96a339985d
Signed-off-by: Ivan Skytte Jorgensen <isj-sctp@i1.dk> Signed-off-by: Sridhar Samudrala <sri@us.ibm.com>
5200 lines
145 KiB
C
5200 lines
145 KiB
C
/* SCTP kernel reference Implementation
|
|
* (C) Copyright IBM Corp. 2001, 2004
|
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
* Copyright (c) 2001-2003 Intel Corp.
|
|
* Copyright (c) 2001-2002 Nokia, Inc.
|
|
* Copyright (c) 2001 La Monte H.P. Yarroll
|
|
*
|
|
* This file is part of the SCTP kernel reference Implementation
|
|
*
|
|
* These functions interface with the sockets layer to implement the
|
|
* SCTP Extensions for the Sockets API.
|
|
*
|
|
* Note that the descriptions from the specification are USER level
|
|
* functions--this file is the functions which populate the struct proto
|
|
* for SCTP which is the BOTTOM of the sockets interface.
|
|
*
|
|
* The SCTP reference implementation is free software;
|
|
* you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* The SCTP reference implementation is distributed in the hope that it
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* ************************
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU CC; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*
|
|
* Please send any bug reports or fixes you make to the
|
|
* email address(es):
|
|
* lksctp developers <lksctp-developers@lists.sourceforge.net>
|
|
*
|
|
* Or submit a bug report through the following website:
|
|
* http://www.sf.net/projects/lksctp
|
|
*
|
|
* Written or modified by:
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
* Narasimha Budihal <narsi@refcode.org>
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
* Jon Grimm <jgrimm@us.ibm.com>
|
|
* Xingang Guo <xingang.guo@intel.com>
|
|
* Daisy Chang <daisyc@us.ibm.com>
|
|
* Sridhar Samudrala <samudrala@us.ibm.com>
|
|
* Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
|
|
* Ardelle Fan <ardelle.fan@intel.com>
|
|
* Ryan Layer <rmlayer@us.ibm.com>
|
|
* Anup Pemmaiah <pemmaiah@cc.usu.edu>
|
|
* Kevin Gao <kevin.gao@intel.com>
|
|
*
|
|
* Any bugs reported given to us we will try to fix... any fixes shared will
|
|
* be incorporated into the next SCTP release.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/crypto.h>
|
|
|
|
#include <net/ip.h>
|
|
#include <net/icmp.h>
|
|
#include <net/route.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/inet_common.h>
|
|
|
|
#include <linux/socket.h> /* for sa_family_t */
|
|
#include <net/sock.h>
|
|
#include <net/sctp/sctp.h>
|
|
#include <net/sctp/sm.h>
|
|
|
|
/* WARNING: Please do not remove the SCTP_STATIC attribute to
|
|
* any of the functions below as they are used to export functions
|
|
* used by a project regression testsuite.
|
|
*/
|
|
|
|
/* Forward declarations for internal helper functions. */
|
|
static int sctp_writeable(struct sock *sk);
|
|
static void sctp_wfree(struct sk_buff *skb);
|
|
static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
|
|
size_t msg_len);
|
|
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
|
|
static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
|
|
static int sctp_wait_for_accept(struct sock *sk, long timeo);
|
|
static void sctp_wait_for_close(struct sock *sk, long timeo);
|
|
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
|
|
union sctp_addr *addr, int len);
|
|
static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
|
|
static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
|
|
static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
|
|
static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
|
|
static int sctp_send_asconf(struct sctp_association *asoc,
|
|
struct sctp_chunk *chunk);
|
|
static int sctp_do_bind(struct sock *, union sctp_addr *, int);
|
|
static int sctp_autobind(struct sock *sk);
|
|
static void sctp_sock_migrate(struct sock *, struct sock *,
|
|
struct sctp_association *, sctp_socket_type_t);
|
|
static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
|
|
|
|
extern kmem_cache_t *sctp_bucket_cachep;
|
|
|
|
/* Get the sndbuf space available at the time on the association. */
|
|
static inline int sctp_wspace(struct sctp_association *asoc)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
int amt = 0;
|
|
|
|
if (asoc->ep->sndbuf_policy) {
|
|
/* make sure that no association uses more than sk_sndbuf */
|
|
amt = sk->sk_sndbuf - asoc->sndbuf_used;
|
|
} else {
|
|
/* do socket level accounting */
|
|
amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
|
|
}
|
|
|
|
if (amt < 0)
|
|
amt = 0;
|
|
|
|
return amt;
|
|
}
|
|
|
|
/* Increment the used sndbuf space count of the corresponding association by
|
|
* the size of the outgoing data chunk.
|
|
* Also, set the skb destructor for sndbuf accounting later.
|
|
*
|
|
* Since it is always 1-1 between chunk and skb, and also a new skb is always
|
|
* allocated for chunk bundling in sctp_packet_transmit(), we can use the
|
|
* destructor in the data chunk skb for the purpose of the sndbuf space
|
|
* tracking.
|
|
*/
|
|
static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
|
|
{
|
|
struct sctp_association *asoc = chunk->asoc;
|
|
struct sock *sk = asoc->base.sk;
|
|
|
|
/* The sndbuf space is tracked per association. */
|
|
sctp_association_hold(asoc);
|
|
|
|
skb_set_owner_w(chunk->skb, sk);
|
|
|
|
chunk->skb->destructor = sctp_wfree;
|
|
/* Save the chunk pointer in skb for sctp_wfree to use later. */
|
|
*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
|
|
|
|
asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
|
|
sizeof(struct sk_buff) +
|
|
sizeof(struct sctp_chunk);
|
|
|
|
sk->sk_wmem_queued += SCTP_DATA_SNDSIZE(chunk) +
|
|
sizeof(struct sk_buff) +
|
|
sizeof(struct sctp_chunk);
|
|
|
|
atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
|
|
}
|
|
|
|
/* Verify that this is a valid address. */
|
|
static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
|
|
int len)
|
|
{
|
|
struct sctp_af *af;
|
|
|
|
/* Verify basic sockaddr. */
|
|
af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
|
|
if (!af)
|
|
return -EINVAL;
|
|
|
|
/* Is this a valid SCTP address? */
|
|
if (!af->addr_valid(addr, sctp_sk(sk)))
|
|
return -EINVAL;
|
|
|
|
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Look up the association by its id. If this is not a UDP-style
|
|
* socket, the ID field is always ignored.
|
|
*/
|
|
struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
|
|
{
|
|
struct sctp_association *asoc = NULL;
|
|
|
|
/* If this is not a UDP-style socket, assoc id should be ignored. */
|
|
if (!sctp_style(sk, UDP)) {
|
|
/* Return NULL if the socket state is not ESTABLISHED. It
|
|
* could be a TCP-style listening socket or a socket which
|
|
* hasn't yet called connect() to establish an association.
|
|
*/
|
|
if (!sctp_sstate(sk, ESTABLISHED))
|
|
return NULL;
|
|
|
|
/* Get the first and the only association from the list. */
|
|
if (!list_empty(&sctp_sk(sk)->ep->asocs))
|
|
asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
|
|
struct sctp_association, asocs);
|
|
return asoc;
|
|
}
|
|
|
|
/* Otherwise this is a UDP-style socket. */
|
|
if (!id || (id == (sctp_assoc_t)-1))
|
|
return NULL;
|
|
|
|
spin_lock_bh(&sctp_assocs_id_lock);
|
|
asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
|
|
spin_unlock_bh(&sctp_assocs_id_lock);
|
|
|
|
if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
|
|
return NULL;
|
|
|
|
return asoc;
|
|
}
|
|
|
|
/* Look up the transport from an address and an assoc id. If both address and
|
|
* id are specified, the associations matching the address and the id should be
|
|
* the same.
|
|
*/
|
|
static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
|
|
struct sockaddr_storage *addr,
|
|
sctp_assoc_t id)
|
|
{
|
|
struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
|
|
struct sctp_transport *transport;
|
|
union sctp_addr *laddr = (union sctp_addr *)addr;
|
|
|
|
laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
|
|
addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
|
|
(union sctp_addr *)addr,
|
|
&transport);
|
|
laddr->v4.sin_port = htons(laddr->v4.sin_port);
|
|
|
|
if (!addr_asoc)
|
|
return NULL;
|
|
|
|
id_asoc = sctp_id2assoc(sk, id);
|
|
if (id_asoc && (id_asoc != addr_asoc))
|
|
return NULL;
|
|
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
|
|
(union sctp_addr *)addr);
|
|
|
|
return transport;
|
|
}
|
|
|
|
/* API 3.1.2 bind() - UDP Style Syntax
|
|
* The syntax of bind() is,
|
|
*
|
|
* ret = bind(int sd, struct sockaddr *addr, int addrlen);
|
|
*
|
|
* sd - the socket descriptor returned by socket().
|
|
* addr - the address structure (struct sockaddr_in or struct
|
|
* sockaddr_in6 [RFC 2553]),
|
|
* addr_len - the size of the address structure.
|
|
*/
|
|
SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
|
|
{
|
|
int retval = 0;
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
|
|
sk, addr, addr_len);
|
|
|
|
/* Disallow binding twice. */
|
|
if (!sctp_sk(sk)->ep->base.bind_addr.port)
|
|
retval = sctp_do_bind(sk, (union sctp_addr *)addr,
|
|
addr_len);
|
|
else
|
|
retval = -EINVAL;
|
|
|
|
sctp_release_sock(sk);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static long sctp_get_port_local(struct sock *, union sctp_addr *);
|
|
|
|
/* Verify this is a valid sockaddr. */
|
|
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
|
|
union sctp_addr *addr, int len)
|
|
{
|
|
struct sctp_af *af;
|
|
|
|
/* Check minimum size. */
|
|
if (len < sizeof (struct sockaddr))
|
|
return NULL;
|
|
|
|
/* Does this PF support this AF? */
|
|
if (!opt->pf->af_supported(addr->sa.sa_family, opt))
|
|
return NULL;
|
|
|
|
/* If we get this far, af is valid. */
|
|
af = sctp_get_af_specific(addr->sa.sa_family);
|
|
|
|
if (len < af->sockaddr_len)
|
|
return NULL;
|
|
|
|
return af;
|
|
}
|
|
|
|
/* Bind a local address either to an endpoint or to an association. */
|
|
SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
|
|
{
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
struct sctp_endpoint *ep = sp->ep;
|
|
struct sctp_bind_addr *bp = &ep->base.bind_addr;
|
|
struct sctp_af *af;
|
|
unsigned short snum;
|
|
int ret = 0;
|
|
|
|
/* Common sockaddr verification. */
|
|
af = sctp_sockaddr_af(sp, addr, len);
|
|
if (!af) {
|
|
SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
|
|
sk, addr, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
snum = ntohs(addr->v4.sin_port);
|
|
|
|
SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
|
|
", port: %d, new port: %d, len: %d)\n",
|
|
sk,
|
|
addr,
|
|
bp->port, snum,
|
|
len);
|
|
|
|
/* PF specific bind() address verification. */
|
|
if (!sp->pf->bind_verify(sp, addr))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
/* We must either be unbound, or bind to the same port. */
|
|
if (bp->port && (snum != bp->port)) {
|
|
SCTP_DEBUG_PRINTK("sctp_do_bind:"
|
|
" New port %d does not match existing port "
|
|
"%d.\n", snum, bp->port);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
|
|
return -EACCES;
|
|
|
|
/* Make sure we are allowed to bind here.
|
|
* The function sctp_get_port_local() does duplicate address
|
|
* detection.
|
|
*/
|
|
if ((ret = sctp_get_port_local(sk, addr))) {
|
|
if (ret == (long) sk) {
|
|
/* This endpoint has a conflicting address. */
|
|
return -EINVAL;
|
|
} else {
|
|
return -EADDRINUSE;
|
|
}
|
|
}
|
|
|
|
/* Refresh ephemeral port. */
|
|
if (!bp->port)
|
|
bp->port = inet_sk(sk)->num;
|
|
|
|
/* Add the address to the bind address list. */
|
|
sctp_local_bh_disable();
|
|
sctp_write_lock(&ep->base.addr_lock);
|
|
|
|
/* Use GFP_ATOMIC since BHs are disabled. */
|
|
addr->v4.sin_port = ntohs(addr->v4.sin_port);
|
|
ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
|
|
addr->v4.sin_port = htons(addr->v4.sin_port);
|
|
sctp_write_unlock(&ep->base.addr_lock);
|
|
sctp_local_bh_enable();
|
|
|
|
/* Copy back into socket for getsockname() use. */
|
|
if (!ret) {
|
|
inet_sk(sk)->sport = htons(inet_sk(sk)->num);
|
|
af->to_sk_saddr(addr, sk);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
|
|
*
|
|
* R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
|
|
* at any one time. If a sender, after sending an ASCONF chunk, decides
|
|
* it needs to transfer another ASCONF Chunk, it MUST wait until the
|
|
* ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
|
|
* subsequent ASCONF. Note this restriction binds each side, so at any
|
|
* time two ASCONF may be in-transit on any given association (one sent
|
|
* from each endpoint).
|
|
*/
|
|
static int sctp_send_asconf(struct sctp_association *asoc,
|
|
struct sctp_chunk *chunk)
|
|
{
|
|
int retval = 0;
|
|
|
|
/* If there is an outstanding ASCONF chunk, queue it for later
|
|
* transmission.
|
|
*/
|
|
if (asoc->addip_last_asconf) {
|
|
list_add_tail(&chunk->list, &asoc->addip_chunk_list);
|
|
goto out;
|
|
}
|
|
|
|
/* Hold the chunk until an ASCONF_ACK is received. */
|
|
sctp_chunk_hold(chunk);
|
|
retval = sctp_primitive_ASCONF(asoc, chunk);
|
|
if (retval)
|
|
sctp_chunk_free(chunk);
|
|
else
|
|
asoc->addip_last_asconf = chunk;
|
|
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/* Add a list of addresses as bind addresses to local endpoint or
|
|
* association.
|
|
*
|
|
* Basically run through each address specified in the addrs/addrcnt
|
|
* array/length pair, determine if it is IPv6 or IPv4 and call
|
|
* sctp_do_bind() on it.
|
|
*
|
|
* If any of them fails, then the operation will be reversed and the
|
|
* ones that were added will be removed.
|
|
*
|
|
* Only sctp_setsockopt_bindx() is supposed to call this function.
|
|
*/
|
|
int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
|
|
{
|
|
int cnt;
|
|
int retval = 0;
|
|
void *addr_buf;
|
|
struct sockaddr *sa_addr;
|
|
struct sctp_af *af;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
|
|
sk, addrs, addrcnt);
|
|
|
|
addr_buf = addrs;
|
|
for (cnt = 0; cnt < addrcnt; cnt++) {
|
|
/* The list may contain either IPv4 or IPv6 address;
|
|
* determine the address length for walking thru the list.
|
|
*/
|
|
sa_addr = (struct sockaddr *)addr_buf;
|
|
af = sctp_get_af_specific(sa_addr->sa_family);
|
|
if (!af) {
|
|
retval = -EINVAL;
|
|
goto err_bindx_add;
|
|
}
|
|
|
|
retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
|
|
af->sockaddr_len);
|
|
|
|
addr_buf += af->sockaddr_len;
|
|
|
|
err_bindx_add:
|
|
if (retval < 0) {
|
|
/* Failed. Cleanup the ones that have been added */
|
|
if (cnt > 0)
|
|
sctp_bindx_rem(sk, addrs, cnt);
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
|
|
* associations that are part of the endpoint indicating that a list of local
|
|
* addresses are added to the endpoint.
|
|
*
|
|
* If any of the addresses is already in the bind address list of the
|
|
* association, we do not send the chunk for that association. But it will not
|
|
* affect other associations.
|
|
*
|
|
* Only sctp_setsockopt_bindx() is supposed to call this function.
|
|
*/
|
|
static int sctp_send_asconf_add_ip(struct sock *sk,
|
|
struct sockaddr *addrs,
|
|
int addrcnt)
|
|
{
|
|
struct sctp_sock *sp;
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_association *asoc;
|
|
struct sctp_bind_addr *bp;
|
|
struct sctp_chunk *chunk;
|
|
struct sctp_sockaddr_entry *laddr;
|
|
union sctp_addr *addr;
|
|
void *addr_buf;
|
|
struct sctp_af *af;
|
|
struct list_head *pos;
|
|
struct list_head *p;
|
|
int i;
|
|
int retval = 0;
|
|
|
|
if (!sctp_addip_enable)
|
|
return retval;
|
|
|
|
sp = sctp_sk(sk);
|
|
ep = sp->ep;
|
|
|
|
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
|
|
__FUNCTION__, sk, addrs, addrcnt);
|
|
|
|
list_for_each(pos, &ep->asocs) {
|
|
asoc = list_entry(pos, struct sctp_association, asocs);
|
|
|
|
if (!asoc->peer.asconf_capable)
|
|
continue;
|
|
|
|
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
|
|
continue;
|
|
|
|
if (!sctp_state(asoc, ESTABLISHED))
|
|
continue;
|
|
|
|
/* Check if any address in the packed array of addresses is
|
|
* in the bind address list of the association. If so,
|
|
* do not send the asconf chunk to its peer, but continue with
|
|
* other associations.
|
|
*/
|
|
addr_buf = addrs;
|
|
for (i = 0; i < addrcnt; i++) {
|
|
addr = (union sctp_addr *)addr_buf;
|
|
af = sctp_get_af_specific(addr->v4.sin_family);
|
|
if (!af) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (sctp_assoc_lookup_laddr(asoc, addr))
|
|
break;
|
|
|
|
addr_buf += af->sockaddr_len;
|
|
}
|
|
if (i < addrcnt)
|
|
continue;
|
|
|
|
/* Use the first address in bind addr list of association as
|
|
* Address Parameter of ASCONF CHUNK.
|
|
*/
|
|
sctp_read_lock(&asoc->base.addr_lock);
|
|
bp = &asoc->base.bind_addr;
|
|
p = bp->address_list.next;
|
|
laddr = list_entry(p, struct sctp_sockaddr_entry, list);
|
|
sctp_read_unlock(&asoc->base.addr_lock);
|
|
|
|
chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
|
|
addrcnt, SCTP_PARAM_ADD_IP);
|
|
if (!chunk) {
|
|
retval = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
retval = sctp_send_asconf(asoc, chunk);
|
|
|
|
/* FIXME: After sending the add address ASCONF chunk, we
|
|
* cannot append the address to the association's binding
|
|
* address list, because the new address may be used as the
|
|
* source of a message sent to the peer before the ASCONF
|
|
* chunk is received by the peer. So we should wait until
|
|
* ASCONF_ACK is received.
|
|
*/
|
|
}
|
|
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/* Remove a list of addresses from bind addresses list. Do not remove the
|
|
* last address.
|
|
*
|
|
* Basically run through each address specified in the addrs/addrcnt
|
|
* array/length pair, determine if it is IPv6 or IPv4 and call
|
|
* sctp_del_bind() on it.
|
|
*
|
|
* If any of them fails, then the operation will be reversed and the
|
|
* ones that were removed will be added back.
|
|
*
|
|
* At least one address has to be left; if only one address is
|
|
* available, the operation will return -EBUSY.
|
|
*
|
|
* Only sctp_setsockopt_bindx() is supposed to call this function.
|
|
*/
|
|
int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
|
|
{
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
struct sctp_endpoint *ep = sp->ep;
|
|
int cnt;
|
|
struct sctp_bind_addr *bp = &ep->base.bind_addr;
|
|
int retval = 0;
|
|
union sctp_addr saveaddr;
|
|
void *addr_buf;
|
|
struct sockaddr *sa_addr;
|
|
struct sctp_af *af;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
|
|
sk, addrs, addrcnt);
|
|
|
|
addr_buf = addrs;
|
|
for (cnt = 0; cnt < addrcnt; cnt++) {
|
|
/* If the bind address list is empty or if there is only one
|
|
* bind address, there is nothing more to be removed (we need
|
|
* at least one address here).
