subvol_root.
*
* @subvol_root: tree root of the subvolume tree get swapped
* @bg: block group under balance
* @subvol_parent/slot: pointer to the subtree root in subvolume tree
* @reloc_parent/slot: pointer to the subtree root in reloc tree
* BOTH POINTERS ARE BEFORE TREE SWAP
* @last_snapshot: last snapshot generation of the subvolume tree
*/
int btrfs_qgroup_add_swapped_blocks(struct btrfs_trans_handle *trans,
struct btrfs_root *subvol_root,
struct btrfs_block_group *bg,
struct extent_buffer *subvol_parent, int subvol_slot,
struct extent_buffer *reloc_parent, int reloc_slot,
u64 last_snapshot)
{
struct btrfs_fs_info *fs_info = subvol_root->fs_info;
struct btrfs_qgroup_swapped_blocks *blocks = &subvol_root->swapped_blocks;
struct btrfs_qgroup_swapped_block *block;
struct rb_node **cur;
struct rb_node *parent = NULL;
int level = btrfs_header_level(subvol_parent) - 1;
int ret = 0;
if (!btrfs_qgroup_full_accounting(fs_info))
return 0;
if (btrfs_node_ptr_generation(subvol_parent, subvol_slot) >
btrfs_node_ptr_generation(reloc_parent, reloc_slot)) {
btrfs_err_rl(fs_info,
"%s: bad parameter order, subvol_gen=%llu reloc_gen=%llu",
__func__,
btrfs_node_ptr_generation(subvol_parent, subvol_slot),
btrfs_node_ptr_generation(reloc_parent, reloc_slot));
return -EUCLEAN;
}
block = kmalloc(sizeof(*block), GFP_NOFS);
if (!block) {
ret = -ENOMEM;
goto out;
}
/*
* @reloc_parent/slot is still before swap, while @block is going to
* record the bytenr after swap, so we do the swap here.
*/
block->subvol_bytenr = btrfs_node_blockptr(reloc_parent, reloc_slot);
block->subvol_generation = btrfs_node_ptr_generation(reloc_parent,
reloc_slot);
block->reloc_bytenr = btrfs_node_blockptr(subvol_parent, subvol_slot);
block->reloc_generation = btrfs_node_ptr_generation(subvol_parent,
subvol_slot);
block->last_snapshot = last_snapshot;
block->level = level;
/*
* If we have bg == NULL, we're called from btrfs_recover_relocation(),
* no one else can modify tree blocks thus we qgroup will not change
* no matter the value of trace_leaf.
*/
if (bg && bg->flags & BTRFS_BLOCK_GROUP_DATA)
block->trace_leaf = true;
else
block->trace_leaf = false;
btrfs_node_key_to_cpu(reloc_parent, &block->first_key, reloc_slot);
/* Insert @block into @blocks */
spin_lock(&blocks->lock);
cur = &blocks->blocks[level].rb_node;
while (*cur) {
struct btrfs_qgroup_swapped_block *entry;
parent = *cur;
entry = rb_entry(parent, struct btrfs_qgroup_swapped_block,
node);
if (entry->subvol_bytenr < block->subvol_bytenr) {
cur = &(*cur)->rb_left;
} else if (entry->subvol_bytenr > block->subvol_bytenr) {
cur = &(*cur)->rb_right;
} else {
if (entry->subvol_generation !=
block->subvol_generation ||
entry->reloc_bytenr != block->reloc_bytenr ||
entry->reloc_generation !=
block->reloc_generation) {
/*
* Duplicated but mismatch entry found.
* Shouldn't happen.
*
* Marking qgroup inconsistent should be enough
* for end users.
*/
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
ret = -EEXIST;
}
kfree(block);
goto out_unlock;
}
}
rb_link_node(&block->node, parent, cur);
rb_insert_color(&block->node, &blocks->blocks[level]);
blocks->swapped = true;
out_unlock:
spin_unlock(&blocks->lock);
out:
if (ret < 0)
qgroup_mark_inconsistent(fs_info);
return ret;
}
/*
* Check if the tree block is a subtree root, and if so do the needed
* delayed subtree trace for qgroup.
*
* This is called during btrfs_cow_block().
