94cc781f69
Nothing about the TCG Opal support is PCIe transport specific, so move it to the core code. For this nvme_init_ctrl_finish grows a new was_suspended argument that allows the transport driver to tell the OPAL code if the controller came out of a suspend cycle. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com> Reviewed-by: James Smart <jsmart2021@gmail.com> Tested-by Gerd Bayer <gbayer@linxu.ibm.com>
2694 lines
68 KiB
C
2694 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NVMe over Fabrics TCP host.
|
|
* Copyright (c) 2018 Lightbits Labs. All rights reserved.
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/nvme-tcp.h>
|
|
#include <net/sock.h>
|
|
#include <net/tcp.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <crypto/hash.h>
|
|
#include <net/busy_poll.h>
|
|
|
|
#include "nvme.h"
|
|
#include "fabrics.h"
|
|
|
|
struct nvme_tcp_queue;
|
|
|
|
/* Define the socket priority to use for connections were it is desirable
|
|
* that the NIC consider performing optimized packet processing or filtering.
|
|
* A non-zero value being sufficient to indicate general consideration of any
|
|
* possible optimization. Making it a module param allows for alternative
|
|
* values that may be unique for some NIC implementations.
|
|
*/
|
|
static int so_priority;
|
|
module_param(so_priority, int, 0644);
|
|
MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
/* lockdep can detect a circular dependency of the form
|
|
* sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
|
|
* because dependencies are tracked for both nvme-tcp and user contexts. Using
|
|
* a separate class prevents lockdep from conflating nvme-tcp socket use with
|
|
* user-space socket API use.
|
|
*/
|
|
static struct lock_class_key nvme_tcp_sk_key[2];
|
|
static struct lock_class_key nvme_tcp_slock_key[2];
|
|
|
|
static void nvme_tcp_reclassify_socket(struct socket *sock)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
|
|
if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
|
|
return;
|
|
|
|
switch (sk->sk_family) {
|
|
case AF_INET:
|
|
sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
|
|
&nvme_tcp_slock_key[0],
|
|
"sk_lock-AF_INET-NVME",
|
|
&nvme_tcp_sk_key[0]);
|
|
break;
|
|
case AF_INET6:
|
|
sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
|
|
&nvme_tcp_slock_key[1],
|
|
"sk_lock-AF_INET6-NVME",
|
|
&nvme_tcp_sk_key[1]);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
}
|
|
#else
|
|
static void nvme_tcp_reclassify_socket(struct socket *sock) { }
|
|
#endif
|
|
|
|
enum nvme_tcp_send_state {
|
|
NVME_TCP_SEND_CMD_PDU = 0,
|
|
NVME_TCP_SEND_H2C_PDU,
|
|
NVME_TCP_SEND_DATA,
|
|
NVME_TCP_SEND_DDGST,
|
|
};
|
|
|
|
struct nvme_tcp_request {
|
|
struct nvme_request req;
|
|
void *pdu;
|
|
struct nvme_tcp_queue *queue;
|
|
u32 data_len;
|
|
u32 pdu_len;
|
|
u32 pdu_sent;
|
|
u32 h2cdata_left;
|
|
u32 h2cdata_offset;
|
|
u16 ttag;
|
|
__le16 status;
|
|
struct list_head entry;
|
|
struct llist_node lentry;
|
|
__le32 ddgst;
|
|
|
|
struct bio *curr_bio;
|
|
struct iov_iter iter;
|
|
|
|
/* send state */
|
|
size_t offset;
|
|
size_t data_sent;
|
|
enum nvme_tcp_send_state state;
|
|
};
|
|
|
|
enum nvme_tcp_queue_flags {
|
|
NVME_TCP_Q_ALLOCATED = 0,
|
|
NVME_TCP_Q_LIVE = 1,
|
|
NVME_TCP_Q_POLLING = 2,
|
|
};
|
|
|
|
enum nvme_tcp_recv_state {
|
|
NVME_TCP_RECV_PDU = 0,
|
|
NVME_TCP_RECV_DATA,
|
|
NVME_TCP_RECV_DDGST,
|
|
};
|
|
|
|
struct nvme_tcp_ctrl;
|
|
struct nvme_tcp_queue {
|
|
struct socket *sock;
|
|
struct work_struct io_work;
|
|
int io_cpu;
|
|
|
|
struct mutex queue_lock;
|
|
struct mutex send_mutex;
|
|
struct llist_head req_list;
|
|
struct list_head send_list;
|
|
|
|
/* recv state */
|
|
void *pdu;
|
|
int pdu_remaining;
|
|
int pdu_offset;
|
|
size_t data_remaining;
|
|
size_t ddgst_remaining;
|
|
unsigned int nr_cqe;
|
|
|
|
/* send state */
|
|
struct nvme_tcp_request *request;
|
|
|
|
u32 maxh2cdata;
|
|
size_t cmnd_capsule_len;
|
|
struct nvme_tcp_ctrl *ctrl;
|
|
unsigned long flags;
|
|
bool rd_enabled;
|
|
|
|
bool hdr_digest;
|
|
bool data_digest;
|
|
struct ahash_request *rcv_hash;
|
|
struct ahash_request *snd_hash;
|
|
__le32 exp_ddgst;
|
|
__le32 recv_ddgst;
|
|
|
|
struct page_frag_cache pf_cache;
|
|
|
|
void (*state_change)(struct sock *);
|
|
void (*data_ready)(struct sock *);
|
|
void (*write_space)(struct sock *);
|
|
};
|
|
|
|
struct nvme_tcp_ctrl {
|
|
/* read only in the hot path */
|
|
struct nvme_tcp_queue *queues;
|
|
struct blk_mq_tag_set tag_set;
|
|
|
|
/* other member variables */
|
|
struct list_head list;
|
|
struct blk_mq_tag_set admin_tag_set;
|
|
struct sockaddr_storage addr;
|
|
struct sockaddr_storage src_addr;
|
|
struct nvme_ctrl ctrl;
|
|
|