|
|
*/
|
|
if (list_empty(&bp->address_list) ||
|
|
(sctp_list_single_entry(&bp->address_list))) {
|
|
retval = -EBUSY;
|
|
goto err_bindx_rem;
|
|
}
|
|
|
|
/* The list may contain either IPv4 or IPv6 address;
|
|
* determine the address length to copy the address to
|
|
* saveaddr.
|
|
*/
|
|
sa_addr = (struct sockaddr *)addr_buf;
|
|
af = sctp_get_af_specific(sa_addr->sa_family);
|
|
if (!af) {
|
|
retval = -EINVAL;
|
|
goto err_bindx_rem;
|
|
}
|
|
memcpy(&saveaddr, sa_addr, af->sockaddr_len);
|
|
saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
|
|
if (saveaddr.v4.sin_port != bp->port) {
|
|
retval = -EINVAL;
|
|
goto err_bindx_rem;
|
|
}
|
|
|
|
/* FIXME - There is probably a need to check if sk->sk_saddr and
|
|
* sk->sk_rcv_addr are currently set to one of the addresses to
|
|
* be removed. This is something which needs to be looked into
|
|
* when we are fixing the outstanding issues with multi-homing
|
|
* socket routing and failover schemes. Refer to comments in
|
|
* sctp_do_bind(). -daisy
|
|
*/
|
|
sctp_local_bh_disable();
|
|
sctp_write_lock(&ep->base.addr_lock);
|
|
|
|
retval = sctp_del_bind_addr(bp, &saveaddr);
|
|
|
|
sctp_write_unlock(&ep->base.addr_lock);
|
|
sctp_local_bh_enable();
|
|
|
|
addr_buf += af->sockaddr_len;
|
|
err_bindx_rem:
|
|
if (retval < 0) {
|
|
/* Failed. Add the ones that has been removed back */
|
|
if (cnt > 0)
|
|
sctp_bindx_add(sk, addrs, cnt);
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
|
|
* the associations that are part of the endpoint indicating that a list of
|
|
* local addresses are removed from the endpoint.
|
|
*
|
|
* If any of the addresses is already in the bind address list of the
|
|
* association, we do not send the chunk for that association. But it will not
|
|
* affect other associations.
|
|
*
|
|
* Only sctp_setsockopt_bindx() is supposed to call this function.
|
|
*/
|
|
static int sctp_send_asconf_del_ip(struct sock *sk,
|
|
struct sockaddr *addrs,
|
|
int addrcnt)
|
|
{
|
|
struct sctp_sock *sp;
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_association *asoc;
|
|
struct sctp_bind_addr *bp;
|
|
struct sctp_chunk *chunk;
|
|
union sctp_addr *laddr;
|
|
void *addr_buf;
|
|
struct sctp_af *af;
|
|
struct list_head *pos;
|
|
int i;
|
|
int retval = 0;
|
|
|
|
if (!sctp_addip_enable)
|
|
return retval;
|
|
|
|
sp = sctp_sk(sk);
|
|
ep = sp->ep;
|
|
|
|
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
|
|
__FUNCTION__, sk, addrs, addrcnt);
|
|
|
|
list_for_each(pos, &ep->asocs) {
|
|
asoc = list_entry(pos, struct sctp_association, asocs);
|
|
|
|
if (!asoc->peer.asconf_capable)
|
|
continue;
|
|
|
|
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
|
|
continue;
|
|
|
|
if (!sctp_state(asoc, ESTABLISHED))
|
|
continue;
|
|
|
|
/* Check if any address in the packed array of addresses is
|
|
* not present in the bind address list of the association.
|
|
* If so, do not send the asconf chunk to its peer, but
|
|
* continue with other associations.
|
|
*/
|
|
addr_buf = addrs;
|
|
for (i = 0; i < addrcnt; i++) {
|
|
laddr = (union sctp_addr *)addr_buf;
|
|
af = sctp_get_af_specific(laddr->v4.sin_family);
|
|
if (!af) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!sctp_assoc_lookup_laddr(asoc, laddr))
|
|
break;
|
|
|
|
addr_buf += af->sockaddr_len;
|
|
}
|
|
if (i < addrcnt)
|
|
continue;
|
|
|
|
/* Find one address in the association's bind address list
|
|
* that is not in the packed array of addresses. This is to
|
|
* make sure that we do not delete all the addresses in the
|
|
* association.
|
|
*/
|
|
sctp_read_lock(&asoc->base.addr_lock);
|
|
bp = &asoc->base.bind_addr;
|
|
laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
|
|
addrcnt, sp);
|
|
sctp_read_unlock(&asoc->base.addr_lock);
|
|
if (!laddr)
|
|
continue;
|
|
|
|
chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
|
|
SCTP_PARAM_DEL_IP);
|
|
if (!chunk) {
|
|
retval = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
retval = sctp_send_asconf(asoc, chunk);
|
|
|
|
/* FIXME: After sending the delete address ASCONF chunk, we
|
|
* cannot remove the addresses from the association's bind
|
|
* address list, because there maybe some packet send to
|
|
* the delete addresses, so we should wait until ASCONF_ACK
|
|
* packet is received.
|
|
*/
|
|
}
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
|
|
*
|
|
* API 8.1
|
|
* int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
|
|
* int flags);
|
|
*
|
|
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
|
|
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
|
|
* or IPv6 addresses.
|
|
*
|
|
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
|
|
* Section 3.1.2 for this usage.
|
|
*
|
|
* addrs is a pointer to an array of one or more socket addresses. Each
|
|
* address is contained in its appropriate structure (i.e. struct
|
|
* sockaddr_in or struct sockaddr_in6) the family of the address type
|
|
* must be used to distengish the address length (note that this
|
|
* representation is termed a "packed array" of addresses). The caller
|
|
* specifies the number of addresses in the array with addrcnt.
|
|
*
|
|
* On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
|
|
* -1, and sets errno to the appropriate error code.
|
|
*
|
|
* For SCTP, the port given in each socket address must be the same, or
|
|
* sctp_bindx() will fail, setting errno to EINVAL.
|
|
*
|
|
* The flags parameter is formed from the bitwise OR of zero or more of
|
|
* the following currently defined flags:
|
|
*
|
|
* SCTP_BINDX_ADD_ADDR
|
|
*
|
|
* SCTP_BINDX_REM_ADDR
|
|
*
|
|
* SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
|
|
* association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
|
|
* addresses from the association. The two flags are mutually exclusive;
|
|
* if both are given, sctp_bindx() will fail with EINVAL. A caller may
|
|
* not remove all addresses from an association; sctp_bindx() will
|
|
* reject such an attempt with EINVAL.
|
|
*
|
|
* An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
|
|
* additional addresses with an endpoint after calling bind(). Or use
|
|
* sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
|
|
* socket is associated with so that no new association accepted will be
|
|
* associated with those addresses. If the endpoint supports dynamic
|
|
* address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
|
|
* endpoint to send the appropriate message to the peer to change the
|
|
* peers address lists.
|
|
*
|
|
* Adding and removing addresses from a connected association is
|
|
* optional functionality. Implementations that do not support this
|
|
* functionality should return EOPNOTSUPP.
|
|
*
|
|
* Basically do nothing but copying the addresses from user to kernel
|
|
* land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
|
|
* This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
|
|
* from userspace.
|
|
*
|
|
* We don't use copy_from_user() for optimization: we first do the
|
|
* sanity checks (buffer size -fast- and access check-healthy
|
|
* pointer); if all of those succeed, then we can alloc the memory
|
|
* (expensive operation) needed to copy the data to kernel. Then we do
|
|
* the copying without checking the user space area
|
|
* (__copy_from_user()).
|
|
*
|
|
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
|
|
* it.
|
|
*
|
|
* sk The sk of the socket
|
|
* addrs The pointer to the addresses in user land
|
|
* addrssize Size of the addrs buffer
|
|
* op Operation to perform (add or remove, see the flags of
|
|
* sctp_bindx)
|
|
*
|
|
* Returns 0 if ok, <0 errno code on error.
|
|
*/
|
|
SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
|
|
struct sockaddr __user *addrs,
|
|
int addrs_size, int op)
|
|
{
|
|
struct sockaddr *kaddrs;
|
|
int err;
|
|
int addrcnt = 0;
|
|
int walk_size = 0;
|
|
struct sockaddr *sa_addr;
|
|
void *addr_buf;
|
|
struct sctp_af *af;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
|
|
" addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
|
|
|
|
if (unlikely(addrs_size <= 0))
|
|
return -EINVAL;
|
|
|
|
/* Check the user passed a healthy pointer. */
|
|
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
|
|
return -EFAULT;
|
|
|
|
/* Alloc space for the address array in kernel memory. */
|
|
kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
|
|
if (unlikely(!kaddrs))
|
|
return -ENOMEM;
|
|
|
|
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
|
|
kfree(kaddrs);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Walk through the addrs buffer and count the number of addresses. */
|
|
addr_buf = kaddrs;
|
|
while (walk_size < addrs_size) {
|
|
sa_addr = (struct sockaddr *)addr_buf;
|
|
af = sctp_get_af_specific(sa_addr->sa_family);
|
|
|
|
/* If the address family is not supported or if this address
|
|
* causes the address buffer to overflow return EINVAL.
|
|
*/
|
|
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
|
|
kfree(kaddrs);
|
|
return -EINVAL;
|
|
}
|
|
addrcnt++;
|
|
addr_buf += af->sockaddr_len;
|
|
walk_size += af->sockaddr_len;
|
|
}
|
|
|
|
/* Do the work. */
|
|
switch (op) {
|
|
case SCTP_BINDX_ADD_ADDR:
|
|
err = sctp_bindx_add(sk, kaddrs, addrcnt);
|
|
if (err)
|
|
goto out;
|
|
err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
|
|
break;
|
|
|
|
case SCTP_BINDX_REM_ADDR:
|
|
err = sctp_bindx_rem(sk, kaddrs, addrcnt);
|
|
if (err)
|
|
goto out;
|
|
err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
|
|
break;
|
|
|
|
default:
|
|
err = -EINVAL;
|
|
break;
|
|
};
|
|
|
|
out:
|
|
kfree(kaddrs);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
|
|
*
|
|
* Common routine for handling connect() and sctp_connectx().
|
|
* Connect will come in with just a single address.
|
|
*/
|
|
static int __sctp_connect(struct sock* sk,
|
|
struct sockaddr *kaddrs,
|
|
int addrs_size)
|
|
{
|
|
struct sctp_sock *sp;
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_association *asoc = NULL;
|
|
struct sctp_association *asoc2;
|
|
struct sctp_transport *transport;
|
|
union sctp_addr to;
|
|
struct sctp_af *af;
|
|
sctp_scope_t scope;
|
|
long timeo;
|
|
int err = 0;
|
|
int addrcnt = 0;
|
|
int walk_size = 0;
|
|
struct sockaddr *sa_addr;
|
|
void *addr_buf;
|
|
|
|
sp = sctp_sk(sk);
|
|
ep = sp->ep;
|
|
|
|
/* connect() cannot be done on a socket that is already in ESTABLISHED
|
|
* state - UDP-style peeled off socket or a TCP-style socket that
|
|
* is already connected.
|
|
* It cannot be done even on a TCP-style listening socket.
|
|
*/
|
|
if (sctp_sstate(sk, ESTABLISHED) ||
|
|
(sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
|
|
err = -EISCONN;
|
|
goto out_free;
|
|
}
|
|
|
|
/* Walk through the addrs buffer and count the number of addresses. */
|
|
addr_buf = kaddrs;
|
|
while (walk_size < addrs_size) {
|
|
sa_addr = (struct sockaddr *)addr_buf;
|
|
af = sctp_get_af_specific(sa_addr->sa_family);
|
|
|
|
/* If the address family is not supported or if this address
|
|
* causes the address buffer to overflow return EINVAL.
|
|
*/
|
|
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
|
|
err = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
|
|
af->sockaddr_len);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
memcpy(&to, sa_addr, af->sockaddr_len);
|
|
to.v4.sin_port = ntohs(to.v4.sin_port);
|
|
|
|
/* Check if there already is a matching association on the
|
|
* endpoint (other than the one created here).
|
|
*/
|
|
asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
|
|
if (asoc2 && asoc2 != asoc) {
|
|
if (asoc2->state >= SCTP_STATE_ESTABLISHED)
|
|
err = -EISCONN;
|
|
else
|
|
err = -EALREADY;
|
|
goto out_free;
|
|
}
|
|
|
|
/* If we could not find a matching association on the endpoint,
|
|
* make sure that there is no peeled-off association matching
|
|
* the peer address even on another socket.
|
|
*/
|
|
if (sctp_endpoint_is_peeled_off(ep, &to)) {
|
|
err = -EADDRNOTAVAIL;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!asoc) {
|
|
/* If a bind() or sctp_bindx() is not called prior to
|
|
* an sctp_connectx() call, the system picks an
|
|
* ephemeral port and will choose an address set
|
|
* equivalent to binding with a wildcard address.
|
|
*/
|
|
if (!ep->base.bind_addr.port) {
|
|
if (sctp_autobind(sk)) {
|
|
err = -EAGAIN;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
scope = sctp_scope(&to);
|
|
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
|
|
if (!asoc) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
/* Prime the peer's transport structures. */
|
|
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
|
|
SCTP_UNKNOWN);
|
|
if (!transport) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
addrcnt++;
|
|
addr_buf += af->sockaddr_len;
|
|
walk_size += af->sockaddr_len;
|
|
}
|
|
|
|
err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
|
|
if (err < 0) {
|
|
goto out_free;
|
|
}
|
|
|
|
err = sctp_primitive_ASSOCIATE(asoc, NULL);
|
|
if (err < 0) {
|
|
goto out_free;
|
|
}
|
|
|
|
/* Initialize sk's dport and daddr for getpeername() */
|
|
inet_sk(sk)->dport = htons(asoc->peer.port);
|
|
af = sctp_get_af_specific(to.sa.sa_family);
|
|
af->to_sk_daddr(&to, sk);
|
|
|
|
timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
|
|
err = sctp_wait_for_connect(asoc, &timeo);
|
|
|
|
/* Don't free association on exit. */
|
|
asoc = NULL;
|
|
|
|
out_free:
|
|
|
|
SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
|
|
" kaddrs: %p err: %d\n",
|
|
asoc, kaddrs, err);
|
|
if (asoc)
|
|
sctp_association_free(asoc);
|
|
return err;
|
|
}
|
|
|
|
/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
|
|
*
|
|
* API 8.9
|
|
* int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
|
|
*
|
|
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
|
|
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
|
|
* or IPv6 addresses.
|
|
*
|
|
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
|
|
* Section 3.1.2 for this usage.
|
|
*
|
|
* addrs is a pointer to an array of one or more socket addresses. Each
|
|
* address is contained in its appropriate structure (i.e. struct
|
|
* sockaddr_in or struct sockaddr_in6) the family of the address type
|
|
* must be used to distengish the address length (note that this
|
|
* representation is termed a "packed array" of addresses). The caller
|
|
* specifies the number of addresses in the array with addrcnt.
|
|
*
|
|
* On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
|
|
* -1, and sets errno to the appropriate error code.
|
|
*
|
|
* For SCTP, the port given in each socket address must be the same, or
|
|
* sctp_connectx() will fail, setting errno to EINVAL.
|
|
*
|
|
* An application can use sctp_connectx to initiate an association with
|
|
* an endpoint that is multi-homed. Much like sctp_bindx() this call
|
|
* allows a caller to specify multiple addresses at which a peer can be
|
|
* reached. The way the SCTP stack uses the list of addresses to set up
|
|
* the association is implementation dependant. This function only
|
|
* specifies that the stack will try to make use of all the addresses in
|
|
* the list when needed.
|
|
*
|
|
* Note that the list of addresses passed in is only used for setting up
|
|
* the association. It does not necessarily equal the set of addresses
|
|
* the peer uses for the resulting association. If the caller wants to
|
|
* find out the set of peer addresses, it must use sctp_getpaddrs() to
|
|
* retrieve them after the association has been set up.
|
|
*
|
|
* Basically do nothing but copying the addresses from user to kernel
|
|
* land and invoking either sctp_connectx(). This is used for tunneling
|
|
* the sctp_connectx() request through sctp_setsockopt() from userspace.
|
|
*
|
|
* We don't use copy_from_user() for optimization: we first do the
|
|
* sanity checks (buffer size -fast- and access check-healthy
|
|
* pointer); if all of those succeed, then we can alloc the memory
|
|
* (expensive operation) needed to copy the data to kernel. Then we do
|
|
* the copying without checking the user space area
|
|
* (__copy_from_user()).
|
|
*
|
|
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
|
|
* it.
|
|
*
|
|
* sk The sk of the socket
|
|
* addrs The pointer to the addresses in user land
|
|
* addrssize Size of the addrs buffer
|
|
*
|
|
* Returns 0 if ok, <0 errno code on error.
|
|
*/
|
|
SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
|
|
struct sockaddr __user *addrs,
|
|
int addrs_size)
|
|
{
|
|
int err = 0;
|
|
struct sockaddr *kaddrs;
|
|
|
|
SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
|
|
__FUNCTION__, sk, addrs, addrs_size);
|
|
|
|
if (unlikely(addrs_size <= 0))
|
|
return -EINVAL;
|
|
|
|
/* Check the user passed a healthy pointer. */
|
|
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
|
|
return -EFAULT;
|
|
|
|
/* Alloc space for the address array in kernel memory. */
|
|
kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
|
|
if (unlikely(!kaddrs))
|
|
return -ENOMEM;
|
|
|
|
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
|
|
err = -EFAULT;
|
|
} else {
|
|
err = __sctp_connect(sk, kaddrs, addrs_size);
|
|
}
|
|
|
|
kfree(kaddrs);
|
|
return err;
|
|
}
|
|
|
|
/* API 3.1.4 close() - UDP Style Syntax
|
|
* Applications use close() to perform graceful shutdown (as described in
|
|
* Section 10.1 of [SCTP]) on ALL the associations currently represented
|
|
* by a UDP-style socket.
|
|
*
|
|
* The syntax is
|
|
*
|
|
* ret = close(int sd);
|
|
*
|
|
* sd - the socket descriptor of the associations to be closed.
|
|
*
|
|
* To gracefully shutdown a specific association represented by the
|
|
* UDP-style socket, an application should use the sendmsg() call,
|
|
* passing no user data, but including the appropriate flag in the
|
|
* ancillary data (see Section xxxx).
|
|
*
|
|
* If sd in the close() call is a branched-off socket representing only
|
|
* one association, the shutdown is performed on that association only.
|
|
*
|
|
* 4.1.6 close() - TCP Style Syntax
|
|
*
|
|
* Applications use close() to gracefully close down an association.
|
|
*
|
|
* The syntax is:
|
|
*
|
|
* int close(int sd);
|
|
*
|
|
* sd - the socket descriptor of the association to be closed.
|
|
*
|
|
* After an application calls close() on a socket descriptor, no further
|
|
* socket operations will succeed on that descriptor.
|
|
*
|
|
* API 7.1.4 SO_LINGER
|
|
*
|
|
* An application using the TCP-style socket can use this option to
|
|
* perform the SCTP ABORT primitive. The linger option structure is:
|
|
*
|
|
* struct linger {
|
|
* int l_onoff; // option on/off
|
|
* int l_linger; // linger time
|
|
* };
|
|
*
|
|
* To enable the option, set l_onoff to 1. If the l_linger value is set
|
|
* to 0, calling close() is the same as the ABORT primitive. If the
|
|
* value is set to a negative value, the setsockopt() call will return
|
|
* an error. If the value is set to a positive value linger_time, the
|
|
* close() can be blocked for at most linger_time ms. If the graceful
|
|
* shutdown phase does not finish during this period, close() will
|
|
* return but the graceful shutdown phase continues in the system.