*/
int btrfs_qgroup_trace_subtree_after_cow(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *subvol_eb)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_tree_parent_check check = { 0 };
struct btrfs_qgroup_swapped_blocks *blocks = &root->swapped_blocks;
struct btrfs_qgroup_swapped_block *block;
struct extent_buffer *reloc_eb = NULL;
struct rb_node *node;
bool found = false;
bool swapped = false;
int level = btrfs_header_level(subvol_eb);
int ret = 0;
int i;
if (!btrfs_qgroup_full_accounting(fs_info))
return 0;
if (!is_fstree(btrfs_root_id(root)) || !root->reloc_root)
return 0;
spin_lock(&blocks->lock);
if (!blocks->swapped) {
spin_unlock(&blocks->lock);
return 0;
}
node = blocks->blocks[level].rb_node;
while (node) {
block = rb_entry(node, struct btrfs_qgroup_swapped_block, node);
if (block->subvol_bytenr < subvol_eb->start) {
node = node->rb_left;
} else if (block->subvol_bytenr > subvol_eb->start) {
node = node->rb_right;
} else {
found = true;
break;
}
}
if (!found) {
spin_unlock(&blocks->lock);
goto out;
}
/* Found one, remove it from @blocks first and update blocks->swapped */
rb_erase(&block->node, &blocks->blocks[level]);
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
if (RB_EMPTY_ROOT(&blocks->blocks[i])) {
swapped = true;
break;
}
}
blocks->swapped = swapped;
spin_unlock(&blocks->lock);
check.level = block->level;
check.transid = block->reloc_generation;
check.has_first_key = true;
memcpy(&check.first_key, &block->first_key, sizeof(check.first_key));
/* Read out reloc subtree root */
reloc_eb = read_tree_block(fs_info, block->reloc_bytenr, &check);
if (IS_ERR(reloc_eb)) {
ret = PTR_ERR(reloc_eb);
reloc_eb = NULL;
goto free_out;
}
if (!extent_buffer_uptodate(reloc_eb)) {
ret = -EIO;
goto free_out;
}
ret = qgroup_trace_subtree_swap(trans, reloc_eb, subvol_eb,
block->last_snapshot, block->trace_leaf);
free_out:
kfree(block);
free_extent_buffer(reloc_eb);
out:
if (ret < 0) {
btrfs_err_rl(fs_info,
"failed to account subtree at bytenr %llu: %d",
subvol_eb->start, ret);
qgroup_mark_inconsistent(fs_info);
}
return ret;
}
void btrfs_qgroup_destroy_extent_records(struct btrfs_transaction *trans)
{
struct btrfs_qgroup_extent_record *entry;
struct btrfs_qgroup_extent_record *next;
struct rb_root *root;
root = &trans->delayed_refs.dirty_extent_root;
rbtree_postorder_for_each_entry_safe(entry, next, root, node) {
ulist_free(entry->old_roots);
kfree(entry);
}
*root = RB_ROOT;
}
void btrfs_free_squota_rsv(struct btrfs_fs_info *fs_info, u64 root, u64 rsv_bytes)
{
if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE)
return;
if (!is_fstree(root))
return;
btrfs_qgroup_free_refroot(fs_info, root, rsv_bytes, BTRFS_QGROUP_RSV_DATA);
}
int btrfs_record_squota_delta(struct btrfs_fs_info *fs_info,
struct btrfs_squota_delta *delta)
{
int ret;
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup *qg;
LIST_HEAD(qgroup_list);
u64 root = delta->root;
u64 num_bytes = delta->num_bytes;
const int sign = (delta->is_inc ? 1 : -1);
if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE)
return 0;
if (!is_fstree(root))
return 0;
/* If the extent predates enabling quotas, don't count it. */
if (delta->generation < fs_info->qgroup_enable_gen)
return 0;
spin_lock(&fs_info->qgroup_lock);
qgroup = find_qgroup_rb(fs_info, root);
if (!qgroup) {
ret = -ENOENT;
goto out;
}
ret = 0;
qgroup_iterator_add(&qgroup_list, qgroup);
list_for_each_entry(qg, &qgroup_list, iterator) {
struct btrfs_qgroup_list *glist;
qg->excl += num_bytes * sign;
qg->rfer += num_bytes * sign;
qgroup_dirty(fs_info, qg);
list_for_each_entry(glist, &qg->groups, next_group)
qgroup_iterator_add(&qgroup_list, glist->group);
}
qgroup_iterator_clean(&qgroup_list);
out:
spin_unlock(&fs_info->qgroup_lock);
return ret;
}