|
struct work_struct err_work;
|
|
struct delayed_work connect_work;
|
|
struct nvme_tcp_request async_req;
|
|
u32 io_queues[HCTX_MAX_TYPES];
|
|
};
|
|
|
|
static LIST_HEAD(nvme_tcp_ctrl_list);
|
|
static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
|
|
static struct workqueue_struct *nvme_tcp_wq;
|
|
static const struct blk_mq_ops nvme_tcp_mq_ops;
|
|
static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
|
|
static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
|
|
|
|
static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
|
|
}
|
|
|
|
static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
|
|
{
|
|
return queue - queue->ctrl->queues;
|
|
}
|
|
|
|
static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
|
|
{
|
|
u32 queue_idx = nvme_tcp_queue_id(queue);
|
|
|
|
if (queue_idx == 0)
|
|
return queue->ctrl->admin_tag_set.tags[queue_idx];
|
|
return queue->ctrl->tag_set.tags[queue_idx - 1];
|
|
}
|
|
|
|
static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
|
|
{
|
|
return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
|
|
}
|
|
|
|
static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
|
|
{
|
|
return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
|
|
}
|
|
|
|
static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
|
|
{
|
|
if (nvme_is_fabrics(req->req.cmd))
|
|
return NVME_TCP_ADMIN_CCSZ;
|
|
return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
|
|
}
|
|
|
|
static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
|
|
{
|
|
return req == &req->queue->ctrl->async_req;
|
|
}
|
|
|
|
static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
|
|
{
|
|
struct request *rq;
|
|
|
|
if (unlikely(nvme_tcp_async_req(req)))
|
|
return false; /* async events don't have a request */
|
|
|
|
rq = blk_mq_rq_from_pdu(req);
|
|
|
|
return rq_data_dir(rq) == WRITE && req->data_len &&
|
|
req->data_len <= nvme_tcp_inline_data_size(req);
|
|
}
|
|
|
|
static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
|
|
{
|
|
return req->iter.bvec->bv_page;
|
|
}
|
|
|
|
static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
|
|
{
|
|
return req->iter.bvec->bv_offset + req->iter.iov_offset;
|
|
}
|
|
|
|
static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
|
|
{
|
|
return min_t(size_t, iov_iter_single_seg_count(&req->iter),
|
|
req->pdu_len - req->pdu_sent);
|
|
}
|
|
|
|
static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
|
|
{
|
|
return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
|
|
req->pdu_len - req->pdu_sent : 0;
|
|
}
|
|
|
|
static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
|
|
int len)
|
|
{
|
|
return nvme_tcp_pdu_data_left(req) <= len;
|
|
}
|
|
|
|
static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
|
|
unsigned int dir)
|
|
{
|
|
struct request *rq = blk_mq_rq_from_pdu(req);
|
|
struct bio_vec *vec;
|
|
unsigned int size;
|
|
int nr_bvec;
|
|
size_t offset;
|
|
|
|
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
|
|
vec = &rq->special_vec;
|
|
nr_bvec = 1;
|
|
size = blk_rq_payload_bytes(rq);
|
|
offset = 0;
|
|
} else {
|
|
struct bio *bio = req->curr_bio;
|
|
struct bvec_iter bi;
|
|
struct bio_vec bv;
|
|
|
|
vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
|
|
nr_bvec = 0;
|
|
bio_for_each_bvec(bv, bio, bi) {
|
|
nr_bvec++;
|
|
}
|
|
size = bio->bi_iter.bi_size;
|
|
offset = bio->bi_iter.bi_bvec_done;
|
|
}
|
|
|
|
iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
|
|
req->iter.iov_offset = offset;
|
|
}
|
|
|
|
static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
|
|
int len)
|
|
{
|
|
req->data_sent += len;
|
|
req->pdu_sent += len;
|
|
iov_iter_advance(&req->iter, len);
|
|
if (!iov_iter_count(&req->iter) &&
|
|
req->data_sent < req->data_len) {
|
|
req->curr_bio = req->curr_bio->bi_next;
|
|
nvme_tcp_init_iter(req, WRITE);
|
|
}
|
|
}
|
|
|
|
static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
|
|
{
|
|
int ret;
|
|
|
|
/* drain the send queue as much as we can... */
|
|
do {
|
|
ret = nvme_tcp_try_send(queue);
|
|
} while (ret > 0);
|
|
}
|
|
|
|
static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
|
|
{
|
|
return !list_empty(&queue->send_list) ||
|
|
!llist_empty(&queue->req_list);
|
|
}
|
|
|
|
static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
|
|
bool sync, bool last)
|
|
{
|
|
struct nvme_tcp_queue *queue = req->queue;
|
|
bool empty;
|
|
|
|
empty = llist_add(&req->lentry, &queue->req_list) &&
|
|
list_empty(&queue->send_list) && !queue->request;
|
|
|
|
/*
|
|
* if we're the first on the send_list and we can try to send
|
|
* directly, otherwise queue io_work. Also, only do that if we
|
|
* are on the same cpu, so we don't introduce contention.