|
|
*/
|
|
SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
|
|
{
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos, *temp;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
|
|
|
|
sctp_lock_sock(sk);
|
|
sk->sk_shutdown = SHUTDOWN_MASK;
|
|
|
|
ep = sctp_sk(sk)->ep;
|
|
|
|
/* Walk all associations on a socket, not on an endpoint. */
|
|
list_for_each_safe(pos, temp, &ep->asocs) {
|
|
asoc = list_entry(pos, struct sctp_association, asocs);
|
|
|
|
if (sctp_style(sk, TCP)) {
|
|
/* A closed association can still be in the list if
|
|
* it belongs to a TCP-style listening socket that is
|
|
* not yet accepted. If so, free it. If not, send an
|
|
* ABORT or SHUTDOWN based on the linger options.
|
|
*/
|
|
if (sctp_state(asoc, CLOSED)) {
|
|
sctp_unhash_established(asoc);
|
|
sctp_association_free(asoc);
|
|
|
|
} else if (sock_flag(sk, SOCK_LINGER) &&
|
|
!sk->sk_lingertime)
|
|
sctp_primitive_ABORT(asoc, NULL);
|
|
else
|
|
sctp_primitive_SHUTDOWN(asoc, NULL);
|
|
} else
|
|
sctp_primitive_SHUTDOWN(asoc, NULL);
|
|
}
|
|
|
|
/* Clean up any skbs sitting on the receive queue. */
|
|
sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
|
|
sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
|
|
|
|
/* On a TCP-style socket, block for at most linger_time if set. */
|
|
if (sctp_style(sk, TCP) && timeout)
|
|
sctp_wait_for_close(sk, timeout);
|
|
|
|
/* This will run the backlog queue. */
|
|
sctp_release_sock(sk);
|
|
|
|
/* Supposedly, no process has access to the socket, but
|
|
* the net layers still may.
|
|
*/
|
|
sctp_local_bh_disable();
|
|
sctp_bh_lock_sock(sk);
|
|
|
|
/* Hold the sock, since sk_common_release() will put sock_put()
|
|
* and we have just a little more cleanup.
|
|
*/
|
|
sock_hold(sk);
|
|
sk_common_release(sk);
|
|
|
|
sctp_bh_unlock_sock(sk);
|
|
sctp_local_bh_enable();
|
|
|
|
sock_put(sk);
|
|
|
|
SCTP_DBG_OBJCNT_DEC(sock);
|
|
}
|
|
|
|
/* Handle EPIPE error. */
|
|
static int sctp_error(struct sock *sk, int flags, int err)
|
|
{
|
|
if (err == -EPIPE)
|
|
err = sock_error(sk) ? : -EPIPE;
|
|
if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
|
|
send_sig(SIGPIPE, current, 0);
|
|
return err;
|
|
}
|
|
|
|
/* API 3.1.3 sendmsg() - UDP Style Syntax
|
|
*
|
|
* An application uses sendmsg() and recvmsg() calls to transmit data to
|
|
* and receive data from its peer.
|
|
*
|
|
* ssize_t sendmsg(int socket, const struct msghdr *message,
|
|
* int flags);
|
|
*
|
|
* socket - the socket descriptor of the endpoint.
|
|
* message - pointer to the msghdr structure which contains a single
|
|
* user message and possibly some ancillary data.
|
|
*
|
|
* See Section 5 for complete description of the data
|
|
* structures.
|
|
*
|
|
* flags - flags sent or received with the user message, see Section
|
|
* 5 for complete description of the flags.
|
|
*
|
|
* Note: This function could use a rewrite especially when explicit
|
|
* connect support comes in.
|
|
*/
|
|
/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
|
|
|
|
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
|
|
|
|
SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
|
|
struct msghdr *msg, size_t msg_len)
|
|
{
|
|
struct sctp_sock *sp;
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_association *new_asoc=NULL, *asoc=NULL;
|
|
struct sctp_transport *transport, *chunk_tp;
|
|
struct sctp_chunk *chunk;
|
|
union sctp_addr to;
|
|
struct sockaddr *msg_name = NULL;
|
|
struct sctp_sndrcvinfo default_sinfo = { 0 };
|
|
struct sctp_sndrcvinfo *sinfo;
|
|
struct sctp_initmsg *sinit;
|
|
sctp_assoc_t associd = 0;
|
|
sctp_cmsgs_t cmsgs = { NULL };
|
|
int err;
|
|
sctp_scope_t scope;
|
|
long timeo;
|
|
__u16 sinfo_flags = 0;
|
|
struct sctp_datamsg *datamsg;
|
|
struct list_head *pos;
|
|
int msg_flags = msg->msg_flags;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
|
|
sk, msg, msg_len);
|
|
|
|
err = 0;
|
|
sp = sctp_sk(sk);
|
|
ep = sp->ep;
|
|
|
|
SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
|
|
|
|
/* We cannot send a message over a TCP-style listening socket. */
|
|
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
|
|
err = -EPIPE;
|
|
goto out_nounlock;
|
|
}
|
|
|
|
/* Parse out the SCTP CMSGs. */
|
|
err = sctp_msghdr_parse(msg, &cmsgs);
|
|
|
|
if (err) {
|
|
SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
|
|
goto out_nounlock;
|
|
}
|
|
|
|
/* Fetch the destination address for this packet. This
|
|
* address only selects the association--it is not necessarily
|
|
* the address we will send to.
|
|
* For a peeled-off socket, msg_name is ignored.
|
|
*/
|
|
if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
|
|
int msg_namelen = msg->msg_namelen;
|
|
|
|
err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
|
|
msg_namelen);
|
|
if (err)
|
|
return err;
|
|
|
|
if (msg_namelen > sizeof(to))
|
|
msg_namelen = sizeof(to);
|
|
memcpy(&to, msg->msg_name, msg_namelen);
|
|
SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
|
|
"0x%x:%u.\n",
|
|
to.v4.sin_addr.s_addr, to.v4.sin_port);
|
|
|
|
to.v4.sin_port = ntohs(to.v4.sin_port);
|
|
msg_name = msg->msg_name;
|
|
}
|
|
|
|
sinfo = cmsgs.info;
|
|
sinit = cmsgs.init;
|
|
|
|
/* Did the user specify SNDRCVINFO? */
|
|
if (sinfo) {
|
|
sinfo_flags = sinfo->sinfo_flags;
|
|
associd = sinfo->sinfo_assoc_id;
|
|
}
|
|
|
|
SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
|
|
msg_len, sinfo_flags);
|
|
|
|
/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
|
|
if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
|
|
err = -EINVAL;
|
|
goto out_nounlock;
|
|
}
|
|
|
|
/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
|
|
* length messages when SCTP_EOF|SCTP_ABORT is not set.
|
|
* If SCTP_ABORT is set, the message length could be non zero with
|
|
* the msg_iov set to the user abort reason.
|
|
*/
|
|
if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
|
|
(!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
|
|
err = -EINVAL;
|
|
goto out_nounlock;
|
|
}
|
|
|
|
/* If SCTP_ADDR_OVER is set, there must be an address
|
|
* specified in msg_name.
|
|
*/
|
|
if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
|
|
err = -EINVAL;
|
|
goto out_nounlock;
|
|
}
|
|
|
|
transport = NULL;
|
|
|
|
SCTP_DEBUG_PRINTK("About to look up association.\n");
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
/* If a msg_name has been specified, assume this is to be used. */
|
|
if (msg_name) {
|
|
/* Look for a matching association on the endpoint. */
|
|
asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
|
|
if (!asoc) {
|
|
/* If we could not find a matching association on the
|
|
* endpoint, make sure that it is not a TCP-style
|
|
* socket that already has an association or there is
|
|
* no peeled-off association on another socket.
|
|
*/
|
|
if ((sctp_style(sk, TCP) &&
|
|
sctp_sstate(sk, ESTABLISHED)) ||
|
|
sctp_endpoint_is_peeled_off(ep, &to)) {
|
|
err = -EADDRNOTAVAIL;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
} else {
|
|
asoc = sctp_id2assoc(sk, associd);
|
|
if (!asoc) {
|
|
err = -EPIPE;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (asoc) {
|
|
SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
|
|
|
|
/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
|
|
* socket that has an association in CLOSED state. This can
|
|
* happen when an accepted socket has an association that is
|
|
* already CLOSED.
|
|
*/
|
|
if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
|
|
err = -EPIPE;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (sinfo_flags & SCTP_EOF) {
|
|
SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
|
|
asoc);
|
|
sctp_primitive_SHUTDOWN(asoc, NULL);
|
|
err = 0;
|
|
goto out_unlock;
|
|
}
|
|
if (sinfo_flags & SCTP_ABORT) {
|
|
SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
|
|
sctp_primitive_ABORT(asoc, msg);
|
|
err = 0;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
/* Do we need to create the association? */
|
|
if (!asoc) {
|
|
SCTP_DEBUG_PRINTK("There is no association yet.\n");
|
|
|
|
if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Check for invalid stream against the stream counts,
|
|
* either the default or the user specified stream counts.
|
|
*/
|
|
if (sinfo) {
|
|
if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
|
|
/* Check against the defaults. */
|
|
if (sinfo->sinfo_stream >=
|
|
sp->initmsg.sinit_num_ostreams) {
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
} else {
|
|
/* Check against the requested. */
|
|
if (sinfo->sinfo_stream >=
|
|
sinit->sinit_num_ostreams) {
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* API 3.1.2 bind() - UDP Style Syntax
|
|
* If a bind() or sctp_bindx() is not called prior to a
|
|
* sendmsg() call that initiates a new association, the
|
|
* system picks an ephemeral port and will choose an address
|
|
* set equivalent to binding with a wildcard address.
|
|
*/
|
|
if (!ep->base.bind_addr.port) {
|
|
if (sctp_autobind(sk)) {
|
|
err = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
scope = sctp_scope(&to);
|
|
new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
|
|
if (!new_asoc) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
asoc = new_asoc;
|
|
|
|
/* If the SCTP_INIT ancillary data is specified, set all
|
|
* the association init values accordingly.
|
|
*/
|
|
if (sinit) {
|
|
if (sinit->sinit_num_ostreams) {
|
|
asoc->c.sinit_num_ostreams =
|
|
sinit->sinit_num_ostreams;
|
|
}
|
|
if (sinit->sinit_max_instreams) {
|
|
asoc->c.sinit_max_instreams =
|
|
sinit->sinit_max_instreams;
|
|
}
|
|
if (sinit->sinit_max_attempts) {
|
|
asoc->max_init_attempts
|
|
= sinit->sinit_max_attempts;
|
|
}
|
|
if (sinit->sinit_max_init_timeo) {
|
|
asoc->max_init_timeo =
|
|
msecs_to_jiffies(sinit->sinit_max_init_timeo);
|
|
}
|
|
}
|
|
|
|
/* Prime the peer's transport structures. */
|
|
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
|
|
if (!transport) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
|
|
if (err < 0) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
/* ASSERT: we have a valid association at this point. */
|
|
SCTP_DEBUG_PRINTK("We have a valid association.\n");
|
|
|
|
if (!sinfo) {
|
|
/* If the user didn't specify SNDRCVINFO, make up one with
|
|
* some defaults.
|
|
*/
|
|
default_sinfo.sinfo_stream = asoc->default_stream;
|
|
default_sinfo.sinfo_flags = asoc->default_flags;
|
|
default_sinfo.sinfo_ppid = asoc->default_ppid;
|
|
default_sinfo.sinfo_context = asoc->default_context;
|
|
default_sinfo.sinfo_timetolive = asoc->default_timetolive;
|
|
default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
|
|
sinfo = &default_sinfo;
|
|
}
|
|
|
|
/* API 7.1.7, the sndbuf size per association bounds the
|
|
* maximum size of data that can be sent in a single send call.
|
|
*/
|
|
if (msg_len > sk->sk_sndbuf) {
|
|
err = -EMSGSIZE;
|
|
goto out_free;
|
|
}
|
|
|
|
/* If fragmentation is disabled and the message length exceeds the
|
|
* association fragmentation point, return EMSGSIZE. The I-D
|
|
* does not specify what this error is, but this looks like
|
|
* a great fit.
|
|
*/
|
|
if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
|
|
err = -EMSGSIZE;
|
|
goto out_free;
|
|
}
|
|
|
|
if (sinfo) {
|
|
/* Check for invalid stream. */
|
|
if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
|
|
err = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
if (!sctp_wspace(asoc)) {
|
|
err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
|
|
if (err)
|
|
goto out_free;
|
|
}
|
|
|
|
/* If an address is passed with the sendto/sendmsg call, it is used
|
|
* to override the primary destination address in the TCP model, or
|
|
* when SCTP_ADDR_OVER flag is set in the UDP model.
|
|
*/
|
|
if ((sctp_style(sk, TCP) && msg_name) ||
|
|
(sinfo_flags & SCTP_ADDR_OVER)) {
|
|
chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
|
|
if (!chunk_tp) {
|
|
err = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
} else
|
|
chunk_tp = NULL;
|
|
|
|
/* Auto-connect, if we aren't connected already. */
|
|
if (sctp_state(asoc, CLOSED)) {
|
|
err = sctp_primitive_ASSOCIATE(asoc, NULL);
|
|
if (err < 0)
|
|
goto out_free;
|
|
SCTP_DEBUG_PRINTK("We associated primitively.\n");
|
|
}
|
|
|
|
/* Break the message into multiple chunks of maximum size. */
|
|
datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
|
|
if (!datamsg) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
/* Now send the (possibly) fragmented message. */
|
|
list_for_each(pos, &datamsg->chunks) {
|
|
chunk = list_entry(pos, struct sctp_chunk, frag_list);
|
|
sctp_datamsg_track(chunk);
|
|
|
|
/* Do accounting for the write space. */
|
|
sctp_set_owner_w(chunk);
|
|
|
|
chunk->transport = chunk_tp;
|
|
|
|
/* Send it to the lower layers. Note: all chunks
|
|
* must either fail or succeed. The lower layer
|
|
* works that way today. Keep it that way or this
|
|
* breaks.
|
|
*/
|
|
err = sctp_primitive_SEND(asoc, chunk);
|
|
/* Did the lower layer accept the chunk? */
|
|
if (err)
|
|
sctp_chunk_free(chunk);
|
|
SCTP_DEBUG_PRINTK("We sent primitively.\n");
|
|
}
|
|
|
|
sctp_datamsg_free(datamsg);
|
|
if (err)
|
|
goto out_free;
|
|
else
|
|
err = msg_len;
|
|
|
|
/* If we are already past ASSOCIATE, the lower
|
|
* layers are responsible for association cleanup.
|
|
*/
|
|
goto out_unlock;
|
|
|
|
out_free:
|
|
if (new_asoc)
|
|
sctp_association_free(asoc);
|
|
out_unlock:
|
|
sctp_release_sock(sk);
|
|
|
|
out_nounlock:
|
|
return sctp_error(sk, msg_flags, err);
|
|
|
|
#if 0
|
|
do_sock_err:
|
|
if (msg_len)
|
|
err = msg_len;
|
|
else
|
|
err = sock_error(sk);
|
|
goto out;
|
|
|
|
do_interrupted:
|
|
if (msg_len)
|
|
err = msg_len;
|
|
goto out;
|
|
#endif /* 0 */
|
|
}
|
|
|
|
/* This is an extended version of skb_pull() that removes the data from the
|
|
* start of a skb even when data is spread across the list of skb's in the
|
|
* frag_list. len specifies the total amount of data that needs to be removed.
|
|
* when 'len' bytes could be removed from the skb, it returns 0.
|
|
* If 'len' exceeds the total skb length, it returns the no. of bytes that
|
|
* could not be removed.
|
|
*/
|
|
static int sctp_skb_pull(struct sk_buff *skb, int len)
|
|
{
|
|
struct sk_buff *list;
|
|
int skb_len = skb_headlen(skb);
|
|
int rlen;
|
|
|
|
if (len <= skb_len) {
|
|
__skb_pull(skb, len);
|
|
return 0;
|
|
}
|
|
len -= skb_len;
|
|
__skb_pull(skb, skb_len);
|
|
|
|
for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
|
|
rlen = sctp_skb_pull(list, len);
|
|
skb->len -= (len-rlen);
|
|
skb->data_len -= (len-rlen);
|
|
|
|
if (!rlen)
|
|
return 0;
|
|
|
|
len = rlen;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* API 3.1.3 recvmsg() - UDP Style Syntax
|
|
*
|
|
* ssize_t recvmsg(int socket, struct msghdr *message,
|
|
* int flags);
|
|
*
|
|
* socket - the socket descriptor of the endpoint.
|
|
* message - pointer to the msghdr structure which contains a single
|
|
* user message and possibly some ancillary data.
|
|
*
|
|
* See Section 5 for complete description of the data
|
|
* structures.
|
|
*
|
|
* flags - flags sent or received with the user message, see Section
|
|
* 5 for complete description of the flags.
|
|
*/
|
|
static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
|
|
|
|
SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
|
|
struct msghdr *msg, size_t len, int noblock,
|
|
int flags, int *addr_len)
|
|
{
|
|
struct sctp_ulpevent *event = NULL;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
struct sk_buff *skb;
|
|
int copied;
|
|
int err = 0;
|
|
int skb_len;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
|
|
"0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
|
|
"len", len, "knoblauch", noblock,
|
|
"flags", flags, "addr_len", addr_len);
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
|
|
err = -ENOTCONN;
|
|
goto out;
|
|
}
|
|
|
|
skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
|
|
if (!skb)
|
|
goto out;
|
|
|
|
/* Get the total length of the skb including any skb's in the
|
|
* frag_list.
|
|
*/
|
|
skb_len = skb->len;
|
|
|
|
copied = skb_len;
|
|
if (copied > len)
|
|
copied = len;
|
|
|
|
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
|
|
|
|
event = sctp_skb2event(skb);
|
|
|
|
if (err)
|
|
goto out_free;
|
|
|
|
sock_recv_timestamp(msg, sk, skb);
|
|
if (sctp_ulpevent_is_notification(event)) {
|
|
msg->msg_flags |= MSG_NOTIFICATION;
|
|
sp->pf->event_msgname(event, msg->msg_name, addr_len);
|
|
} else {
|
|
sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
|
|
}
|
|
|
|
/* Check if we allow SCTP_SNDRCVINFO. */
|
|
if (sp->subscribe.sctp_data_io_event)
|
|
sctp_ulpevent_read_sndrcvinfo(event, msg);
|
|
#if 0
|
|
/* FIXME: we should be calling IP/IPv6 layers. */
|
|
if (sk->sk_protinfo.af_inet.cmsg_flags)
|
|
ip_cmsg_recv(msg, skb);
|
|
#endif
|
|
|
|
err = copied;
|
|
|
|
/* If skb's length exceeds the user's buffer, update the skb and
|
|
* push it back to the receive_queue so that the next call to
|
|
* recvmsg() will return the remaining data. Don't set MSG_EOR.
|
|
*/
|
|
if (skb_len > copied) {
|
|
msg->msg_flags &= ~MSG_EOR;
|
|
if (flags & MSG_PEEK)
|
|
goto out_free;
|
|
sctp_skb_pull(skb, copied);
|
|
skb_queue_head(&sk->sk_receive_queue, skb);
|
|
|
|
/* When only partial message is copied to the user, increase
|
|
* rwnd by that amount. If all the data in the skb is read,
|
|
* rwnd is updated when the event is freed.
|
|
*/
|
|
sctp_assoc_rwnd_increase(event->asoc, copied);
|
|
goto out;
|
|
} else if ((event->msg_flags & MSG_NOTIFICATION) ||
|
|
(event->msg_flags & MSG_EOR))
|
|
msg->msg_flags |= MSG_EOR;
|
|
else
|
|
msg->msg_flags &= ~MSG_EOR;
|
|
|
|
out_free:
|
|
if (flags & MSG_PEEK) {
|
|
/* Release the skb reference acquired after peeking the skb in
|
|
* sctp_skb_recv_datagram().
|
|
*/
|
|
kfree_skb(skb);
|
|
} else {
|
|
/* Free the event which includes releasing the reference to
|
|
* the owner of the skb, freeing the skb and updating the
|
|
* rwnd.
