Dmitry Eremin-Solenikov 83508093f4 ARM: 8278/1: sa1100: split irq handling for low GPIOs
Low GPIO pins use an interrupt in SC interrupts space. However it's
possible to handle them as if all the GPIO interrupts are instead tied
to single GPIO handler, which later decodes GEDR register and
chain-calls next IRQ handler. So split first 11 interrupts into system
part (IRQ_GPIO0_SC - IRQ_GPIO10_SC) which work exactly like the rest of
system controller interrupts and real GPIO interrupts
(IRQ_GPIO0..IRQ_GPIO10). A single handler sa1100_gpio_handler then
decodes and calls next handler.

Signed-off-by: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-01-29 15:24:46 +00:00

101 lines
3.0 KiB
C

/*
* arch/arm/mach-sa1100/include/mach/irqs.h
*
* Copyright (C) 1996 Russell King
* Copyright (C) 1998 Deborah Wallach (updates for SA1100/Brutus).
* Copyright (C) 1999 Nicolas Pitre (full GPIO irq isolation)
*
* 2001/11/14 RMK Cleaned up and standardised a lot of the IRQs.
*/
#define IRQ_GPIO0_SC 1
#define IRQ_GPIO1_SC 2
#define IRQ_GPIO2_SC 3
#define IRQ_GPIO3_SC 4
#define IRQ_GPIO4_SC 5
#define IRQ_GPIO5_SC 6
#define IRQ_GPIO6_SC 7
#define IRQ_GPIO7_SC 8
#define IRQ_GPIO8_SC 9
#define IRQ_GPIO9_SC 10
#define IRQ_GPIO10_SC 11
#define IRQ_GPIO11_27 12
#define IRQ_LCD 13 /* LCD controller */
#define IRQ_Ser0UDC 14 /* Ser. port 0 UDC */
#define IRQ_Ser1SDLC 15 /* Ser. port 1 SDLC */
#define IRQ_Ser1UART 16 /* Ser. port 1 UART */
#define IRQ_Ser2ICP 17 /* Ser. port 2 ICP */
#define IRQ_Ser3UART 18 /* Ser. port 3 UART */
#define IRQ_Ser4MCP 19 /* Ser. port 4 MCP */
#define IRQ_Ser4SSP 20 /* Ser. port 4 SSP */
#define IRQ_DMA0 21 /* DMA controller channel 0 */
#define IRQ_DMA1 22 /* DMA controller channel 1 */
#define IRQ_DMA2 23 /* DMA controller channel 2 */
#define IRQ_DMA3 24 /* DMA controller channel 3 */
#define IRQ_DMA4 25 /* DMA controller channel 4 */
#define IRQ_DMA5 26 /* DMA controller channel 5 */
#define IRQ_OST0 27 /* OS Timer match 0 */
#define IRQ_OST1 28 /* OS Timer match 1 */
#define IRQ_OST2 29 /* OS Timer match 2 */
#define IRQ_OST3 30 /* OS Timer match 3 */
#define IRQ_RTC1Hz 31 /* RTC 1 Hz clock */
#define IRQ_RTCAlrm 32 /* RTC Alarm */
#define IRQ_GPIO0 33
#define IRQ_GPIO1 34
#define IRQ_GPIO2 35
#define IRQ_GPIO3 36
#define IRQ_GPIO4 37
#define IRQ_GPIO5 38
#define IRQ_GPIO6 39
#define IRQ_GPIO7 40
#define IRQ_GPIO8 41
#define IRQ_GPIO9 42
#define IRQ_GPIO10 43
#define IRQ_GPIO11 44
#define IRQ_GPIO12 45
#define IRQ_GPIO13 46
#define IRQ_GPIO14 47
#define IRQ_GPIO15 48
#define IRQ_GPIO16 49
#define IRQ_GPIO17 50
#define IRQ_GPIO18 51
#define IRQ_GPIO19 52
#define IRQ_GPIO20 53
#define IRQ_GPIO21 54
#define IRQ_GPIO22 55
#define IRQ_GPIO23 56
#define IRQ_GPIO24 57
#define IRQ_GPIO25 58
#define IRQ_GPIO26 59
#define IRQ_GPIO27 60
/*
* The next 16 interrupts are for board specific purposes. Since
* the kernel can only run on one machine at a time, we can re-use
* these. If you need more, increase IRQ_BOARD_END, but keep it
* within sensible limits. IRQs 61 to 76 are available.
*/
#define IRQ_BOARD_START 61
#define IRQ_BOARD_END 77
/*
* Figure out the MAX IRQ number.
*
* Neponset, SA1111 and UCB1x00 are sparse IRQ aware, so can dynamically
* allocate their IRQs above NR_IRQS.
*
* LoCoMo has 4 additional IRQs, but is not sparse IRQ aware, and so has
* to be included in the NR_IRQS calculation.
*/
#ifdef CONFIG_SHARP_LOCOMO
#define NR_IRQS_LOCOMO 4
#else
#define NR_IRQS_LOCOMO 0
#endif
#ifndef NR_IRQS
#define NR_IRQS (IRQ_BOARD_START + NR_IRQS_LOCOMO)
#endif
#define SA1100_NR_IRQS (IRQ_BOARD_START + NR_IRQS_LOCOMO)