|
|
*/
|
|
if (queue->io_cpu == raw_smp_processor_id() &&
|
|
sync && empty && mutex_trylock(&queue->send_mutex)) {
|
|
nvme_tcp_send_all(queue);
|
|
mutex_unlock(&queue->send_mutex);
|
|
}
|
|
|
|
if (last && nvme_tcp_queue_more(queue))
|
|
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
|
|
}
|
|
|
|
static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_request *req;
|
|
struct llist_node *node;
|
|
|
|
for (node = llist_del_all(&queue->req_list); node; node = node->next) {
|
|
req = llist_entry(node, struct nvme_tcp_request, lentry);
|
|
list_add(&req->entry, &queue->send_list);
|
|
}
|
|
}
|
|
|
|
static inline struct nvme_tcp_request *
|
|
nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_request *req;
|
|
|
|
req = list_first_entry_or_null(&queue->send_list,
|
|
struct nvme_tcp_request, entry);
|
|
if (!req) {
|
|
nvme_tcp_process_req_list(queue);
|
|
req = list_first_entry_or_null(&queue->send_list,
|
|
struct nvme_tcp_request, entry);
|
|
if (unlikely(!req))
|
|
return NULL;
|
|
}
|
|
|
|
list_del(&req->entry);
|
|
return req;
|
|
}
|
|
|
|
static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
|
|
__le32 *dgst)
|
|
{
|
|
ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
|
|
crypto_ahash_final(hash);
|
|
}
|
|
|
|
static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
|
|
struct page *page, off_t off, size_t len)
|
|
{
|
|
struct scatterlist sg;
|
|
|
|
sg_init_marker(&sg, 1);
|
|
sg_set_page(&sg, page, len, off);
|
|
ahash_request_set_crypt(hash, &sg, NULL, len);
|
|
crypto_ahash_update(hash);
|
|
}
|
|
|
|
static inline void nvme_tcp_hdgst(struct ahash_request *hash,
|
|
void *pdu, size_t len)
|
|
{
|
|
struct scatterlist sg;
|
|
|
|
sg_init_one(&sg, pdu, len);
|
|
ahash_request_set_crypt(hash, &sg, pdu + len, len);
|
|
crypto_ahash_digest(hash);
|
|
}
|
|
|
|
static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
|
|
void *pdu, size_t pdu_len)
|
|
{
|
|
struct nvme_tcp_hdr *hdr = pdu;
|
|
__le32 recv_digest;
|
|
__le32 exp_digest;
|
|
|
|
if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"queue %d: header digest flag is cleared\n",
|
|
nvme_tcp_queue_id(queue));
|
|
return -EPROTO;
|
|
}
|
|
|
|
recv_digest = *(__le32 *)(pdu + hdr->hlen);
|
|
nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
|
|
exp_digest = *(__le32 *)(pdu + hdr->hlen);
|
|
if (recv_digest != exp_digest) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"header digest error: recv %#x expected %#x\n",
|
|
le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
|
|
{
|
|
struct nvme_tcp_hdr *hdr = pdu;
|
|
u8 digest_len = nvme_tcp_hdgst_len(queue);
|
|
u32 len;
|
|
|
|
len = le32_to_cpu(hdr->plen) - hdr->hlen -
|
|
((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
|
|
|
|
if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"queue %d: data digest flag is cleared\n",
|
|
nvme_tcp_queue_id(queue));
|
|
return -EPROTO;
|
|
}
|
|
crypto_ahash_init(queue->rcv_hash);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
|
|
struct request *rq, unsigned int hctx_idx)
|
|
{
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
|
|
page_frag_free(req->pdu);
|
|
}
|
|
|
|
static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
|
|
struct request *rq, unsigned int hctx_idx,
|
|
unsigned int numa_node)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_tcp_cmd_pdu *pdu;
|
|
int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
|
|
u8 hdgst = nvme_tcp_hdgst_len(queue);
|
|
|
|
req->pdu = page_frag_alloc(&queue->pf_cache,
|
|
sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!req->pdu)
|
|
return -ENOMEM;
|
|
|
|
pdu = req->pdu;
|
|
req->queue = queue;
|
|
nvme_req(rq)->ctrl = &ctrl->ctrl;
|
|
nvme_req(rq)->cmd = &pdu->cmd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
|
|
|
|
hctx->driver_data = queue;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[0];
|
|
|
|
hctx->driver_data = queue;
|
|
return 0;
|
|
}
|
|
|
|
static enum nvme_tcp_recv_state
|
|
nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
|
|
{
|
|
return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
|
|
(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
|
|
NVME_TCP_RECV_DATA;
|
|
}
|
|
|
|
static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
|
|
{
|
|
queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
|
|
nvme_tcp_hdgst_len(queue);
|
|
queue->pdu_offset = 0;
|
|
queue->data_remaining = -1;
|
|
queue->ddgst_remaining = 0;
|
|
}
|
|
|
|
static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