|
|
*/
|
|
sctp_ulpevent_free(event);
|
|
}
|
|
out:
|
|
sctp_release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
|
|
*
|
|
* This option is a on/off flag. If enabled no SCTP message
|
|
* fragmentation will be performed. Instead if a message being sent
|
|
* exceeds the current PMTU size, the message will NOT be sent and
|
|
* instead a error will be indicated to the user.
|
|
*/
|
|
static int sctp_setsockopt_disable_fragments(struct sock *sk,
|
|
char __user *optval, int optlen)
|
|
{
|
|
int val;
|
|
|
|
if (optlen < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
if (get_user(val, (int __user *)optval))
|
|
return -EFAULT;
|
|
|
|
sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
|
|
int optlen)
|
|
{
|
|
if (optlen != sizeof(struct sctp_event_subscribe))
|
|
return -EINVAL;
|
|
if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
|
|
*
|
|
* This socket option is applicable to the UDP-style socket only. When
|
|
* set it will cause associations that are idle for more than the
|
|
* specified number of seconds to automatically close. An association
|
|
* being idle is defined an association that has NOT sent or received
|
|
* user data. The special value of '0' indicates that no automatic
|
|
* close of any associations should be performed. The option expects an
|
|
* integer defining the number of seconds of idle time before an
|
|
* association is closed.
|
|
*/
|
|
static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
|
|
int optlen)
|
|
{
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
/* Applicable to UDP-style socket only */
|
|
if (sctp_style(sk, TCP))
|
|
return -EOPNOTSUPP;
|
|
if (optlen != sizeof(int))
|
|
return -EINVAL;
|
|
if (copy_from_user(&sp->autoclose, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
sp->ep->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
|
|
return 0;
|
|
}
|
|
|
|
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
|
|
*
|
|
* Applications can enable or disable heartbeats for any peer address of
|
|
* an association, modify an address's heartbeat interval, force a
|
|
* heartbeat to be sent immediately, and adjust the address's maximum
|
|
* number of retransmissions sent before an address is considered
|
|
* unreachable. The following structure is used to access and modify an
|
|
* address's parameters:
|
|
*
|
|
* struct sctp_paddrparams {
|
|
* sctp_assoc_t spp_assoc_id;
|
|
* struct sockaddr_storage spp_address;
|
|
* uint32_t spp_hbinterval;
|
|
* uint16_t spp_pathmaxrxt;
|
|
* };
|
|
*
|
|
* spp_assoc_id - (UDP style socket) This is filled in the application,
|
|
* and identifies the association for this query.
|
|
* spp_address - This specifies which address is of interest.
|
|
* spp_hbinterval - This contains the value of the heartbeat interval,
|
|
* in milliseconds. A value of 0, when modifying the
|
|
* parameter, specifies that the heartbeat on this
|
|
* address should be disabled. A value of UINT32_MAX
|
|
* (4294967295), when modifying the parameter,
|
|
* specifies that a heartbeat should be sent
|
|
* immediately to the peer address, and the current
|
|
* interval should remain unchanged.
|
|
* spp_pathmaxrxt - This contains the maximum number of
|
|
* retransmissions before this address shall be
|
|
* considered unreachable.
|
|
*/
|
|
static int sctp_setsockopt_peer_addr_params(struct sock *sk,
|
|
char __user *optval, int optlen)
|
|
{
|
|
struct sctp_paddrparams params;
|
|
struct sctp_transport *trans;
|
|
int error;
|
|
|
|
if (optlen != sizeof(struct sctp_paddrparams))
|
|
return -EINVAL;
|
|
if (copy_from_user(¶ms, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* API 7. Socket Options (setting the default value for the endpoint)
|
|
* All options that support specific settings on an association by
|
|
* filling in either an association id variable or a sockaddr_storage
|
|
* SHOULD also support setting of the same value for the entire endpoint
|
|
* (i.e. future associations). To accomplish this the following logic is
|
|
* used when setting one of these options:
|
|
|
|
* c) If neither the sockaddr_storage or association identification is
|
|
* set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and
|
|
* the association identification is 0, the settings are a default
|
|
* and to be applied to the endpoint (all future associations).
|
|
*/
|
|
|
|
/* update default value for endpoint (all future associations) */
|
|
if (!params.spp_assoc_id &&
|
|
sctp_is_any(( union sctp_addr *)¶ms.spp_address)) {
|
|
/* Manual heartbeat on an endpoint is invalid. */
|
|
if (0xffffffff == params.spp_hbinterval)
|
|
return -EINVAL;
|
|
else if (params.spp_hbinterval)
|
|
sctp_sk(sk)->paddrparam.spp_hbinterval =
|
|
params.spp_hbinterval;
|
|
if (params.spp_pathmaxrxt)
|
|
sctp_sk(sk)->paddrparam.spp_pathmaxrxt =
|
|
params.spp_pathmaxrxt;
|
|
return 0;
|
|
}
|
|
|
|
trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
|
|
params.spp_assoc_id);
|
|
if (!trans)
|
|
return -EINVAL;
|
|
|
|
/* Applications can enable or disable heartbeats for any peer address
|
|
* of an association, modify an address's heartbeat interval, force a
|
|
* heartbeat to be sent immediately, and adjust the address's maximum
|
|
* number of retransmissions sent before an address is considered
|
|
* unreachable.
|
|
*
|
|
* The value of the heartbeat interval, in milliseconds. A value of
|
|
* UINT32_MAX (4294967295), when modifying the parameter, specifies
|
|
* that a heartbeat should be sent immediately to the peer address,
|
|
* and the current interval should remain unchanged.
|
|
*/
|
|
if (0xffffffff == params.spp_hbinterval) {
|
|
error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
|
|
if (error)
|
|
return error;
|
|
} else {
|
|
/* The value of the heartbeat interval, in milliseconds. A value of 0,
|
|
* when modifying the parameter, specifies that the heartbeat on this
|
|
* address should be disabled.
|
|
*/
|
|
if (params.spp_hbinterval) {
|
|
trans->hb_allowed = 1;
|
|
trans->hb_interval =
|
|
msecs_to_jiffies(params.spp_hbinterval);
|
|
} else
|
|
trans->hb_allowed = 0;
|
|
}
|
|
|
|
/* spp_pathmaxrxt contains the maximum number of retransmissions
|
|
* before this address shall be considered unreachable.
|
|
*/
|
|
if (params.spp_pathmaxrxt)
|
|
trans->max_retrans = params.spp_pathmaxrxt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
|
|
*
|
|
* Applications can specify protocol parameters for the default association
|
|
* initialization. The option name argument to setsockopt() and getsockopt()
|
|
* is SCTP_INITMSG.
|
|
*
|
|
* Setting initialization parameters is effective only on an unconnected
|
|
* socket (for UDP-style sockets only future associations are effected
|
|
* by the change). With TCP-style sockets, this option is inherited by
|
|
* sockets derived from a listener socket.
|
|
*/
|
|
static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
|
|
{
|
|
struct sctp_initmsg sinit;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (optlen != sizeof(struct sctp_initmsg))
|
|
return -EINVAL;
|
|
if (copy_from_user(&sinit, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
if (sinit.sinit_num_ostreams)
|
|
sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
|
|
if (sinit.sinit_max_instreams)
|
|
sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
|
|
if (sinit.sinit_max_attempts)
|
|
sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
|
|
if (sinit.sinit_max_init_timeo)
|
|
sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
|
|
*
|
|
* Applications that wish to use the sendto() system call may wish to
|
|
* specify a default set of parameters that would normally be supplied
|
|
* through the inclusion of ancillary data. This socket option allows
|
|
* such an application to set the default sctp_sndrcvinfo structure.
|
|
* The application that wishes to use this socket option simply passes
|
|
* in to this call the sctp_sndrcvinfo structure defined in Section
|
|
* 5.2.2) The input parameters accepted by this call include
|
|
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
|
|
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
|
|
* to this call if the caller is using the UDP model.
|
|
*/
|
|
static int sctp_setsockopt_default_send_param(struct sock *sk,
|
|
char __user *optval, int optlen)
|
|
{
|
|
struct sctp_sndrcvinfo info;
|
|
struct sctp_association *asoc;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (optlen != sizeof(struct sctp_sndrcvinfo))
|
|
return -EINVAL;
|
|
if (copy_from_user(&info, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
|
|
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
if (asoc) {
|
|
asoc->default_stream = info.sinfo_stream;
|
|
asoc->default_flags = info.sinfo_flags;
|
|
asoc->default_ppid = info.sinfo_ppid;
|
|
asoc->default_context = info.sinfo_context;
|
|
asoc->default_timetolive = info.sinfo_timetolive;
|
|
} else {
|
|
sp->default_stream = info.sinfo_stream;
|
|
sp->default_flags = info.sinfo_flags;
|
|
sp->default_ppid = info.sinfo_ppid;
|
|
sp->default_context = info.sinfo_context;
|
|
sp->default_timetolive = info.sinfo_timetolive;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
|
|
*
|
|
* Requests that the local SCTP stack use the enclosed peer address as
|
|
* the association primary. The enclosed address must be one of the
|
|
* association peer's addresses.
|
|
*/
|
|
static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
|
|
int optlen)
|
|
{
|
|
struct sctp_prim prim;
|
|
struct sctp_transport *trans;
|
|
|
|
if (optlen != sizeof(struct sctp_prim))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
|
|
return -EFAULT;
|
|
|
|
trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
|
|
if (!trans)
|
|
return -EINVAL;
|
|
|
|
sctp_assoc_set_primary(trans->asoc, trans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 7.1.5 SCTP_NODELAY
|
|
*
|
|
* Turn on/off any Nagle-like algorithm. This means that packets are
|
|
* generally sent as soon as possible and no unnecessary delays are
|
|
* introduced, at the cost of more packets in the network. Expects an
|
|
* integer boolean flag.
|
|
*/
|
|
static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
|
|
int optlen)
|
|
{
|
|
int val;
|
|
|
|
if (optlen < sizeof(int))
|
|
return -EINVAL;
|
|
if (get_user(val, (int __user *)optval))
|
|
return -EFAULT;
|
|
|
|
sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* 7.1.1 SCTP_RTOINFO
|
|
*
|
|
* The protocol parameters used to initialize and bound retransmission
|
|
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
|
|
* and modify these parameters.
|
|
* All parameters are time values, in milliseconds. A value of 0, when
|
|
* modifying the parameters, indicates that the current value should not
|
|
* be changed.
|
|
*
|
|
*/
|
|
static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
|
|
struct sctp_rtoinfo rtoinfo;
|
|
struct sctp_association *asoc;
|
|
|
|
if (optlen != sizeof (struct sctp_rtoinfo))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&rtoinfo, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
|
|
|
|
/* Set the values to the specific association */
|
|
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
if (asoc) {
|
|
if (rtoinfo.srto_initial != 0)
|
|
asoc->rto_initial =
|
|
msecs_to_jiffies(rtoinfo.srto_initial);
|
|
if (rtoinfo.srto_max != 0)
|
|
asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
|
|
if (rtoinfo.srto_min != 0)
|
|
asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
|
|
} else {
|
|
/* If there is no association or the association-id = 0
|
|
* set the values to the endpoint.
|
|
*/
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (rtoinfo.srto_initial != 0)
|
|
sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
|
|
if (rtoinfo.srto_max != 0)
|
|
sp->rtoinfo.srto_max = rtoinfo.srto_max;
|
|
if (rtoinfo.srto_min != 0)
|
|
sp->rtoinfo.srto_min = rtoinfo.srto_min;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* 7.1.2 SCTP_ASSOCINFO
|
|
*
|
|
* This option is used to tune the the maximum retransmission attempts
|
|
* of the association.
|
|
* Returns an error if the new association retransmission value is
|
|
* greater than the sum of the retransmission value of the peer.
|
|
* See [SCTP] for more information.
|
|
*
|
|
*/
|
|
static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
|
|
{
|
|
|
|
struct sctp_assocparams assocparams;
|
|
struct sctp_association *asoc;
|
|
|
|
if (optlen != sizeof(struct sctp_assocparams))
|
|
return -EINVAL;
|
|
if (copy_from_user(&assocparams, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
|
|
|
|
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
/* Set the values to the specific association */
|
|
if (asoc) {
|
|
if (assocparams.sasoc_asocmaxrxt != 0)
|
|
asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
|
|
if (assocparams.sasoc_cookie_life != 0) {
|
|
asoc->cookie_life.tv_sec =
|
|
assocparams.sasoc_cookie_life / 1000;
|
|
asoc->cookie_life.tv_usec =
|
|
(assocparams.sasoc_cookie_life % 1000)
|
|
* 1000;
|
|
}
|
|
} else {
|
|
/* Set the values to the endpoint */
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (assocparams.sasoc_asocmaxrxt != 0)
|
|
sp->assocparams.sasoc_asocmaxrxt =
|
|
assocparams.sasoc_asocmaxrxt;
|
|
if (assocparams.sasoc_cookie_life != 0)
|
|
sp->assocparams.sasoc_cookie_life =
|
|
assocparams.sasoc_cookie_life;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
|
|
*
|
|
* This socket option is a boolean flag which turns on or off mapped V4
|
|
* addresses. If this option is turned on and the socket is type
|
|
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
|
|
* If this option is turned off, then no mapping will be done of V4
|
|
* addresses and a user will receive both PF_INET6 and PF_INET type
|
|
* addresses on the socket.
|
|
*/
|
|
static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
|
|
{
|
|
int val;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (optlen < sizeof(int))
|
|
return -EINVAL;
|
|
if (get_user(val, (int __user *)optval))
|
|
return -EFAULT;
|
|
if (val)
|
|
sp->v4mapped = 1;
|
|
else
|
|
sp->v4mapped = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
|
|
*
|
|
* This socket option specifies the maximum size to put in any outgoing
|
|
* SCTP chunk. If a message is larger than this size it will be
|
|
* fragmented by SCTP into the specified size. Note that the underlying
|
|
* SCTP implementation may fragment into smaller sized chunks when the
|
|
* PMTU of the underlying association is smaller than the value set by
|
|
* the user.
|
|
*/
|
|
static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
|
|
{
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
int val;
|
|
|
|
if (optlen < sizeof(int))
|
|
return -EINVAL;
|
|
if (get_user(val, (int __user *)optval))
|
|
return -EFAULT;
|
|
if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
|
|
return -EINVAL;
|
|
sp->user_frag = val;
|
|
|
|
/* Update the frag_point of the existing associations. */
|
|
list_for_each(pos, &(sp->ep->asocs)) {
|
|
asoc = list_entry(pos, struct sctp_association, asocs);
|
|
asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
|
|
*
|
|
* Requests that the peer mark the enclosed address as the association
|
|
* primary. The enclosed address must be one of the association's
|
|
* locally bound addresses. The following structure is used to make a
|
|
* set primary request:
|
|
*/
|
|
static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
|
|
int optlen)
|
|
{
|
|
struct sctp_sock *sp;
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_association *asoc = NULL;
|
|
struct sctp_setpeerprim prim;
|
|
struct sctp_chunk *chunk;
|
|
int err;
|
|
|
|
sp = sctp_sk(sk);
|
|
ep = sp->ep;
|
|
|
|
if (!sctp_addip_enable)
|
|
return -EPERM;
|
|
|
|
if (optlen != sizeof(struct sctp_setpeerprim))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&prim, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
|
|
if (!asoc->peer.asconf_capable)
|
|
return -EPERM;
|
|
|
|
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
|
|
return -EPERM;
|
|
|
|
if (!sctp_state(asoc, ESTABLISHED))
|
|
return -ENOTCONN;
|
|
|
|
if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
/* Create an ASCONF chunk with SET_PRIMARY parameter */
|
|
chunk = sctp_make_asconf_set_prim(asoc,
|
|
(union sctp_addr *)&prim.sspp_addr);
|
|
if (!chunk)
|
|
return -ENOMEM;
|
|
|
|
err = sctp_send_asconf(asoc, chunk);
|
|
|
|
SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
|
|
|
|
return err;
|
|
}
|
|
|
|
static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
|
|
int optlen)
|
|
{
|
|
struct sctp_setadaption adaption;
|
|
|
|
if (optlen != sizeof(struct sctp_setadaption))
|
|
return -EINVAL;
|
|
if (copy_from_user(&adaption, optval, optlen))
|
|
return -EFAULT;
|
|
|
|
sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* API 6.2 setsockopt(), getsockopt()
|
|
*
|
|
* Applications use setsockopt() and getsockopt() to set or retrieve
|
|
* socket options. Socket options are used to change the default
|
|
* behavior of sockets calls. They are described in Section 7.
|
|
*
|
|
* The syntax is:
|
|
*
|
|
* ret = getsockopt(int sd, int level, int optname, void __user *optval,
|
|
* int __user *optlen);
|
|
* ret = setsockopt(int sd, int level, int optname, const void __user *optval,
|
|
* int optlen);
|
|
*
|
|
* sd - the socket descript.
|
|
* level - set to IPPROTO_SCTP for all SCTP options.
|
|
* optname - the option name.
|
|
* optval - the buffer to store the value of the option.
|
|
* optlen - the size of the buffer.
|
|
*/
|
|
SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, int optlen)
|
|
{
|
|
int retval = 0;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
|
|
sk, optname);
|
|
|
|
/* I can hardly begin to describe how wrong this is. This is
|
|
* so broken as to be worse than useless. The API draft
|
|
* REALLY is NOT helpful here... I am not convinced that the
|
|
* semantics of setsockopt() with a level OTHER THAN SOL_SCTP
|
|
* are at all well-founded.
|
|
*/
|
|
if (level != SOL_SCTP) {
|
|
struct sctp_af *af = sctp_sk(sk)->pf->af;
|
|
retval = af->setsockopt(sk, level, optname, optval, optlen);
|
|
goto out_nounlock;
|
|
}
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
switch (optname) {
|
|
case SCTP_SOCKOPT_BINDX_ADD:
|
|
/* 'optlen' is the size of the addresses buffer. */
|
|
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
|
|
optlen, SCTP_BINDX_ADD_ADDR);
|
|
break;
|
|
|
|
case SCTP_SOCKOPT_BINDX_REM:
|
|
/* 'optlen' is the size of the addresses buffer. */
|
|
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
|
|
optlen, SCTP_BINDX_REM_ADDR);
|
|
break;
|
|
|
|
case SCTP_SOCKOPT_CONNECTX:
|
|
/* 'optlen' is the size of the addresses buffer. */
|
|
retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
|
|
optlen);
|
|
break;
|
|
|
|
case SCTP_DISABLE_FRAGMENTS:
|
|
retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
|
|
break;
|
|
|
|
case SCTP_EVENTS:
|
|
retval = sctp_setsockopt_events(sk, optval, optlen);
|
|
break;
|
|
|
|
case SCTP_AUTOCLOSE:
|
|
retval = sctp_setsockopt_autoclose(sk, optval, optlen);
|
|
break;
|
|
|
|
case SCTP_PEER_ADDR_PARAMS:
|
|
retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
|
|
break;
|
|
|
|
case SCTP_INITMSG:
|
|
retval = sctp_setsockopt_initmsg(sk, optval, optlen);
|
|
break;
|
|
case SCTP_DEFAULT_SEND_PARAM:
|
|
retval = sctp_setsockopt_default_send_param(sk, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_PRIMARY_ADDR:
|
|
retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
|
|
break;
|
|
case SCTP_SET_PEER_PRIMARY_ADDR:
|
|
retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
|
|
break;
|
|
case SCTP_NODELAY:
|
|
retval = sctp_setsockopt_nodelay(sk, optval, optlen);
|
|
break;
|
|
case SCTP_RTOINFO:
|
|
retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
|
|
break;
|
|
case SCTP_ASSOCINFO:
|
|
retval = sctp_setsockopt_associnfo(sk, optval, optlen);
|
|
break;
|
|
case SCTP_I_WANT_MAPPED_V4_ADDR:
|
|
retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
|
|
break;
|
|
case SCTP_MAXSEG:
|
|
retval = sctp_setsockopt_maxseg(sk, optval, optlen);
|
|
break;
|
|
case SCTP_ADAPTION_LAYER:
|
|
retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
|
|
break;
|
|
|
|
default:
|
|
retval = -ENOPROTOOPT;
|
|
break;
|
|
};
|
|
|
|
sctp_release_sock(sk);
|
|
|
|
out_nounlock:
|
|
return retval;
|
|
}
|
|
|
|
/* API 3.1.6 connect() - UDP Style Syntax
|
|
*
|
|
* An application may use the connect() call in the UDP model to initiate an
|
|
* association without sending data.
|
|
*
|
|
* The syntax is:
|
|
*
|
|
* ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
|
|
*
|
|
* sd: the socket descriptor to have a new association added to.
|
|
*
|
|
* nam: the address structure (either struct sockaddr_in or struct
|
|
* sockaddr_in6 defined in RFC2553 [7]).
|
|
*
|
|
* len: the size of the address.
|
|
*/
|
|
SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
|
|
int addr_len)
|
|
{
|
|
int err = 0;
|
|
struct sctp_af *af;
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
|
|
__FUNCTION__, sk, addr, addr_len);
|
|
|
|
/* Validate addr_len before calling common connect/connectx routine. */
|
|
af = sctp_get_af_specific(addr->sa_family);
|
|
if (!af || addr_len < af->sockaddr_len) {
|
|
err = -EINVAL;
|
|
} else {
|
|
/* Pass correct addr len to common routine (so it knows there
|
|
* is only one address being passed.
|
|
*/
|
|
err = __sctp_connect(sk, addr, af->sockaddr_len);
|
|
}
|
|
|
|
sctp_release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
/* FIXME: Write comments. */
|
|
SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
|
|
{
|
|
return -EOPNOTSUPP; /* STUB */
|
|
}
|
|
|
|
/* 4.1.4 accept() - TCP Style Syntax
|
|
*
|
|
* Applications use accept() call to remove an established SCTP
|
|
* association from the accept queue of the endpoint. A new socket
|
|
* descriptor will be returned from accept() to represent the newly
|
|
* formed association.
|
|
*/
|
|
SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
|
|
{
|
|
struct sctp_sock *sp;
|
|
struct sctp_endpoint *ep;
|
|
struct sock *newsk = NULL;
|
|
struct sctp_association *asoc;
|
|
long timeo;
|
|
int error = 0;
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
sp = sctp_sk(sk);
|
|
ep = sp->ep;
|
|
|
|
if (!sctp_style(sk, TCP)) {
|
|
error = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
if (!sctp_sstate(sk, LISTENING)) {
|
|
error = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
|
|
|
|
error = sctp_wait_for_accept(sk, timeo);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* We treat the list of associations on the endpoint as the accept
|
|
* queue and pick the first association on the list.
|
|
*/
|
|
asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
|
|
|
|
newsk = sp->pf->create_accept_sk(sk, asoc);
|
|
if (!newsk) {
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Populate the fields of the newsk from the oldsk and migrate the
|
|
* asoc to the newsk.
|
|
*/
|
|
sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
|
|
|
|
out:
|
|
sctp_release_sock(sk);
|
|
*err = error;
|
|
return newsk;
|
|
}
|
|
|
|
/* The SCTP ioctl handler. */
|
|
SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
|
|
{
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
/* This is the function which gets called during socket creation to
|
|
* initialized the SCTP-specific portion of the sock.
|
|
* The sock structure should already be zero-filled memory.
|
|
*/
|
|
SCTP_STATIC int sctp_init_sock(struct sock *sk)
|
|
{
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_sock *sp;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
|
|
|
|
sp = sctp_sk(sk);
|
|
|
|
/* Initialize the SCTP per socket area. */
|
|
switch (sk->sk_type) {
|
|
case SOCK_SEQPACKET:
|
|
sp->type = SCTP_SOCKET_UDP;
|
|
break;
|
|
case SOCK_STREAM:
|
|
sp->type = SCTP_SOCKET_TCP;
|
|
break;
|
|
default:
|
|
return -ESOCKTNOSUPPORT;
|
|
}
|
|
|
|
/* Initialize default send parameters. These parameters can be
|
|
* modified with the SCTP_DEFAULT_SEND_PARAM socket option.
|
|
*/
|
|
sp->default_stream = 0;
|
|
sp->default_ppid = 0;
|
|
sp->default_flags = 0;
|
|
sp->default_context = 0;
|
|
sp->default_timetolive = 0;
|
|
|
|
/* Initialize default setup parameters. These parameters
|
|
* can be modified with the SCTP_INITMSG socket option or
|
|
* overridden by the SCTP_INIT CMSG.
|
|
*/
|
|
sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
|
|
sp->initmsg.sinit_max_instreams = sctp_max_instreams;
|
|
sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
|
|
sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
|
|
|
|
/* Initialize default RTO related parameters. These parameters can
|
|
* be modified for with the SCTP_RTOINFO socket option.
|
|
*/
|
|
sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
|
|
sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max);
|
|
sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min);
|
|
|
|
/* Initialize default association related parameters. These parameters
|
|
* can be modified with the SCTP_ASSOCINFO socket option.
|
|
*/
|
|
sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
|
|
sp->assocparams.sasoc_number_peer_destinations = 0;
|
|
sp->assocparams.sasoc_peer_rwnd = 0;
|
|
sp->assocparams.sasoc_local_rwnd = 0;
|
|
sp->assocparams.sasoc_cookie_life =
|
|
jiffies_to_msecs(sctp_valid_cookie_life);
|
|
|
|
/* Initialize default event subscriptions. By default, all the
|
|
* options are off.
|
|
*/
|
|
memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
|
|
|
|
/* Default Peer Address Parameters. These defaults can
|
|
* be modified via SCTP_PEER_ADDR_PARAMS
|
|
*/
|
|
sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval);
|
|
sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path;
|
|
|
|
/* If enabled no SCTP message fragmentation will be performed.
|
|
* Configure through SCTP_DISABLE_FRAGMENTS socket option.
|
|
*/
|
|
sp->disable_fragments = 0;
|
|
|
|
/* Turn on/off any Nagle-like algorithm. */
|
|
sp->nodelay = 1;
|
|
|
|
/* Enable by default. */
|
|
sp->v4mapped = 1;
|
|
|
|
/* Auto-close idle associations after the configured
|
|
* number of seconds. A value of 0 disables this
|
|
* feature. Configure through the SCTP_AUTOCLOSE socket option,
|
|
* for UDP-style sockets only.
|
|
*/
|
|
sp->autoclose = 0;
|
|
|
|
/* User specified fragmentation limit. */
|
|
sp->user_frag = 0;
|
|
|
|
sp->adaption_ind = 0;
|
|
|
|
sp->pf = sctp_get_pf_specific(sk->sk_family);
|
|
|
|
/* Control variables for partial data delivery. */
|
|
sp->pd_mode = 0;
|
|
skb_queue_head_init(&sp->pd_lobby);
|
|
|
|
/* Create a per socket endpoint structure. Even if we
|
|
* change the data structure relationships, this may still
|
|
* be useful for storing pre-connect address information.
|
|
*/
|
|
ep = sctp_endpoint_new(sk, GFP_KERNEL);
|
|
if (!ep)
|
|
return -ENOMEM;
|
|
|
|
sp->ep = ep;
|
|
sp->hmac = NULL;
|
|
|
|
SCTP_DBG_OBJCNT_INC(sock);
|
|
return 0;
|
|
}
|
|
|
|
/* Cleanup any SCTP per socket resources. */
|
|
SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
|
|
{
|
|
struct sctp_endpoint *ep;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
|
|
|
|
/* Release our hold on the endpoint. */
|
|
ep = sctp_sk(sk)->ep;
|
|
sctp_endpoint_free(ep);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* API 4.1.7 shutdown() - TCP Style Syntax
|
|
* int shutdown(int socket, int how);
|
|
*
|
|
* sd - the socket descriptor of the association to be closed.
|
|
* how - Specifies the type of shutdown. The values are
|
|
* as follows:
|
|
* SHUT_RD
|
|
* Disables further receive operations. No SCTP
|
|
* protocol action is taken.
|
|
* SHUT_WR
|
|
* Disables further send operations, and initiates
|
|
* the SCTP shutdown sequence.
|
|
* SHUT_RDWR
|
|
* Disables further send and receive operations
|
|
* and initiates the SCTP shutdown sequence.
|
|
*/
|
|
SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
|
|
{
|
|
struct sctp_endpoint *ep;
|
|
struct sctp_association *asoc;
|
|
|
|
if (!sctp_style(sk, TCP))
|
|
return;
|
|
|
|
if (how & SEND_SHUTDOWN) {
|
|
ep = sctp_sk(sk)->ep;
|
|
if (!list_empty(&ep->asocs)) {
|
|
asoc = list_entry(ep->asocs.next,
|
|
struct sctp_association, asocs);
|
|
sctp_primitive_SHUTDOWN(asoc, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 7.2.1 Association Status (SCTP_STATUS)
|
|
|
|
* Applications can retrieve current status information about an
|
|
* association, including association state, peer receiver window size,
|
|
* number of unacked data chunks, and number of data chunks pending
|
|
* receipt. This information is read-only.
|
|
*/
|
|
static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
|
|
char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
struct sctp_status status;
|
|
struct sctp_association *asoc = NULL;
|
|
struct sctp_transport *transport;
|
|
sctp_assoc_t associd;
|
|
int retval = 0;
|
|
|
|
if (len != sizeof(status)) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_from_user(&status, optval, sizeof(status))) {
|
|
retval = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
associd = status.sstat_assoc_id;
|
|
asoc = sctp_id2assoc(sk, associd);
|
|
if (!asoc) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
transport = asoc->peer.primary_path;
|
|
|
|
status.sstat_assoc_id = sctp_assoc2id(asoc);
|
|
status.sstat_state = asoc->state;
|
|
status.sstat_rwnd = asoc->peer.rwnd;
|
|
status.sstat_unackdata = asoc->unack_data;
|
|
|
|
status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
|
|
status.sstat_instrms = asoc->c.sinit_max_instreams;
|
|
status.sstat_outstrms = asoc->c.sinit_num_ostreams;
|
|
status.sstat_fragmentation_point = asoc->frag_point;
|
|
status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
|
|
memcpy(&status.sstat_primary.spinfo_address,
|
|
&(transport->ipaddr), sizeof(union sctp_addr));
|
|
/* Map ipv4 address into v4-mapped-on-v6 address. */
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
|
|
(union sctp_addr *)&status.sstat_primary.spinfo_address);
|
|
status.sstat_primary.spinfo_state = transport->state;
|
|
status.sstat_primary.spinfo_cwnd = transport->cwnd;
|
|
status.sstat_primary.spinfo_srtt = transport->srtt;
|
|
status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
|
|
status.sstat_primary.spinfo_mtu = transport->pmtu;
|
|
|
|
if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
|
|
status.sstat_primary.spinfo_state = SCTP_ACTIVE;
|
|
|
|
if (put_user(len, optlen)) {
|
|
retval = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
|
|
len, status.sstat_state, status.sstat_rwnd,
|
|
status.sstat_assoc_id);
|
|
|
|
if (copy_to_user(optval, &status, len)) {
|
|
retval = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return (retval);
|
|
}
|
|
|
|
|
|
/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
|
|
*
|
|
* Applications can retrieve information about a specific peer address
|
|
* of an association, including its reachability state, congestion
|
|
* window, and retransmission timer values. This information is
|
|
* read-only.
|
|
*/
|
|
static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
|
|
char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
struct sctp_paddrinfo pinfo;
|
|
struct sctp_transport *transport;
|
|
int retval = 0;
|
|
|
|
if (len != sizeof(pinfo)) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
|
|
retval = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
|
|
pinfo.spinfo_assoc_id);
|
|
if (!transport)
|
|
return -EINVAL;
|
|
|
|
pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
|
|
pinfo.spinfo_state = transport->state;
|
|
pinfo.spinfo_cwnd = transport->cwnd;
|
|
pinfo.spinfo_srtt = transport->srtt;
|
|
pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
|
|
pinfo.spinfo_mtu = transport->pmtu;
|
|
|
|
if (pinfo.spinfo_state == SCTP_UNKNOWN)
|
|
pinfo.spinfo_state = SCTP_ACTIVE;
|
|
|
|
if (put_user(len, optlen)) {
|
|
retval = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_to_user(optval, &pinfo, len)) {
|
|
retval = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return (retval);
|
|
}
|
|
|
|
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
|
|
*
|
|
* This option is a on/off flag. If enabled no SCTP message
|
|
* fragmentation will be performed. Instead if a message being sent
|
|
* exceeds the current PMTU size, the message will NOT be sent and
|
|
* instead a error will be indicated to the user.
|
|
*/
|
|
static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
int val;
|
|
|
|
if (len < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
len = sizeof(int);
|
|
val = (sctp_sk(sk)->disable_fragments == 1);
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
if (copy_to_user(optval, &val, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
|
|
*
|
|
* This socket option is used to specify various notifications and
|
|
* ancillary data the user wishes to receive.
|
|
*/
|
|
static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
if (len != sizeof(struct sctp_event_subscribe))
|
|
return -EINVAL;
|
|
if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
|
|
*
|
|
* This socket option is applicable to the UDP-style socket only. When
|
|
* set it will cause associations that are idle for more than the
|
|
* specified number of seconds to automatically close. An association
|
|
* being idle is defined an association that has NOT sent or received
|
|
* user data. The special value of '0' indicates that no automatic
|
|
* close of any associations should be performed. The option expects an
|
|
* integer defining the number of seconds of idle time before an
|
|
* association is closed.
|
|
*/
|
|
static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
|
|
{
|
|
/* Applicable to UDP-style socket only */
|
|
if (sctp_style(sk, TCP))
|
|
return -EOPNOTSUPP;
|
|
if (len != sizeof(int))
|
|
return -EINVAL;
|
|
if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* Helper routine to branch off an association to a new socket. */
|
|
SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
|
|
struct socket **sockp)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
struct socket *sock;
|
|
int err = 0;
|
|
|
|
/* An association cannot be branched off from an already peeled-off
|
|
* socket, nor is this supported for tcp style sockets.
|
|
*/
|
|
if (!sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
/* Create a new socket. */
|
|
err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* Populate the fields of the newsk from the oldsk and migrate the
|
|
* asoc to the newsk.
|
|
*/
|
|
sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
|
|
*sockp = sock;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
|
|
{
|
|
sctp_peeloff_arg_t peeloff;
|
|
struct socket *newsock;
|
|
int retval = 0;
|
|
struct sctp_association *asoc;
|
|
|
|
if (len != sizeof(sctp_peeloff_arg_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&peeloff, optval, len))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, peeloff.associd);
|
|
if (!asoc) {
|
|
retval = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
|
|
|
|
retval = sctp_do_peeloff(asoc, &newsock);
|
|
if (retval < 0)
|
|
goto out;
|
|
|
|
/* Map the socket to an unused fd that can be returned to the user. */
|
|
retval = sock_map_fd(newsock);
|
|
if (retval < 0) {
|
|
sock_release(newsock);
|
|
goto out;
|
|
}
|
|
|
|
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
|
|
__FUNCTION__, sk, asoc, newsock->sk, retval);
|
|
|
|
/* Return the fd mapped to the new socket. */
|
|
peeloff.sd = retval;
|
|
if (copy_to_user(optval, &peeloff, len))
|
|
retval = -EFAULT;
|
|
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
|
|
*
|
|
* Applications can enable or disable heartbeats for any peer address of
|
|
* an association, modify an address's heartbeat interval, force a
|
|
* heartbeat to be sent immediately, and adjust the address's maximum
|
|
* number of retransmissions sent before an address is considered
|
|
* unreachable. The following structure is used to access and modify an
|
|
* address's parameters:
|
|
*
|
|
* struct sctp_paddrparams {
|
|
* sctp_assoc_t spp_assoc_id;
|
|
* struct sockaddr_storage spp_address;
|
|
* uint32_t spp_hbinterval;
|
|
* uint16_t spp_pathmaxrxt;
|
|
* };
|
|
*
|
|
* spp_assoc_id - (UDP style socket) This is filled in the application,
|
|
* and identifies the association for this query.
|
|
* spp_address - This specifies which address is of interest.
|
|
* spp_hbinterval - This contains the value of the heartbeat interval,
|
|
* in milliseconds. A value of 0, when modifying the
|
|
* parameter, specifies that the heartbeat on this
|
|
* address should be disabled. A value of UINT32_MAX
|
|
* (4294967295), when modifying the parameter,
|
|
* specifies that a heartbeat should be sent
|
|
* immediately to the peer address, and the current
|
|
* interval should remain unchanged.
|
|
* spp_pathmaxrxt - This contains the maximum number of
|
|
* retransmissions before this address shall be
|
|
* considered unreachable.
|
|
*/
|
|
static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sctp_paddrparams params;
|
|
struct sctp_transport *trans;
|
|
|
|
if (len != sizeof(struct sctp_paddrparams))
|
|
return -EINVAL;
|
|
if (copy_from_user(¶ms, optval, len))
|
|
return -EFAULT;
|
|
|
|
/* If no association id is specified retrieve the default value
|
|
* for the endpoint that will be used for all future associations
|
|
*/
|
|
if (!params.spp_assoc_id &&
|
|
sctp_is_any(( union sctp_addr *)¶ms.spp_address)) {
|
|
params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval;
|
|
params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt;
|
|
|
|
goto done;
|
|
}
|
|
|
|
trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
|
|
params.spp_assoc_id);
|
|
if (!trans)
|
|
return -EINVAL;
|
|
|
|
/* The value of the heartbeat interval, in milliseconds. A value of 0,
|
|
* when modifying the parameter, specifies that the heartbeat on this
|
|
* address should be disabled.
|
|
*/
|
|
if (!trans->hb_allowed)
|
|
params.spp_hbinterval = 0;
|
|
else
|
|
params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval);
|
|
|
|
/* spp_pathmaxrxt contains the maximum number of retransmissions
|
|
* before this address shall be considered unreachable.
|
|
*/
|
|
params.spp_pathmaxrxt = trans->max_retrans;
|
|
|
|
done:
|
|
if (copy_to_user(optval, ¶ms, len))
|
|
return -EFAULT;
|
|
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
|
|
*
|
|
* Applications can specify protocol parameters for the default association
|
|
* initialization. The option name argument to setsockopt() and getsockopt()
|
|
* is SCTP_INITMSG.
|
|
*
|
|
* Setting initialization parameters is effective only on an unconnected
|
|
* socket (for UDP-style sockets only future associations are effected
|
|
* by the change). With TCP-style sockets, this option is inherited by
|
|
* sockets derived from a listener socket.