|
|
return;
|
|
|
|
dev_warn(ctrl->device, "starting error recovery\n");
|
|
queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
|
|
}
|
|
|
|
static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
|
|
struct nvme_completion *cqe)
|
|
{
|
|
struct nvme_tcp_request *req;
|
|
struct request *rq;
|
|
|
|
rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
|
|
if (!rq) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"got bad cqe.command_id %#x on queue %d\n",
|
|
cqe->command_id, nvme_tcp_queue_id(queue));
|
|
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
|
|
return -EINVAL;
|
|
}
|
|
|
|
req = blk_mq_rq_to_pdu(rq);
|
|
if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
|
|
req->status = cqe->status;
|
|
|
|
if (!nvme_try_complete_req(rq, req->status, cqe->result))
|
|
nvme_complete_rq(rq);
|
|
queue->nr_cqe++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
|
|
struct nvme_tcp_data_pdu *pdu)
|
|
{
|
|
struct request *rq;
|
|
|
|
rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
|
|
if (!rq) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"got bad c2hdata.command_id %#x on queue %d\n",
|
|
pdu->command_id, nvme_tcp_queue_id(queue));
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (!blk_rq_payload_bytes(rq)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"queue %d tag %#x unexpected data\n",
|
|
nvme_tcp_queue_id(queue), rq->tag);
|
|
return -EIO;
|
|
}
|
|
|
|
queue->data_remaining = le32_to_cpu(pdu->data_length);
|
|
|
|
if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
|
|
unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"queue %d tag %#x SUCCESS set but not last PDU\n",
|
|
nvme_tcp_queue_id(queue), rq->tag);
|
|
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
|
|
return -EPROTO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
|
|
struct nvme_tcp_rsp_pdu *pdu)
|
|
{
|
|
struct nvme_completion *cqe = &pdu->cqe;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* AEN requests are special as they don't time out and can
|
|
* survive any kind of queue freeze and often don't respond to
|
|
* aborts. We don't even bother to allocate a struct request
|
|
* for them but rather special case them here.
|
|
*/
|
|
if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
|
|
cqe->command_id)))
|
|
nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
|
|
&cqe->result);
|
|
else
|
|
ret = nvme_tcp_process_nvme_cqe(queue, cqe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
|
|
{
|
|
struct nvme_tcp_data_pdu *data = req->pdu;
|
|
struct nvme_tcp_queue *queue = req->queue;
|
|
struct request *rq = blk_mq_rq_from_pdu(req);
|
|
u32 h2cdata_sent = req->pdu_len;
|
|
u8 hdgst = nvme_tcp_hdgst_len(queue);
|
|
u8 ddgst = nvme_tcp_ddgst_len(queue);
|
|
|
|
req->state = NVME_TCP_SEND_H2C_PDU;
|
|
req->offset = 0;
|
|
req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
|
|
req->pdu_sent = 0;
|
|
req->h2cdata_left -= req->pdu_len;
|
|
req->h2cdata_offset += h2cdata_sent;
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
data->hdr.type = nvme_tcp_h2c_data;
|
|
if (!req->h2cdata_left)
|
|
data->hdr.flags = NVME_TCP_F_DATA_LAST;
|
|
if (queue->hdr_digest)
|
|
data->hdr.flags |= NVME_TCP_F_HDGST;
|
|
if (queue->data_digest)
|
|
data->hdr.flags |= NVME_TCP_F_DDGST;
|
|
data->hdr.hlen = sizeof(*data);
|
|
data->hdr.pdo = data->hdr.hlen + hdgst;
|
|
data->hdr.plen =
|
|
cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
|
|
data->ttag = req->ttag;
|
|
data->command_id = nvme_cid(rq);
|
|
data->data_offset = cpu_to_le32(req->h2cdata_offset);
|
|
data->data_length = cpu_to_le32(req->pdu_len);
|
|
}
|
|
|
|
static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
|
|
struct nvme_tcp_r2t_pdu *pdu)
|
|
{
|
|
struct nvme_tcp_request *req;
|
|
struct request *rq;
|
|
u32 r2t_length = le32_to_cpu(pdu->r2t_length);
|
|
u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
|
|
|
|
rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
|
|
if (!rq) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"got bad r2t.command_id %#x on queue %d\n",
|
|
pdu->command_id, nvme_tcp_queue_id(queue));
|
|
return -ENOENT;
|
|
}
|
|
req = blk_mq_rq_to_pdu(rq);
|
|
|
|
if (unlikely(!r2t_length)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"req %d r2t len is %u, probably a bug...\n",
|
|
rq->tag, r2t_length);
|
|
return -EPROTO;
|
|
}
|
|
|
|
if (unlikely(req->data_sent + r2t_length > req->data_len)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"req %d r2t len %u exceeded data len %u (%zu sent)\n",
|
|
rq->tag, r2t_length, req->data_len, req->data_sent);
|
|
return -EPROTO;
|
|
}
|
|
|
|
if (unlikely(r2t_offset < req->data_sent)) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"req %d unexpected r2t offset %u (expected %zu)\n",
|
|
rq->tag, r2t_offset, req->data_sent);
|
|
return -EPROTO;
|
|
}
|
|
|
|
req->pdu_len = 0;
|
|
req->h2cdata_left = r2t_length;
|
|
req->h2cdata_offset = r2t_offset;
|
|
req->ttag = pdu->ttag;
|
|
|
|
nvme_tcp_setup_h2c_data_pdu(req);
|
|
nvme_tcp_queue_request(req, false, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
|
|
unsigned int *offset, size_t *len)
|
|
{
|
|
struct nvme_tcp_hdr *hdr;
|
|
char *pdu = queue->pdu;
|
|
size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
|
|
int ret;
|
|
|
|
ret = skb_copy_bits(skb, *offset,
|
|
&pdu[queue->pdu_offset], rcv_len);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
queue->pdu_remaining -= rcv_len;
|
|
queue->pdu_offset += rcv_len;
|
|
*offset += rcv_len;
|
|
*len -= rcv_len;
|
|
if (queue->pdu_remaining)
|
|
return 0;
|
|
|
|
hdr = queue->pdu;
|
|
if (queue->hdr_digest) {
|
|
ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
|
|
if (queue->data_digest) {
|
|
ret = nvme_tcp_check_ddgst(queue, queue->pdu);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
switch (hdr->type) {
|
|
case nvme_tcp_c2h_data:
|
|
return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
|
|
case nvme_tcp_rsp:
|
|
nvme_tcp_init_recv_ctx(queue);
|
|
return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
|
|
case nvme_tcp_r2t:
|
|
nvme_tcp_init_recv_ctx(queue);
|
|
return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
|
|
default:
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"unsupported pdu type (%d)\n", hdr->type);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static inline void nvme_tcp_end_request(struct request *rq, u16 status)
|
|
{
|
|
union nvme_result res = {};
|
|
|
|
if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
|
|
nvme_complete_rq(rq);
|
|
}
|
|
|
|
static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
|
|
unsigned int *offset, size_t *len)
|
|
{
|
|
struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
|
|
struct request *rq =
|
|
nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
|
|
while (true) {
|
|
int recv_len, ret;
|
|
|
|
recv_len = min_t(size_t, *len, queue->data_remaining);
|
|
if (!recv_len)
|
|
break;
|
|
|
|
if (!iov_iter_count(&req->iter)) {
|
|
req->curr_bio = req->curr_bio->bi_next;
|
|
|
|
/*
|
|
* If we don`t have any bios it means that controller
|
|
* sent more data than we requested, hence error
|
|
*/
|
|
if (!req->curr_bio) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"queue %d no space in request %#x",
|
|
nvme_tcp_queue_id(queue), rq->tag);
|
|
nvme_tcp_init_recv_ctx(queue);
|
|
return -EIO;
|
|
}
|
|
nvme_tcp_init_iter(req, READ);
|
|
}
|
|
|
|
/* we can read only from what is left in this bio */
|
|
recv_len = min_t(size_t, recv_len,
|
|
iov_iter_count(&req->iter));
|
|
|
|
if (queue->data_digest)
|
|
ret = skb_copy_and_hash_datagram_iter(skb, *offset,
|
|
&req->iter, recv_len, queue->rcv_hash);
|
|
else
|
|
ret = skb_copy_datagram_iter(skb, *offset,
|
|
&req->iter, recv_len);
|
|
if (ret) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"queue %d failed to copy request %#x data",
|
|
nvme_tcp_queue_id(queue), rq->tag);
|
|
return ret;
|
|
}
|
|
|
|
*len -= recv_len;
|
|
*offset += recv_len;
|
|
queue->data_remaining -= recv_len;
|
|
}
|
|
|
|
if (!queue->data_remaining) {
|
|
if (queue->data_digest) {
|
|
nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
|
|
queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
|
|
} else {
|
|
if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
|
|
nvme_tcp_end_request(rq,
|
|
le16_to_cpu(req->status));
|
|
queue->nr_cqe++;
|
|
}
|
|
nvme_tcp_init_recv_ctx(queue);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
|
|
struct sk_buff *skb, unsigned int *offset, size_t *len)
|
|
{
|
|
struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
|
|
char *ddgst = (char *)&queue->recv_ddgst;
|
|
size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
|
|
off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
|
|
int ret;
|
|
|
|
ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
queue->ddgst_remaining -= recv_len;
|
|
*offset += recv_len;
|
|
*len -= recv_len;
|
|
if (queue->ddgst_remaining)
|
|
return 0;
|
|
|
|
if (queue->recv_ddgst != queue->exp_ddgst) {
|
|
struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
|
|
pdu->command_id);
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
|
|
req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
|
|
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"data digest error: recv %#x expected %#x\n",
|
|
le32_to_cpu(queue->recv_ddgst),
|
|
le32_to_cpu(queue->exp_ddgst));
|
|
}
|
|
|
|
if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
|
|
struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
|
|
pdu->command_id);
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
|
|
nvme_tcp_end_request(rq, le16_to_cpu(req->status));
|
|
queue->nr_cqe++;
|
|
}
|
|
|
|
nvme_tcp_init_recv_ctx(queue);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
|
|
unsigned int offset, size_t len)
|
|
{
|
|
struct nvme_tcp_queue *queue = desc->arg.data;
|
|
size_t consumed = len;
|
|
int result;
|
|
|
|
while (len) {
|
|
switch (nvme_tcp_recv_state(queue)) {
|
|
case NVME_TCP_RECV_PDU:
|
|
result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
|
|
break;
|
|
case NVME_TCP_RECV_DATA:
|
|
result = nvme_tcp_recv_data(queue, skb, &offset, &len);
|
|
break;
|
|
case NVME_TCP_RECV_DDGST:
|
|
result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
|
|
break;
|
|
default:
|
|
result = -EFAULT;
|
|
}
|
|
if (result) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"receive failed: %d\n", result);
|
|
queue->rd_enabled = false;
|
|
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return consumed;
|
|
}
|
|
|
|
static void nvme_tcp_data_ready(struct sock *sk)
|
|
{
|
|
struct nvme_tcp_queue *queue;
|
|
|
|
read_lock_bh(&sk->sk_callback_lock);
|
|
queue = sk->sk_user_data;
|
|
if (likely(queue && queue->rd_enabled) &&
|
|
!test_bit(NVME_TCP_Q_POLLING, &queue->flags))
|
|
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
|
|
read_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
static void nvme_tcp_write_space(struct sock *sk)
|
|
{
|
|
struct nvme_tcp_queue *queue;
|
|
|
|
read_lock_bh(&sk->sk_callback_lock);
|
|
queue = sk->sk_user_data;
|
|
if (likely(queue && sk_stream_is_writeable(sk))) {
|
|
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
|
|
}
|
|
read_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
static void nvme_tcp_state_change(struct sock *sk)
|
|
{
|
|
struct nvme_tcp_queue *queue;
|
|
|
|
read_lock_bh(&sk->sk_callback_lock);
|
|
queue = sk->sk_user_data;
|
|
if (!queue)
|
|
goto done;
|
|
|
|
switch (sk->sk_state) {
|
|
case TCP_CLOSE:
|
|
case TCP_CLOSE_WAIT:
|
|
case TCP_LAST_ACK:
|
|
case TCP_FIN_WAIT1:
|
|
case TCP_FIN_WAIT2:
|
|
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
|
|
break;
|
|
default:
|
|
dev_info(queue->ctrl->ctrl.device,
|
|
"queue %d socket state %d\n",
|
|
nvme_tcp_queue_id(queue), sk->sk_state);
|
|
}
|
|
|
|
queue->state_change(sk);
|
|
done:
|
|
read_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
|
|
{
|
|
queue->request = NULL;
|
|
}
|
|
|
|
static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
|
|
{
|
|
if (nvme_tcp_async_req(req)) {
|
|
union nvme_result res = {};
|
|
|
|
nvme_complete_async_event(&req->queue->ctrl->ctrl,
|
|
cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
|
|
} else {
|
|
nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
|
|
NVME_SC_HOST_PATH_ERROR);
|
|
}
|
|
}
|
|
|
|
static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
|
|
{
|
|
struct nvme_tcp_queue *queue = req->queue;
|
|
int req_data_len = req->data_len;
|
|
u32 h2cdata_left = req->h2cdata_left;
|
|
|
|
while (true) {
|
|
struct page *page = nvme_tcp_req_cur_page(req);
|
|
size_t offset = nvme_tcp_req_cur_offset(req);
|
|
size_t len = nvme_tcp_req_cur_length(req);
|
|
bool last = nvme_tcp_pdu_last_send(req, len);
|
|
int req_data_sent = req->data_sent;
|
|
int ret, flags = MSG_DONTWAIT;
|
|
|
|
if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
|
|
flags |= MSG_EOR;
|
|
else
|
|
flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
|
|
|
|
if (sendpage_ok(page)) {
|
|
ret = kernel_sendpage(queue->sock, page, offset, len,
|
|
flags);
|
|
} else {
|
|
ret = sock_no_sendpage(queue->sock, page, offset, len,
|
|
flags);
|
|
}
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
if (queue->data_digest)
|
|
nvme_tcp_ddgst_update(queue->snd_hash, page,
|
|
offset, ret);
|
|
|
|
/*
|
|
* update the request iterator except for the last payload send
|
|
* in the request where we don't want to modify it as we may
|
|
* compete with the RX path completing the request.