|
|
*/
|
|
static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
|
|
{
|
|
if (len != sizeof(struct sctp_initmsg))
|
|
return -EINVAL;
|
|
if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
|
|
char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
sctp_assoc_t id;
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
int cnt = 0;
|
|
|
|
if (len != sizeof(sctp_assoc_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
|
|
return -EFAULT;
|
|
|
|
/* For UDP-style sockets, id specifies the association to query. */
|
|
asoc = sctp_id2assoc(sk, id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
|
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
|
cnt ++;
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
* Old API for getting list of peer addresses. Does not work for 32-bit
|
|
* programs running on a 64-bit kernel
|
|
*/
|
|
static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
|
|
char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
int cnt = 0;
|
|
struct sctp_getaddrs_old getaddrs;
|
|
struct sctp_transport *from;
|
|
void __user *to;
|
|
union sctp_addr temp;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
int addrlen;
|
|
|
|
if (len != sizeof(struct sctp_getaddrs_old))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
|
|
return -EFAULT;
|
|
|
|
if (getaddrs.addr_num <= 0) return -EINVAL;
|
|
|
|
/* For UDP-style sockets, id specifies the association to query. */
|
|
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
|
|
to = (void __user *)getaddrs.addrs;
|
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
|
from = list_entry(pos, struct sctp_transport, transports);
|
|
memcpy(&temp, &from->ipaddr, sizeof(temp));
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
|
|
addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
|
|
temp.v4.sin_port = htons(temp.v4.sin_port);
|
|
if (copy_to_user(to, &temp, addrlen))
|
|
return -EFAULT;
|
|
to += addrlen ;
|
|
cnt ++;
|
|
if (cnt >= getaddrs.addr_num) break;
|
|
}
|
|
getaddrs.addr_num = cnt;
|
|
if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
int cnt = 0;
|
|
struct sctp_getaddrs getaddrs;
|
|
struct sctp_transport *from;
|
|
void __user *to;
|
|
union sctp_addr temp;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
int addrlen;
|
|
size_t space_left;
|
|
int bytes_copied;
|
|
|
|
if (len < sizeof(struct sctp_getaddrs))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
|
|
return -EFAULT;
|
|
|
|
/* For UDP-style sockets, id specifies the association to query. */
|
|
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
|
|
to = optval + offsetof(struct sctp_getaddrs,addrs);
|
|
space_left = len - sizeof(struct sctp_getaddrs) -
|
|
offsetof(struct sctp_getaddrs,addrs);
|
|
|
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
|
from = list_entry(pos, struct sctp_transport, transports);
|
|
memcpy(&temp, &from->ipaddr, sizeof(temp));
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
|
|
addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
|
|
if(space_left < addrlen)
|
|
return -ENOMEM;
|
|
temp.v4.sin_port = htons(temp.v4.sin_port);
|
|
if (copy_to_user(to, &temp, addrlen))
|
|
return -EFAULT;
|
|
to += addrlen;
|
|
cnt++;
|
|
space_left -= addrlen;
|
|
}
|
|
|
|
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
|
|
return -EFAULT;
|
|
bytes_copied = ((char __user *)to) - optval;
|
|
if (put_user(bytes_copied, optlen))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
|
|
char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
sctp_assoc_t id;
|
|
struct sctp_bind_addr *bp;
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
struct sctp_sockaddr_entry *addr;
|
|
rwlock_t *addr_lock;
|
|
unsigned long flags;
|
|
int cnt = 0;
|
|
|
|
if (len != sizeof(sctp_assoc_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* For UDP-style sockets, id specifies the association to query.
|
|
* If the id field is set to the value '0' then the locally bound
|
|
* addresses are returned without regard to any particular
|
|
* association.
|
|
*/
|
|
if (0 == id) {
|
|
bp = &sctp_sk(sk)->ep->base.bind_addr;
|
|
addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
|
|
} else {
|
|
asoc = sctp_id2assoc(sk, id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
bp = &asoc->base.bind_addr;
|
|
addr_lock = &asoc->base.addr_lock;
|
|
}
|
|
|
|
sctp_read_lock(addr_lock);
|
|
|
|
/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
|
|
* addresses from the global local address list.
|
|
*/
|
|
if (sctp_list_single_entry(&bp->address_list)) {
|
|
addr = list_entry(bp->address_list.next,
|
|
struct sctp_sockaddr_entry, list);
|
|
if (sctp_is_any(&addr->a)) {
|
|
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
|
|
list_for_each(pos, &sctp_local_addr_list) {
|
|
addr = list_entry(pos,
|
|
struct sctp_sockaddr_entry,
|
|
list);
|
|
if ((PF_INET == sk->sk_family) &&
|
|
(AF_INET6 == addr->a.sa.sa_family))
|
|
continue;
|
|
cnt++;
|
|
}
|
|
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
|
|
flags);
|
|
} else {
|
|
cnt = 1;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
list_for_each(pos, &bp->address_list) {
|
|
cnt ++;
|
|
}
|
|
|
|
done:
|
|
sctp_read_unlock(addr_lock);
|
|
return cnt;
|
|
}
|
|
|
|
/* Helper function that copies local addresses to user and returns the number
|
|
* of addresses copied.
|
|
*/
|
|
static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
|
|
void __user *to)
|
|
{
|
|
struct list_head *pos;
|
|
struct sctp_sockaddr_entry *addr;
|
|
unsigned long flags;
|
|
union sctp_addr temp;
|
|
int cnt = 0;
|
|
int addrlen;
|
|
|
|
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
|
|
list_for_each(pos, &sctp_local_addr_list) {
|
|
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
|
|
if ((PF_INET == sk->sk_family) &&
|
|
(AF_INET6 == addr->a.sa.sa_family))
|
|
continue;
|
|
memcpy(&temp, &addr->a, sizeof(temp));
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
|
|
&temp);
|
|
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
|
|
temp.v4.sin_port = htons(port);
|
|
if (copy_to_user(to, &temp, addrlen)) {
|
|
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
|
|
flags);
|
|
return -EFAULT;
|
|
}
|
|
to += addrlen;
|
|
cnt ++;
|
|
if (cnt >= max_addrs) break;
|
|
}
|
|
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
|
|
|
|
return cnt;
|
|
}
|
|
|
|
static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
|
|
void * __user *to, size_t space_left)
|
|
{
|
|
struct list_head *pos;
|
|
struct sctp_sockaddr_entry *addr;
|
|
unsigned long flags;
|
|
union sctp_addr temp;
|
|
int cnt = 0;
|
|
int addrlen;
|
|
|
|
sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
|
|
list_for_each(pos, &sctp_local_addr_list) {
|
|
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
|
|
if ((PF_INET == sk->sk_family) &&
|
|
(AF_INET6 == addr->a.sa.sa_family))
|
|
continue;
|
|
memcpy(&temp, &addr->a, sizeof(temp));
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
|
|
&temp);
|
|
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
|
|
if(space_left<addrlen)
|
|
return -ENOMEM;
|
|
temp.v4.sin_port = htons(port);
|
|
if (copy_to_user(*to, &temp, addrlen)) {
|
|
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
|
|
flags);
|
|
return -EFAULT;
|
|
}
|
|
*to += addrlen;
|
|
cnt ++;
|
|
space_left -= addrlen;
|
|
}
|
|
sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
|
|
|
|
return cnt;
|
|
}
|
|
|
|
/* Old API for getting list of local addresses. Does not work for 32-bit
|
|
* programs running on a 64-bit kernel
|
|
*/
|
|
static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sctp_bind_addr *bp;
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
int cnt = 0;
|
|
struct sctp_getaddrs_old getaddrs;
|
|
struct sctp_sockaddr_entry *addr;
|
|
void __user *to;
|
|
union sctp_addr temp;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
int addrlen;
|
|
rwlock_t *addr_lock;
|
|
int err = 0;
|
|
|
|
if (len != sizeof(struct sctp_getaddrs_old))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
|
|
return -EFAULT;
|
|
|
|
if (getaddrs.addr_num <= 0) return -EINVAL;
|
|
/*
|
|
* For UDP-style sockets, id specifies the association to query.
|
|
* If the id field is set to the value '0' then the locally bound
|
|
* addresses are returned without regard to any particular
|
|
* association.
|
|
*/
|
|
if (0 == getaddrs.assoc_id) {
|
|
bp = &sctp_sk(sk)->ep->base.bind_addr;
|
|
addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
|
|
} else {
|
|
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
bp = &asoc->base.bind_addr;
|
|
addr_lock = &asoc->base.addr_lock;
|
|
}
|
|
|
|
to = getaddrs.addrs;
|
|
|
|
sctp_read_lock(addr_lock);
|
|
|
|
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
|
|
* addresses from the global local address list.
|
|
*/
|
|
if (sctp_list_single_entry(&bp->address_list)) {
|
|
addr = list_entry(bp->address_list.next,
|
|
struct sctp_sockaddr_entry, list);
|
|
if (sctp_is_any(&addr->a)) {
|
|
cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
|
|
getaddrs.addr_num,
|
|
to);
|
|
if (cnt < 0) {
|
|
err = cnt;
|
|
goto unlock;
|
|
}
|
|
goto copy_getaddrs;
|
|
}
|
|
}
|
|
|
|
list_for_each(pos, &bp->address_list) {
|
|
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
|
|
memcpy(&temp, &addr->a, sizeof(temp));
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
|
|
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
|
|
temp.v4.sin_port = htons(temp.v4.sin_port);
|
|
if (copy_to_user(to, &temp, addrlen)) {
|
|
err = -EFAULT;
|
|
goto unlock;
|
|
}
|
|
to += addrlen;
|
|
cnt ++;
|
|
if (cnt >= getaddrs.addr_num) break;
|
|
}
|
|
|
|
copy_getaddrs:
|
|
getaddrs.addr_num = cnt;
|
|
if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
|
|
err = -EFAULT;
|
|
|
|
unlock:
|
|
sctp_read_unlock(addr_lock);
|
|
return err;
|
|
}
|
|
|
|
static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sctp_bind_addr *bp;
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
int cnt = 0;
|
|
struct sctp_getaddrs getaddrs;
|
|
struct sctp_sockaddr_entry *addr;
|
|
void __user *to;
|
|
union sctp_addr temp;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
int addrlen;
|
|
rwlock_t *addr_lock;
|
|
int err = 0;
|
|
size_t space_left;
|
|
int bytes_copied;
|
|
|
|
if (len <= sizeof(struct sctp_getaddrs))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* For UDP-style sockets, id specifies the association to query.
|
|
* If the id field is set to the value '0' then the locally bound
|
|
* addresses are returned without regard to any particular
|
|
* association.
|
|
*/
|
|
if (0 == getaddrs.assoc_id) {
|
|
bp = &sctp_sk(sk)->ep->base.bind_addr;
|
|
addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
|
|
} else {
|
|
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
bp = &asoc->base.bind_addr;
|
|
addr_lock = &asoc->base.addr_lock;
|
|
}
|
|
|
|
to = optval + offsetof(struct sctp_getaddrs,addrs);
|
|
space_left = len - sizeof(struct sctp_getaddrs) -
|
|
offsetof(struct sctp_getaddrs,addrs);
|
|
|
|
sctp_read_lock(addr_lock);
|
|
|
|
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
|
|
* addresses from the global local address list.
|
|
*/
|
|
if (sctp_list_single_entry(&bp->address_list)) {
|
|
addr = list_entry(bp->address_list.next,
|
|
struct sctp_sockaddr_entry, list);
|
|
if (sctp_is_any(&addr->a)) {
|
|
cnt = sctp_copy_laddrs_to_user(sk, bp->port,
|
|
&to, space_left);
|
|
if (cnt < 0) {
|
|
err = cnt;
|
|
goto unlock;
|
|
}
|
|
goto copy_getaddrs;
|
|
}
|
|
}
|
|
|
|
list_for_each(pos, &bp->address_list) {
|
|
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
|
|
memcpy(&temp, &addr->a, sizeof(temp));
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
|
|
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
|
|
if(space_left < addrlen)
|
|
return -ENOMEM; /*fixme: right error?*/
|
|
temp.v4.sin_port = htons(temp.v4.sin_port);
|
|
if (copy_to_user(to, &temp, addrlen)) {
|
|
err = -EFAULT;
|
|
goto unlock;
|
|
}
|
|
to += addrlen;
|
|
cnt ++;
|
|
space_left -= addrlen;
|
|
}
|
|
|
|
copy_getaddrs:
|
|
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
|
|
return -EFAULT;
|
|
bytes_copied = ((char __user *)to) - optval;
|
|
if (put_user(bytes_copied, optlen))
|
|
return -EFAULT;
|
|
|
|
unlock:
|
|
sctp_read_unlock(addr_lock);
|
|
return err;
|
|
}
|
|
|
|
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
|
|
*
|
|
* Requests that the local SCTP stack use the enclosed peer address as
|
|
* the association primary. The enclosed address must be one of the
|
|
* association peer's addresses.
|
|
*/
|
|
static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sctp_prim prim;
|
|
struct sctp_association *asoc;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (len != sizeof(struct sctp_prim))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
|
|
if (!asoc)
|
|
return -EINVAL;
|
|
|
|
if (!asoc->peer.primary_path)
|
|
return -ENOTCONN;
|
|
|
|
asoc->peer.primary_path->ipaddr.v4.sin_port =
|
|
htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
|
|
memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
|
|
sizeof(union sctp_addr));
|
|
asoc->peer.primary_path->ipaddr.v4.sin_port =
|
|
ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
|
|
|
|
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
|
|
(union sctp_addr *)&prim.ssp_addr);
|
|
|
|
if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
|
|
*
|
|
* Requests that the local endpoint set the specified Adaption Layer
|
|
* Indication parameter for all future INIT and INIT-ACK exchanges.
|
|
*/
|
|
static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sctp_setadaption adaption;
|
|
|
|
if (len != sizeof(struct sctp_setadaption))
|
|
return -EINVAL;
|
|
|
|
adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
|
|
if (copy_to_user(optval, &adaption, len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
|
|
*
|
|
* Applications that wish to use the sendto() system call may wish to
|
|
* specify a default set of parameters that would normally be supplied
|
|
* through the inclusion of ancillary data. This socket option allows
|
|
* such an application to set the default sctp_sndrcvinfo structure.
|
|
|
|
|
|
* The application that wishes to use this socket option simply passes
|
|
* in to this call the sctp_sndrcvinfo structure defined in Section
|
|
* 5.2.2) The input parameters accepted by this call include
|
|
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
|
|
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
|
|
* to this call if the caller is using the UDP model.
|
|
*
|
|
* For getsockopt, it get the default sctp_sndrcvinfo structure.
|
|
*/
|
|
static int sctp_getsockopt_default_send_param(struct sock *sk,
|
|
int len, char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
struct sctp_sndrcvinfo info;
|
|
struct sctp_association *asoc;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (len != sizeof(struct sctp_sndrcvinfo))
|
|
return -EINVAL;
|
|
if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
|
|
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
if (asoc) {
|
|
info.sinfo_stream = asoc->default_stream;
|
|
info.sinfo_flags = asoc->default_flags;
|
|
info.sinfo_ppid = asoc->default_ppid;
|
|
info.sinfo_context = asoc->default_context;
|
|
info.sinfo_timetolive = asoc->default_timetolive;
|
|
} else {
|
|
info.sinfo_stream = sp->default_stream;
|
|
info.sinfo_flags = sp->default_flags;
|
|
info.sinfo_ppid = sp->default_ppid;
|
|
info.sinfo_context = sp->default_context;
|
|
info.sinfo_timetolive = sp->default_timetolive;
|
|
}
|
|
|
|
if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* 7.1.5 SCTP_NODELAY
|
|
*
|
|
* Turn on/off any Nagle-like algorithm. This means that packets are
|
|
* generally sent as soon as possible and no unnecessary delays are
|
|
* introduced, at the cost of more packets in the network. Expects an
|
|
* integer boolean flag.
|
|
*/
|
|
|
|
static int sctp_getsockopt_nodelay(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
int val;
|
|
|
|
if (len < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
len = sizeof(int);
|
|
val = (sctp_sk(sk)->nodelay == 1);
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
if (copy_to_user(optval, &val, len))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* 7.1.1 SCTP_RTOINFO
|
|
*
|
|
* The protocol parameters used to initialize and bound retransmission
|
|
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
|
|
* and modify these parameters.
|
|
* All parameters are time values, in milliseconds. A value of 0, when
|
|
* modifying the parameters, indicates that the current value should not
|
|
* be changed.
|
|
*
|
|
*/
|
|
static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
|
|
char __user *optval,
|
|
int __user *optlen) {
|
|
struct sctp_rtoinfo rtoinfo;
|
|
struct sctp_association *asoc;
|
|
|
|
if (len != sizeof (struct sctp_rtoinfo))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
|
|
|
|
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
/* Values corresponding to the specific association. */
|
|
if (asoc) {
|
|
rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
|
|
rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
|
|
rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
|
|
} else {
|
|
/* Values corresponding to the endpoint. */
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
|
|
rtoinfo.srto_max = sp->rtoinfo.srto_max;
|
|
rtoinfo.srto_min = sp->rtoinfo.srto_min;
|
|
}
|
|
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
|
|
if (copy_to_user(optval, &rtoinfo, len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* 7.1.2 SCTP_ASSOCINFO
|
|
*
|
|
* This option is used to tune the the maximum retransmission attempts
|
|
* of the association.
|
|
* Returns an error if the new association retransmission value is
|
|
* greater than the sum of the retransmission value of the peer.
|
|
* See [SCTP] for more information.
|
|
*
|
|
*/
|
|
static int sctp_getsockopt_associnfo(struct sock *sk, int len,
|
|
char __user *optval,
|
|
int __user *optlen)
|
|
{
|
|
|
|
struct sctp_assocparams assocparams;
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
int cnt = 0;
|
|
|
|
if (len != sizeof (struct sctp_assocparams))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&assocparams, optval,
|
|
sizeof (struct sctp_assocparams)))
|
|
return -EFAULT;
|
|
|
|
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
|
|
|
|
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
/* Values correspoinding to the specific association */
|
|
if (asoc) {
|
|
assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
|
|
assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
|
|
assocparams.sasoc_local_rwnd = asoc->a_rwnd;
|
|
assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
|
|
* 1000) +
|
|
(asoc->cookie_life.tv_usec
|
|
/ 1000);
|
|
|
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
|
cnt ++;
|
|
}
|
|
|
|
assocparams.sasoc_number_peer_destinations = cnt;
|
|
} else {
|
|
/* Values corresponding to the endpoint */
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
|
|
assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
|
|
assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
|
|
assocparams.sasoc_cookie_life =
|
|
sp->assocparams.sasoc_cookie_life;
|
|
assocparams.sasoc_number_peer_destinations =
|
|
sp->assocparams.
|
|
sasoc_number_peer_destinations;
|
|
}
|
|
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
|
|
if (copy_to_user(optval, &assocparams, len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
|
|
*
|
|
* This socket option is a boolean flag which turns on or off mapped V4
|
|
* addresses. If this option is turned on and the socket is type
|
|
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
|
|
* If this option is turned off, then no mapping will be done of V4
|
|
* addresses and a user will receive both PF_INET6 and PF_INET type
|
|
* addresses on the socket.
|
|
*/
|
|
static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
int val;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
|
|
if (len < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
len = sizeof(int);
|
|
val = sp->v4mapped;
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
if (copy_to_user(optval, &val, len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
|
|
*
|
|
* This socket option specifies the maximum size to put in any outgoing
|
|
* SCTP chunk. If a message is larger than this size it will be
|
|
* fragmented by SCTP into the specified size. Note that the underlying
|
|
* SCTP implementation may fragment into smaller sized chunks when the
|
|
* PMTU of the underlying association is smaller than the value set by
|
|
* the user.
|
|
*/
|
|
static int sctp_getsockopt_maxseg(struct sock *sk, int len,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
int val;
|
|
|
|
if (len < sizeof(int))
|
|
return -EINVAL;
|
|
|
|
len = sizeof(int);
|
|
|
|
val = sctp_sk(sk)->user_frag;
|
|
if (put_user(len, optlen))
|
|
return -EFAULT;
|
|
if (copy_to_user(optval, &val, len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
int retval = 0;
|
|
int len;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
|
|
sk, optname);
|
|
|
|
/* I can hardly begin to describe how wrong this is. This is
|
|
* so broken as to be worse than useless. The API draft
|
|
* REALLY is NOT helpful here... I am not convinced that the
|
|
* semantics of getsockopt() with a level OTHER THAN SOL_SCTP
|
|
* are at all well-founded.