|
|
*/
|
|
if (req_data_sent + ret < req_data_len)
|
|
nvme_tcp_advance_req(req, ret);
|
|
|
|
/* fully successful last send in current PDU */
|
|
if (last && ret == len) {
|
|
if (queue->data_digest) {
|
|
nvme_tcp_ddgst_final(queue->snd_hash,
|
|
&req->ddgst);
|
|
req->state = NVME_TCP_SEND_DDGST;
|
|
req->offset = 0;
|
|
} else {
|
|
if (h2cdata_left)
|
|
nvme_tcp_setup_h2c_data_pdu(req);
|
|
else
|
|
nvme_tcp_done_send_req(queue);
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
|
|
{
|
|
struct nvme_tcp_queue *queue = req->queue;
|
|
struct nvme_tcp_cmd_pdu *pdu = req->pdu;
|
|
bool inline_data = nvme_tcp_has_inline_data(req);
|
|
u8 hdgst = nvme_tcp_hdgst_len(queue);
|
|
int len = sizeof(*pdu) + hdgst - req->offset;
|
|
int flags = MSG_DONTWAIT;
|
|
int ret;
|
|
|
|
if (inline_data || nvme_tcp_queue_more(queue))
|
|
flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
|
|
else
|
|
flags |= MSG_EOR;
|
|
|
|
if (queue->hdr_digest && !req->offset)
|
|
nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
|
|
|
|
ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
|
|
offset_in_page(pdu) + req->offset, len, flags);
|
|
if (unlikely(ret <= 0))
|
|
return ret;
|
|
|
|
len -= ret;
|
|
if (!len) {
|
|
if (inline_data) {
|
|
req->state = NVME_TCP_SEND_DATA;
|
|
if (queue->data_digest)
|
|
crypto_ahash_init(queue->snd_hash);
|
|
} else {
|
|
nvme_tcp_done_send_req(queue);
|
|
}
|
|
return 1;
|
|
}
|
|
req->offset += ret;
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
|
|
{
|
|
struct nvme_tcp_queue *queue = req->queue;
|
|
struct nvme_tcp_data_pdu *pdu = req->pdu;
|
|
u8 hdgst = nvme_tcp_hdgst_len(queue);
|
|
int len = sizeof(*pdu) - req->offset + hdgst;
|
|
int ret;
|
|
|
|
if (queue->hdr_digest && !req->offset)
|
|
nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
|
|
|
|
if (!req->h2cdata_left)
|
|
ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
|
|
offset_in_page(pdu) + req->offset, len,
|
|
MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
|
|
else
|
|
ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
|
|
offset_in_page(pdu) + req->offset, len,
|
|
MSG_DONTWAIT | MSG_MORE);
|
|
if (unlikely(ret <= 0))
|
|
return ret;
|
|
|
|
len -= ret;
|
|
if (!len) {
|
|
req->state = NVME_TCP_SEND_DATA;
|
|
if (queue->data_digest)
|
|
crypto_ahash_init(queue->snd_hash);
|
|
return 1;
|
|
}
|
|
req->offset += ret;
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
|
|
{
|
|
struct nvme_tcp_queue *queue = req->queue;
|
|
size_t offset = req->offset;
|
|
u32 h2cdata_left = req->h2cdata_left;
|
|
int ret;
|
|
struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
|
|
struct kvec iov = {
|
|
.iov_base = (u8 *)&req->ddgst + req->offset,
|
|
.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
|
|
};
|
|
|
|
if (nvme_tcp_queue_more(queue))
|
|
msg.msg_flags |= MSG_MORE;
|
|
else
|
|
msg.msg_flags |= MSG_EOR;
|
|
|
|
ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
|
|
if (unlikely(ret <= 0))
|
|
return ret;
|
|
|
|
if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
|
|
if (h2cdata_left)
|
|
nvme_tcp_setup_h2c_data_pdu(req);
|
|
else
|
|
nvme_tcp_done_send_req(queue);
|
|
return 1;
|
|
}
|
|
|
|
req->offset += ret;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_request *req;
|
|
int ret = 1;
|
|
|
|
if (!queue->request) {
|
|
queue->request = nvme_tcp_fetch_request(queue);
|
|
if (!queue->request)
|
|
return 0;
|
|
}
|
|
req = queue->request;
|
|
|
|