|
|
*/
|
|
if (level != SOL_SCTP) {
|
|
struct sctp_af *af = sctp_sk(sk)->pf->af;
|
|
|
|
retval = af->getsockopt(sk, level, optname, optval, optlen);
|
|
return retval;
|
|
}
|
|
|
|
if (get_user(len, optlen))
|
|
return -EFAULT;
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
switch (optname) {
|
|
case SCTP_STATUS:
|
|
retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_DISABLE_FRAGMENTS:
|
|
retval = sctp_getsockopt_disable_fragments(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_EVENTS:
|
|
retval = sctp_getsockopt_events(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_AUTOCLOSE:
|
|
retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_SOCKOPT_PEELOFF:
|
|
retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_PEER_ADDR_PARAMS:
|
|
retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_INITMSG:
|
|
retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_GET_PEER_ADDRS_NUM_OLD:
|
|
retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
|
|
retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_GET_PEER_ADDRS_OLD:
|
|
retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_GET_LOCAL_ADDRS_OLD:
|
|
retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_GET_PEER_ADDRS:
|
|
retval = sctp_getsockopt_peer_addrs(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_GET_LOCAL_ADDRS:
|
|
retval = sctp_getsockopt_local_addrs(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_DEFAULT_SEND_PARAM:
|
|
retval = sctp_getsockopt_default_send_param(sk, len,
|
|
optval, optlen);
|
|
break;
|
|
case SCTP_PRIMARY_ADDR:
|
|
retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_NODELAY:
|
|
retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_RTOINFO:
|
|
retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_ASSOCINFO:
|
|
retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_I_WANT_MAPPED_V4_ADDR:
|
|
retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_MAXSEG:
|
|
retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
|
|
break;
|
|
case SCTP_GET_PEER_ADDR_INFO:
|
|
retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
case SCTP_ADAPTION_LAYER:
|
|
retval = sctp_getsockopt_adaption_layer(sk, len, optval,
|
|
optlen);
|
|
break;
|
|
default:
|
|
retval = -ENOPROTOOPT;
|
|
break;
|
|
};
|
|
|
|
sctp_release_sock(sk);
|
|
return retval;
|
|
}
|
|
|
|
static void sctp_hash(struct sock *sk)
|
|
{
|
|
/* STUB */
|
|
}
|
|
|
|
static void sctp_unhash(struct sock *sk)
|
|
{
|
|
/* STUB */
|
|
}
|
|
|
|
/* Check if port is acceptable. Possibly find first available port.
|
|
*
|
|
* The port hash table (contained in the 'global' SCTP protocol storage
|
|
* returned by struct sctp_protocol *sctp_get_protocol()). The hash
|
|
* table is an array of 4096 lists (sctp_bind_hashbucket). Each
|
|
* list (the list number is the port number hashed out, so as you
|
|
* would expect from a hash function, all the ports in a given list have
|
|
* such a number that hashes out to the same list number; you were
|
|
* expecting that, right?); so each list has a set of ports, with a
|
|
* link to the socket (struct sock) that uses it, the port number and
|
|
* a fastreuse flag (FIXME: NPI ipg).
|
|
*/
|
|
static struct sctp_bind_bucket *sctp_bucket_create(
|
|
struct sctp_bind_hashbucket *head, unsigned short snum);
|
|
|
|
static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
|
|
{
|
|
struct sctp_bind_hashbucket *head; /* hash list */
|
|
struct sctp_bind_bucket *pp; /* hash list port iterator */
|
|
unsigned short snum;
|
|
int ret;
|
|
|
|
/* NOTE: Remember to put this back to net order. */
|
|
addr->v4.sin_port = ntohs(addr->v4.sin_port);
|
|
snum = addr->v4.sin_port;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
|
|
sctp_local_bh_disable();
|
|
|
|
if (snum == 0) {
|
|
/* Search for an available port.
|
|
*
|
|
* 'sctp_port_rover' was the last port assigned, so
|
|
* we start to search from 'sctp_port_rover +
|
|
* 1'. What we do is first check if port 'rover' is
|
|
* already in the hash table; if not, we use that; if
|
|
* it is, we try next.
|
|
*/
|
|
int low = sysctl_local_port_range[0];
|
|
int high = sysctl_local_port_range[1];
|
|
int remaining = (high - low) + 1;
|
|
int rover;
|
|
int index;
|
|
|
|
sctp_spin_lock(&sctp_port_alloc_lock);
|
|
rover = sctp_port_rover;
|
|
do {
|
|
rover++;
|
|
if ((rover < low) || (rover > high))
|
|
rover = low;
|
|
index = sctp_phashfn(rover);
|
|
head = &sctp_port_hashtable[index];
|
|
sctp_spin_lock(&head->lock);
|
|
for (pp = head->chain; pp; pp = pp->next)
|
|
if (pp->port == rover)
|
|
goto next;
|
|
break;
|
|
next:
|
|
sctp_spin_unlock(&head->lock);
|
|
} while (--remaining > 0);
|
|
sctp_port_rover = rover;
|
|
sctp_spin_unlock(&sctp_port_alloc_lock);
|
|
|
|
/* Exhausted local port range during search? */
|
|
ret = 1;
|
|
if (remaining <= 0)
|
|
goto fail;
|
|
|
|
/* OK, here is the one we will use. HEAD (the port
|
|
* hash table list entry) is non-NULL and we hold it's
|
|
* mutex.
|
|
*/
|
|
snum = rover;
|
|
} else {
|
|
/* We are given an specific port number; we verify
|
|
* that it is not being used. If it is used, we will
|
|
* exahust the search in the hash list corresponding
|
|
* to the port number (snum) - we detect that with the
|
|
* port iterator, pp being NULL.
|
|
*/
|
|
head = &sctp_port_hashtable[sctp_phashfn(snum)];
|
|
sctp_spin_lock(&head->lock);
|
|
for (pp = head->chain; pp; pp = pp->next) {
|
|
if (pp->port == snum)
|
|
goto pp_found;
|
|
}
|
|
}
|
|
pp = NULL;
|
|
goto pp_not_found;
|
|
pp_found:
|
|
if (!hlist_empty(&pp->owner)) {
|
|
/* We had a port hash table hit - there is an
|
|
* available port (pp != NULL) and it is being
|
|
* used by other socket (pp->owner not empty); that other
|
|
* socket is going to be sk2.
|
|
*/
|
|
int reuse = sk->sk_reuse;
|
|
struct sock *sk2;
|
|
struct hlist_node *node;
|
|
|
|
SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
|
|
if (pp->fastreuse && sk->sk_reuse)
|
|
goto success;
|
|
|
|
/* Run through the list of sockets bound to the port
|
|
* (pp->port) [via the pointers bind_next and
|
|
* bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
|
|
* we get the endpoint they describe and run through
|
|
* the endpoint's list of IP (v4 or v6) addresses,
|
|
* comparing each of the addresses with the address of
|
|
* the socket sk. If we find a match, then that means
|
|
* that this port/socket (sk) combination are already
|
|
* in an endpoint.
|
|
*/
|
|
sk_for_each_bound(sk2, node, &pp->owner) {
|
|
struct sctp_endpoint *ep2;
|
|
ep2 = sctp_sk(sk2)->ep;
|
|
|
|
if (reuse && sk2->sk_reuse)
|
|
continue;
|
|
|
|
if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
|
|
sctp_sk(sk))) {
|
|
ret = (long)sk2;
|
|
goto fail_unlock;
|
|
}
|
|
}
|
|
SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
|
|
}
|
|
pp_not_found:
|
|
/* If there was a hash table miss, create a new port. */
|
|
ret = 1;
|
|
if (!pp && !(pp = sctp_bucket_create(head, snum)))
|
|
goto fail_unlock;
|
|
|
|
/* In either case (hit or miss), make sure fastreuse is 1 only
|
|
* if sk->sk_reuse is too (that is, if the caller requested
|
|
* SO_REUSEADDR on this socket -sk-).
|
|
*/
|
|
if (hlist_empty(&pp->owner))
|
|
pp->fastreuse = sk->sk_reuse ? 1 : 0;
|
|
else if (pp->fastreuse && !sk->sk_reuse)
|
|
pp->fastreuse = 0;
|
|
|
|
/* We are set, so fill up all the data in the hash table
|
|
* entry, tie the socket list information with the rest of the
|
|
* sockets FIXME: Blurry, NPI (ipg).
|
|
*/
|
|
success:
|
|
inet_sk(sk)->num = snum;
|
|
if (!sctp_sk(sk)->bind_hash) {
|
|
sk_add_bind_node(sk, &pp->owner);
|
|
sctp_sk(sk)->bind_hash = pp;
|
|
}
|
|
ret = 0;
|
|
|
|
fail_unlock:
|
|
sctp_spin_unlock(&head->lock);
|
|
|
|
fail:
|
|
sctp_local_bh_enable();
|
|
addr->v4.sin_port = htons(addr->v4.sin_port);
|
|
return ret;
|
|
}
|
|
|
|
/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
|
|
* port is requested.
|
|
*/
|
|
static int sctp_get_port(struct sock *sk, unsigned short snum)
|
|
{
|
|
long ret;
|
|
union sctp_addr addr;
|
|
struct sctp_af *af = sctp_sk(sk)->pf->af;
|
|
|
|
/* Set up a dummy address struct from the sk. */
|
|
af->from_sk(&addr, sk);
|
|
addr.v4.sin_port = htons(snum);
|
|
|
|
/* Note: sk->sk_num gets filled in if ephemeral port request. */
|
|
ret = sctp_get_port_local(sk, &addr);
|
|
|
|
return (ret ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* 3.1.3 listen() - UDP Style Syntax
|
|
*
|
|
* By default, new associations are not accepted for UDP style sockets.
|
|
* An application uses listen() to mark a socket as being able to
|
|
* accept new associations.
|
|
*/
|
|
SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
|
|
{
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
struct sctp_endpoint *ep = sp->ep;
|
|
|
|
/* Only UDP style sockets that are not peeled off are allowed to
|
|
* listen().
|
|
*/
|
|
if (!sctp_style(sk, UDP))
|
|
return -EINVAL;
|
|
|
|
/* If backlog is zero, disable listening. */
|
|
if (!backlog) {
|
|
if (sctp_sstate(sk, CLOSED))
|
|
return 0;
|
|
|
|
sctp_unhash_endpoint(ep);
|
|
sk->sk_state = SCTP_SS_CLOSED;
|
|
}
|
|
|
|
/* Return if we are already listening. */
|
|
if (sctp_sstate(sk, LISTENING))
|
|
return 0;
|
|
|
|
/*
|
|
* If a bind() or sctp_bindx() is not called prior to a listen()
|
|
* call that allows new associations to be accepted, the system
|
|
* picks an ephemeral port and will choose an address set equivalent
|
|
* to binding with a wildcard address.
|
|
*
|
|
* This is not currently spelled out in the SCTP sockets
|
|
* extensions draft, but follows the practice as seen in TCP
|
|
* sockets.
|
|
*/
|
|
if (!ep->base.bind_addr.port) {
|
|
if (sctp_autobind(sk))
|
|
return -EAGAIN;
|
|
}
|
|
sk->sk_state = SCTP_SS_LISTENING;
|
|
sctp_hash_endpoint(ep);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 4.1.3 listen() - TCP Style Syntax
|
|
*
|
|
* Applications uses listen() to ready the SCTP endpoint for accepting
|
|
* inbound associations.
|
|
*/
|
|
SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
|
|
{
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
struct sctp_endpoint *ep = sp->ep;
|
|
|
|
/* If backlog is zero, disable listening. */
|
|
if (!backlog) {
|
|
if (sctp_sstate(sk, CLOSED))
|
|
return 0;
|
|
|
|
sctp_unhash_endpoint(ep);
|
|
sk->sk_state = SCTP_SS_CLOSED;
|
|
}
|
|
|
|
if (sctp_sstate(sk, LISTENING))
|
|
return 0;
|
|
|
|
/*
|
|
* If a bind() or sctp_bindx() is not called prior to a listen()
|
|
* call that allows new associations to be accepted, the system
|
|
* picks an ephemeral port and will choose an address set equivalent
|
|
* to binding with a wildcard address.
|
|
*
|
|
* This is not currently spelled out in the SCTP sockets
|
|
* extensions draft, but follows the practice as seen in TCP
|
|
* sockets.
|
|
*/
|
|
if (!ep->base.bind_addr.port) {
|
|
if (sctp_autobind(sk))
|
|
return -EAGAIN;
|
|
}
|
|
sk->sk_state = SCTP_SS_LISTENING;
|
|
sk->sk_max_ack_backlog = backlog;
|
|
sctp_hash_endpoint(ep);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Move a socket to LISTENING state.
|
|
*/
|
|
int sctp_inet_listen(struct socket *sock, int backlog)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct crypto_tfm *tfm=NULL;
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(backlog < 0))
|
|
goto out;
|
|
|
|
sctp_lock_sock(sk);
|
|
|
|
if (sock->state != SS_UNCONNECTED)
|
|
goto out;
|
|
|
|
/* Allocate HMAC for generating cookie. */
|
|
if (sctp_hmac_alg) {
|
|
tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
|
|
if (!tfm) {
|
|
err = -ENOSYS;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
switch (sock->type) {
|
|
case SOCK_SEQPACKET:
|
|
err = sctp_seqpacket_listen(sk, backlog);
|
|
break;
|
|
case SOCK_STREAM:
|
|
err = sctp_stream_listen(sk, backlog);
|
|
break;
|
|
default:
|
|
break;
|
|
};
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
/* Store away the transform reference. */
|
|
sctp_sk(sk)->hmac = tfm;
|
|
out:
|
|
sctp_release_sock(sk);
|
|
return err;
|
|
cleanup:
|
|
sctp_crypto_free_tfm(tfm);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This function is done by modeling the current datagram_poll() and the
|
|
* tcp_poll(). Note that, based on these implementations, we don't
|
|
* lock the socket in this function, even though it seems that,
|
|
* ideally, locking or some other mechanisms can be used to ensure
|
|
* the integrity of the counters (sndbuf and wmem_queued) used
|
|
* in this place. We assume that we don't need locks either until proven
|
|
* otherwise.
|
|
*
|
|
* Another thing to note is that we include the Async I/O support
|
|
* here, again, by modeling the current TCP/UDP code. We don't have
|
|
* a good way to test with it yet.
|
|
*/
|
|
unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct sctp_sock *sp = sctp_sk(sk);
|
|
unsigned int mask;
|
|
|
|
poll_wait(file, sk->sk_sleep, wait);
|
|
|
|
/* A TCP-style listening socket becomes readable when the accept queue
|
|
* is not empty.
|
|
*/
|
|
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
|
|
return (!list_empty(&sp->ep->asocs)) ?
|
|
(POLLIN | POLLRDNORM) : 0;
|
|
|
|
mask = 0;
|
|
|
|
/* Is there any exceptional events? */
|
|
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
|
|
mask |= POLLERR;
|
|
if (sk->sk_shutdown == SHUTDOWN_MASK)
|
|
mask |= POLLHUP;
|
|
|
|
/* Is it readable? Reconsider this code with TCP-style support. */
|
|
if (!skb_queue_empty(&sk->sk_receive_queue) ||
|
|
(sk->sk_shutdown & RCV_SHUTDOWN))
|
|
mask |= POLLIN | POLLRDNORM;
|
|
|
|
/* The association is either gone or not ready. */
|
|
if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
|
|
return mask;
|
|
|
|
/* Is it writable? */
|
|
if (sctp_writeable(sk)) {
|
|
mask |= POLLOUT | POLLWRNORM;
|
|
} else {
|
|
set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
|
|
/*
|
|
* Since the socket is not locked, the buffer
|
|
* might be made available after the writeable check and
|
|
* before the bit is set. This could cause a lost I/O
|
|
* signal. tcp_poll() has a race breaker for this race
|
|
* condition. Based on their implementation, we put
|
|
* in the following code to cover it as well.
|
|
*/
|
|
if (sctp_writeable(sk))
|
|
mask |= POLLOUT | POLLWRNORM;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/********************************************************************
|
|
* 2nd Level Abstractions
|
|
********************************************************************/
|
|
|
|
static struct sctp_bind_bucket *sctp_bucket_create(
|
|
struct sctp_bind_hashbucket *head, unsigned short snum)
|
|
{
|
|
struct sctp_bind_bucket *pp;
|
|
|
|
pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
|
|
SCTP_DBG_OBJCNT_INC(bind_bucket);
|
|
if (pp) {
|
|
pp->port = snum;
|
|
pp->fastreuse = 0;
|
|
INIT_HLIST_HEAD(&pp->owner);
|
|
if ((pp->next = head->chain) != NULL)
|
|
pp->next->pprev = &pp->next;
|
|
head->chain = pp;
|
|
pp->pprev = &head->chain;
|
|
}
|
|
return pp;
|
|
}
|
|
|
|
/* Caller must hold hashbucket lock for this tb with local BH disabled */
|
|
static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
|
|
{
|
|
if (hlist_empty(&pp->owner)) {
|
|
if (pp->next)
|
|
pp->next->pprev = pp->pprev;
|
|
*(pp->pprev) = pp->next;
|
|
kmem_cache_free(sctp_bucket_cachep, pp);
|
|
SCTP_DBG_OBJCNT_DEC(bind_bucket);
|
|
}
|
|
}
|
|
|
|
/* Release this socket's reference to a local port. */
|
|
static inline void __sctp_put_port(struct sock *sk)
|
|
{
|
|
struct sctp_bind_hashbucket *head =
|
|
&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
|
|
struct sctp_bind_bucket *pp;
|
|
|
|
sctp_spin_lock(&head->lock);
|
|
pp = sctp_sk(sk)->bind_hash;
|
|
__sk_del_bind_node(sk);
|
|
sctp_sk(sk)->bind_hash = NULL;
|
|
inet_sk(sk)->num = 0;
|
|
sctp_bucket_destroy(pp);
|
|
sctp_spin_unlock(&head->lock);
|
|
}
|
|
|
|
void sctp_put_port(struct sock *sk)
|
|
{
|
|
sctp_local_bh_disable();
|
|
__sctp_put_port(sk);
|
|
sctp_local_bh_enable();
|
|
}
|
|
|
|
/*
|
|
* The system picks an ephemeral port and choose an address set equivalent
|
|
* to binding with a wildcard address.
|
|
* One of those addresses will be the primary address for the association.
|
|
* This automatically enables the multihoming capability of SCTP.
|
|
*/
|
|
static int sctp_autobind(struct sock *sk)
|
|
{
|
|
union sctp_addr autoaddr;
|
|
struct sctp_af *af;
|
|
unsigned short port;
|
|
|
|
/* Initialize a local sockaddr structure to INADDR_ANY. */
|
|
af = sctp_sk(sk)->pf->af;
|
|
|
|
port = htons(inet_sk(sk)->num);
|
|
af->inaddr_any(&autoaddr, port);
|
|
|
|
return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
|
|
}
|
|
|
|
/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
|
|
*
|
|
* From RFC 2292
|
|
* 4.2 The cmsghdr Structure *
|
|
*
|
|
* When ancillary data is sent or received, any number of ancillary data
|
|
* objects can be specified by the msg_control and msg_controllen members of
|
|
* the msghdr structure, because each object is preceded by
|
|
* a cmsghdr structure defining the object's length (the cmsg_len member).
|
|
* Historically Berkeley-derived implementations have passed only one object
|
|
* at a time, but this API allows multiple objects to be
|
|
* passed in a single call to sendmsg() or recvmsg(). The following example
|
|
* shows two ancillary data objects in a control buffer.
|
|
*
|
|
* |<--------------------------- msg_controllen -------------------------->|
|
|
* | |
|
|
*
|
|
* |<----- ancillary data object ----->|<----- ancillary data object ----->|
|
|
*
|
|
* |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
|
|
* | | |
|
|
*
|
|
* |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
|
|
*
|
|
* |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
|
|
* | | | | |
|
|
*
|
|
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
|
|
* |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
|
|
*
|
|
* |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
|
|
*
|
|
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
|
|
* ^
|
|
* |
|
|
*
|
|
* msg_control
|
|
* points here
|
|
*/
|
|
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
|
|
sctp_cmsgs_t *cmsgs)
|
|
{
|
|
struct cmsghdr *cmsg;
|
|
|
|
for (cmsg = CMSG_FIRSTHDR(msg);
|
|
cmsg != NULL;
|
|
cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
|
|
if (!CMSG_OK(msg, cmsg))
|
|
return -EINVAL;
|
|
|
|
/* Should we parse this header or ignore? */
|
|
if (cmsg->cmsg_level != IPPROTO_SCTP)
|
|
continue;
|
|
|
|
/* Strictly check lengths following example in SCM code. */
|
|
switch (cmsg->cmsg_type) {
|
|
case SCTP_INIT:
|
|
/* SCTP Socket API Extension
|
|
* 5.2.1 SCTP Initiation Structure (SCTP_INIT)
|
|
*
|
|
* This cmsghdr structure provides information for
|
|
* initializing new SCTP associations with sendmsg().
|
|
* The SCTP_INITMSG socket option uses this same data
|
|
* structure. This structure is not used for
|
|
* recvmsg().
|
|
*
|
|
* cmsg_level cmsg_type cmsg_data[]
|
|
* ------------ ------------ ----------------------
|
|
* IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
|
|
*/
|
|
if (cmsg->cmsg_len !=
|
|
CMSG_LEN(sizeof(struct sctp_initmsg)))
|
|
return -EINVAL;
|
|
cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
|
|
break;
|
|
|
|
case SCTP_SNDRCV:
|
|
/* SCTP Socket API Extension
|
|
* 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
|
|
*
|
|
* This cmsghdr structure specifies SCTP options for
|
|
* sendmsg() and describes SCTP header information
|
|
* about a received message through recvmsg().
|
|
*
|
|
* cmsg_level cmsg_type cmsg_data[]
|
|
* ------------ ------------ ----------------------
|
|
* IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
|
|
*/
|
|
if (cmsg->cmsg_len !=
|
|
CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
|
|
return -EINVAL;
|
|
|
|
cmsgs->info =
|
|
(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
|
|
|
|
/* Minimally, validate the sinfo_flags. */
|
|
if (cmsgs->info->sinfo_flags &
|
|
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
|
|
SCTP_ABORT | SCTP_EOF))
|
|
return -EINVAL;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
};
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for a packet..
|
|
* Note: This function is the same function as in core/datagram.c
|
|
* with a few modifications to make lksctp work.
|
|
*/
|
|
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
|
|
{
|
|
int error;
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
|
|
|
|
/* Socket errors? */
|
|
error = sock_error(sk);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (!skb_queue_empty(&sk->sk_receive_queue))
|
|
goto ready;
|
|
|
|
/* Socket shut down? */
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
goto out;
|
|
|
|
/* Sequenced packets can come disconnected. If so we report the
|
|
* problem.
|
|
*/
|
|
error = -ENOTCONN;
|
|
|
|
/* Is there a good reason to think that we may receive some data? */
|
|
if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
|
|
goto out;
|
|
|
|
/* Handle signals. */
|
|
if (signal_pending(current))
|
|
goto interrupted;
|
|
|
|
/* Let another process have a go. Since we are going to sleep
|
|
* anyway. Note: This may cause odd behaviors if the message
|
|
* does not fit in the user's buffer, but this seems to be the
|
|
* only way to honor MSG_DONTWAIT realistically.
|
|
*/
|
|
sctp_release_sock(sk);
|
|
*timeo_p = schedule_timeout(*timeo_p);
|
|
sctp_lock_sock(sk);
|
|
|
|
ready:
|
|
finish_wait(sk->sk_sleep, &wait);
|
|
return 0;
|
|
|
|
interrupted:
|
|
error = sock_intr_errno(*timeo_p);
|
|
|
|
out:
|
|
finish_wait(sk->sk_sleep, &wait);
|
|
*err = error;
|
|
return error;
|
|
}
|
|
|
|
/* Receive a datagram.
|
|
* Note: This is pretty much the same routine as in core/datagram.c
|
|
* with a few changes to make lksctp work.
|
|
*/
|
|
static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
|
|
int noblock, int *err)
|
|
{
|
|
int error;
|
|
struct sk_buff *skb;
|
|
long timeo;
|
|
|
|
/* Caller is allowed not to check sk->sk_err before calling. */
|
|
error = sock_error(sk);
|
|
if (error)
|
|
goto no_packet;
|
|
|
|
timeo = sock_rcvtimeo(sk, noblock);
|
|
|
|
SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
|
|
timeo, MAX_SCHEDULE_TIMEOUT);
|
|
|
|
do {
|
|
/* Again only user level code calls this function,
|
|
* so nothing interrupt level
|
|
* will suddenly eat the receive_queue.
|
|
*
|
|
* Look at current nfs client by the way...
|
|
* However, this function was corrent in any case. 8)
|
|
*/
|
|
if (flags & MSG_PEEK) {
|
|
spin_lock_bh(&sk->sk_receive_queue.lock);
|
|
skb = skb_peek(&sk->sk_receive_queue);
|
|
if (skb)
|
|
atomic_inc(&skb->users);
|
|
spin_unlock_bh(&sk->sk_receive_queue.lock);
|
|
} else {
|
|
skb = skb_dequeue(&sk->sk_receive_queue);
|
|
}
|
|
|
|
if (skb)
|
|
return skb;
|
|
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
break;
|
|
|
|
/* User doesn't want to wait. */
|
|
error = -EAGAIN;
|
|
if (!timeo)
|
|
goto no_packet;
|
|
} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
|
|
|
|
return NULL;
|
|
|
|
no_packet:
|
|
*err = error;
|
|
return NULL;
|
|
}
|
|
|
|
/* If sndbuf has changed, wake up per association sndbuf waiters. */
|
|
static void __sctp_write_space(struct sctp_association *asoc)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
struct socket *sock = sk->sk_socket;
|
|
|
|
if ((sctp_wspace(asoc) > 0) && sock) {
|
|
if (waitqueue_active(&asoc->wait))
|
|
wake_up_interruptible(&asoc->wait);
|
|
|
|
if (sctp_writeable(sk)) {
|
|
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
|
|
wake_up_interruptible(sk->sk_sleep);
|
|
|
|
/* Note that we try to include the Async I/O support
|
|
* here by modeling from the current TCP/UDP code.
|
|
* We have not tested with it yet.
|
|
*/
|
|
if (sock->fasync_list &&
|
|
!(sk->sk_shutdown & SEND_SHUTDOWN))
|
|
sock_wake_async(sock, 2, POLL_OUT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do accounting for the sndbuf space.
|
|
* Decrement the used sndbuf space of the corresponding association by the
|
|
* data size which was just transmitted(freed).
|
|
*/
|
|
static void sctp_wfree(struct sk_buff *skb)
|
|
{
|
|
struct sctp_association *asoc;
|
|
struct sctp_chunk *chunk;
|
|
struct sock *sk;
|
|
|
|
/* Get the saved chunk pointer. */
|
|
chunk = *((struct sctp_chunk **)(skb->cb));
|
|
asoc = chunk->asoc;
|
|
sk = asoc->base.sk;
|
|
asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
|
|
sizeof(struct sk_buff) +
|
|
sizeof(struct sctp_chunk);
|
|
|
|
sk->sk_wmem_queued -= SCTP_DATA_SNDSIZE(chunk) +
|
|
sizeof(struct sk_buff) +
|
|
sizeof(struct sctp_chunk);
|
|
|
|
atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
|
|
|
|
sock_wfree(skb);
|
|
__sctp_write_space(asoc);
|
|
|
|
sctp_association_put(asoc);
|
|
}
|
|
|
|
/* Helper function to wait for space in the sndbuf. */
|
|
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
|
|
size_t msg_len)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
int err = 0;
|
|
long current_timeo = *timeo_p;
|
|
DEFINE_WAIT(wait);
|
|
|
|
SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
|
|
asoc, (long)(*timeo_p), msg_len);
|
|
|
|
/* Increment the association's refcnt. */
|
|
sctp_association_hold(asoc);
|
|
|
|
/* Wait on the association specific sndbuf space. */
|
|
for (;;) {
|
|
prepare_to_wait_exclusive(&asoc->wait, &wait,
|
|
TASK_INTERRUPTIBLE);
|
|
if (!*timeo_p)
|
|
goto do_nonblock;
|
|
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
|
|
asoc->base.dead)
|
|
goto do_error;
|
|
if (signal_pending(current))
|
|
goto do_interrupted;
|
|
if (msg_len <= sctp_wspace(asoc))
|
|
break;
|
|
|
|
/* Let another process have a go. Since we are going
|
|
* to sleep anyway.
|
|
*/
|
|
sctp_release_sock(sk);
|
|
current_timeo = schedule_timeout(current_timeo);
|
|
sctp_lock_sock(sk);
|
|
|
|
*timeo_p = current_timeo;
|
|
}
|
|
|
|
out:
|
|
finish_wait(&asoc->wait, &wait);
|
|
|
|
/* Release the association's refcnt. */
|
|
sctp_association_put(asoc);
|
|
|
|
return err;
|
|
|
|
do_error:
|
|
err = -EPIPE;
|
|
goto out;
|
|
|
|
do_interrupted:
|
|
err = sock_intr_errno(*timeo_p);
|
|
goto out;
|
|
|
|
do_nonblock:
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
/* If socket sndbuf has changed, wake up all per association waiters. */
|
|
void sctp_write_space(struct sock *sk)
|
|
{
|
|
struct sctp_association *asoc;
|
|
struct list_head *pos;
|
|
|
|
/* Wake up the tasks in each wait queue. */
|
|
list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
|
|
asoc = list_entry(pos, struct sctp_association, asocs);
|
|
__sctp_write_space(asoc);
|
|
}
|
|
}
|
|
|
|
/* Is there any sndbuf space available on the socket?
|
|
*
|
|
* Note that wmem_queued is the sum of the send buffers on all of the
|
|
* associations on the same socket. For a UDP-style socket with
|
|
* multiple associations, it is possible for it to be "unwriteable"
|
|
* prematurely. I assume that this is acceptable because
|
|
* a premature "unwriteable" is better than an accidental "writeable" which
|
|
* would cause an unwanted block under certain circumstances. For the 1-1
|
|
* UDP-style sockets or TCP-style sockets, this code should work.
|
|
* - Daisy
|
|
*/
|
|
static int sctp_writeable(struct sock *sk)
|
|
{
|
|
int amt = 0;
|
|
|
|
amt = sk->sk_sndbuf - sk->sk_wmem_queued;
|
|
if (amt < 0)
|
|
amt = 0;
|
|
return amt;
|
|
}
|
|
|
|
/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
|
|
* returns immediately with EINPROGRESS.
|
|
*/
|
|
static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
int err = 0;
|
|
long current_timeo = *timeo_p;
|
|
DEFINE_WAIT(wait);
|
|
|
|
SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
|
|
(long)(*timeo_p));
|
|
|
|
/* Increment the association's refcnt. */
|
|
sctp_association_hold(asoc);
|
|
|
|
for (;;) {
|
|
prepare_to_wait_exclusive(&asoc->wait, &wait,
|
|
TASK_INTERRUPTIBLE);
|
|
if (!*timeo_p)
|
|
goto do_nonblock;
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
break;
|
|
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
|
|
asoc->base.dead)
|
|
goto do_error;
|
|
if (signal_pending(current))
|
|
goto do_interrupted;
|
|
|
|
if (sctp_state(asoc, ESTABLISHED))
|
|
break;
|
|
|
|
/* Let another process have a go. Since we are going
|
|
* to sleep anyway.
|
|
*/
|
|
sctp_release_sock(sk);
|
|
current_timeo = schedule_timeout(current_timeo);
|
|
sctp_lock_sock(sk);
|
|
|
|
*timeo_p = current_timeo;
|
|
}
|
|
|
|
out:
|
|
finish_wait(&asoc->wait, &wait);
|
|
|
|
/* Release the association's refcnt. */
|
|
sctp_association_put(asoc);
|
|
|
|
return err;
|
|
|
|
do_error:
|
|
if (asoc->init_err_counter + 1 >= asoc->max_init_attempts)
|
|
err = -ETIMEDOUT;
|
|
else
|
|
err = -ECONNREFUSED;
|
|
goto out;
|
|
|
|
do_interrupted:
|
|
err = sock_intr_errno(*timeo_p);
|
|
goto out;
|
|
|
|
do_nonblock:
|
|
err = -EINPROGRESS;
|
|
goto out;
|
|
}
|
|
|
|
static int sctp_wait_for_accept(struct sock *sk, long timeo)
|
|
{
|
|
struct sctp_endpoint *ep;
|
|
int err = 0;
|
|
DEFINE_WAIT(wait);
|
|
|
|
ep = sctp_sk(sk)->ep;
|
|
|
|
|
|
for (;;) {
|
|
prepare_to_wait_exclusive(sk->sk_sleep, &wait,
|
|
TASK_INTERRUPTIBLE);
|
|
|
|
if (list_empty(&ep->asocs)) {
|
|
sctp_release_sock(sk);
|
|
timeo = schedule_timeout(timeo);
|
|
sctp_lock_sock(sk);
|
|
}
|
|
|
|
err = -EINVAL;
|
|
if (!sctp_sstate(sk, LISTENING))
|
|
break;
|
|
|
|
err = 0;
|
|
if (!list_empty(&ep->asocs))
|
|
break;
|
|
|
|
err = sock_intr_errno(timeo);
|
|
if (signal_pending(current))
|
|
break;
|
|
|
|
err = -EAGAIN;
|
|
if (!timeo)
|
|
break;
|
|
}
|
|
|
|
finish_wait(sk->sk_sleep, &wait);
|
|
|
|
return err;
|
|
}
|
|
|
|
void sctp_wait_for_close(struct sock *sk, long timeout)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
do {
|
|
prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
|
|
if (list_empty(&sctp_sk(sk)->ep->asocs))
|
|
break;
|
|
sctp_release_sock(sk);
|
|
timeout = schedule_timeout(timeout);
|
|
sctp_lock_sock(sk);
|
|
} while (!signal_pending(current) && timeout);
|
|
|
|
finish_wait(sk->sk_sleep, &wait);
|
|
}
|
|
|
|
/* Populate the fields of the newsk from the oldsk and migrate the assoc
|
|
* and its messages to the newsk.
|
|
*/
|
|
static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
|
|
struct sctp_association *assoc,
|
|
sctp_socket_type_t type)
|
|
{
|
|
struct sctp_sock *oldsp = sctp_sk(oldsk);
|
|
struct sctp_sock *newsp = sctp_sk(newsk);
|
|
struct sctp_bind_bucket *pp; /* hash list port iterator */
|
|
struct sctp_endpoint *newep = newsp->ep;
|
|
struct sk_buff *skb, *tmp;
|
|
struct sctp_ulpevent *event;
|
|
int flags = 0;
|
|
|
|
/* Migrate socket buffer sizes and all the socket level options to the
|
|
* new socket.
|
|
*/
|
|
newsk->sk_sndbuf = oldsk->sk_sndbuf;
|
|
newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
|
|
/* Brute force copy old sctp opt. */
|
|
inet_sk_copy_descendant(newsk, oldsk);
|
|
|
|
/* Restore the ep value that was overwritten with the above structure
|
|
* copy.
|
|
*/
|
|
newsp->ep = newep;
|
|
newsp->hmac = NULL;
|
|
|
|
/* Hook this new socket in to the bind_hash list. */
|
|
pp = sctp_sk(oldsk)->bind_hash;
|
|
sk_add_bind_node(newsk, &pp->owner);
|
|
sctp_sk(newsk)->bind_hash = pp;
|
|
inet_sk(newsk)->num = inet_sk(oldsk)->num;
|
|
|
|
/* Copy the bind_addr list from the original endpoint to the new
|
|
* endpoint so that we can handle restarts properly
|
|
*/
|
|
if (assoc->peer.ipv4_address)
|
|
flags |= SCTP_ADDR4_PEERSUPP;
|
|
if (assoc->peer.ipv6_address)
|
|
flags |= SCTP_ADDR6_PEERSUPP;
|
|
sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
|
|
&oldsp->ep->base.bind_addr,
|
|
SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
|
|
|
|
/* Move any messages in the old socket's receive queue that are for the
|
|
* peeled off association to the new socket's receive queue.
|
|
*/
|
|
sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
|
|
event = sctp_skb2event(skb);
|
|
if (event->asoc == assoc) {
|
|
__skb_unlink(skb, &oldsk->sk_receive_queue);
|
|
__skb_queue_tail(&newsk->sk_receive_queue, skb);
|
|
}
|
|
}
|
|
|
|
/* Clean up any messages pending delivery due to partial
|
|
* delivery. Three cases:
|
|
* 1) No partial deliver; no work.
|
|
* 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
|
|
* 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
|
|
*/
|
|
skb_queue_head_init(&newsp->pd_lobby);
|
|
sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
|
|
|
|
if (sctp_sk(oldsk)->pd_mode) {
|
|
struct sk_buff_head *queue;
|
|
|
|
/* Decide which queue to move pd_lobby skbs to. */
|
|
if (assoc->ulpq.pd_mode) {
|
|
queue = &newsp->pd_lobby;
|
|
} else
|
|
queue = &newsk->sk_receive_queue;
|
|
|
|
/* Walk through the pd_lobby, looking for skbs that
|
|
* need moved to the new socket.
|
|
*/
|
|
sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
|
|
event = sctp_skb2event(skb);
|
|
if (event->asoc == assoc) {
|
|
__skb_unlink(skb, &oldsp->pd_lobby);
|
|
__skb_queue_tail(queue, skb);
|
|
}
|
|
}
|
|
|
|
/* Clear up any skbs waiting for the partial
|
|
* delivery to finish.
|
|
*/
|
|
if (assoc->ulpq.pd_mode)
|
|
sctp_clear_pd(oldsk);
|
|
|
|
}
|
|
|
|
/* Set the type of socket to indicate that it is peeled off from the
|
|
* original UDP-style socket or created with the accept() call on a
|
|
* TCP-style socket..
|
|
*/
|
|
newsp->type = type;
|
|
|
|
/* Migrate the association to the new socket. */
|
|
sctp_assoc_migrate(assoc, newsk);
|
|
|
|
/* If the association on the newsk is already closed before accept()
|
|
* is called, set RCV_SHUTDOWN flag.
|
|
*/
|
|
if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
|
|
newsk->sk_shutdown |= RCV_SHUTDOWN;
|
|
|
|
newsk->sk_state = SCTP_SS_ESTABLISHED;
|
|
}
|
|
|
|
/* This proto struct describes the ULP interface for SCTP. */
|
|
struct proto sctp_prot = {
|
|
.name = "SCTP",
|
|
.owner = THIS_MODULE,
|
|
.close = sctp_close,
|
|
.connect = sctp_connect,
|
|
.disconnect = sctp_disconnect,
|
|
.accept = sctp_accept,
|
|
.ioctl = sctp_ioctl,
|
|
.init = sctp_init_sock,
|
|
.destroy = sctp_destroy_sock,
|
|
.shutdown = sctp_shutdown,
|
|
.setsockopt = sctp_setsockopt,
|
|
.getsockopt = sctp_getsockopt,
|
|
.sendmsg = sctp_sendmsg,
|
|
.recvmsg = sctp_recvmsg,
|
|
.bind = sctp_bind,
|
|
.backlog_rcv = sctp_backlog_rcv,
|
|
.hash = sctp_hash,
|
|
.unhash = sctp_unhash,
|
|
.get_port = sctp_get_port,
|
|
.obj_size = sizeof(struct sctp_sock),
|
|
};
|
|
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
|
struct proto sctpv6_prot = {
|
|
.name = "SCTPv6",
|
|
.owner = THIS_MODULE,
|
|
.close = sctp_close,
|
|
.connect = sctp_connect,
|
|
.disconnect = sctp_disconnect,
|
|
.accept = sctp_accept,
|
|
.ioctl = sctp_ioctl,
|
|
.init = sctp_init_sock,
|
|
.destroy = sctp_destroy_sock,
|
|
.shutdown = sctp_shutdown,
|
|
.setsockopt = sctp_setsockopt,
|
|
.getsockopt = sctp_getsockopt,
|
|
.sendmsg = sctp_sendmsg,
|
|
.recvmsg = sctp_recvmsg,
|
|
.bind = sctp_bind,
|
|
.backlog_rcv = sctp_backlog_rcv,
|
|
.hash = sctp_hash,
|
|
.unhash = sctp_unhash,
|
|
.get_port = sctp_get_port,
|
|
.obj_size = sizeof(struct sctp6_sock),
|
|
};
|
|
#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
|