if (req->state == NVME_TCP_SEND_CMD_PDU) {
|
|
ret = nvme_tcp_try_send_cmd_pdu(req);
|
|
if (ret <= 0)
|
|
goto done;
|
|
if (!nvme_tcp_has_inline_data(req))
|
|
return ret;
|
|
}
|
|
|
|
if (req->state == NVME_TCP_SEND_H2C_PDU) {
|
|
ret = nvme_tcp_try_send_data_pdu(req);
|
|
if (ret <= 0)
|
|
goto done;
|
|
}
|
|
|
|
if (req->state == NVME_TCP_SEND_DATA) {
|
|
ret = nvme_tcp_try_send_data(req);
|
|
if (ret <= 0)
|
|
goto done;
|
|
}
|
|
|
|
if (req->state == NVME_TCP_SEND_DDGST)
|
|
ret = nvme_tcp_try_send_ddgst(req);
|
|
done:
|
|
if (ret == -EAGAIN) {
|
|
ret = 0;
|
|
} else if (ret < 0) {
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"failed to send request %d\n", ret);
|
|
nvme_tcp_fail_request(queue->request);
|
|
nvme_tcp_done_send_req(queue);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct socket *sock = queue->sock;
|
|
struct sock *sk = sock->sk;
|
|
read_descriptor_t rd_desc;
|
|
int consumed;
|
|
|
|
rd_desc.arg.data = queue;
|
|
rd_desc.count = 1;
|
|
lock_sock(sk);
|
|
queue->nr_cqe = 0;
|
|
consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
|
|
release_sock(sk);
|
|
return consumed;
|
|
}
|
|
|
|
static void nvme_tcp_io_work(struct work_struct *w)
|
|
{
|
|
struct nvme_tcp_queue *queue =
|
|
container_of(w, struct nvme_tcp_queue, io_work);
|
|
unsigned long deadline = jiffies + msecs_to_jiffies(1);
|
|
|
|
do {
|
|
bool pending = false;
|
|
int result;
|
|
|
|
if (mutex_trylock(&queue->send_mutex)) {
|
|
result = nvme_tcp_try_send(queue);
|
|
mutex_unlock(&queue->send_mutex);
|
|
if (result > 0)
|
|
pending = true;
|
|
else if (unlikely(result < 0))
|
|
break;
|
|
}
|
|
|
|
result = nvme_tcp_try_recv(queue);
|
|
if (result > 0)
|
|
pending = true;
|
|
else if (unlikely(result < 0))
|
|
return;
|
|
|
|
if (!pending || !queue->rd_enabled)
|
|
return;
|
|
|
|
} while (!time_after(jiffies, deadline)); /* quota is exhausted */
|
|
|
|
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
|
|
}
|
|
|
|
static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
|
|
|
|
ahash_request_free(queue->rcv_hash);
|
|
ahash_request_free(queue->snd_hash);
|
|
crypto_free_ahash(tfm);
|
|
}
|
|
|
|
static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct crypto_ahash *tfm;
|
|
|
|
tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!queue->snd_hash)
|
|
goto free_tfm;
|
|
ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
|
|
|
|
queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!queue->rcv_hash)
|
|
goto free_snd_hash;
|
|
ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
|
|
|
|
return 0;
|
|
free_snd_hash:
|
|
ahash_request_free(queue->snd_hash);
|
|
free_tfm:
|
|
crypto_free_ahash(tfm);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
|
|
{
|
|
struct nvme_tcp_request *async = &ctrl->async_req;
|
|
|
|
page_frag_free(async->pdu);
|
|
}
|
|
|
|
static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
|
|
{
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[0];
|
|
struct nvme_tcp_request *async = &ctrl->async_req;
|
|
u8 hdgst = nvme_tcp_hdgst_len(queue);
|
|
|
|
async->pdu = page_frag_alloc(&queue->pf_cache,
|
|
sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!async->pdu)
|
|
return -ENOMEM;
|
|
|
|
async->queue = &ctrl->queues[0];
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
|
|
{
|
|
struct page *page;
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[qid];
|
|
|
|
if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
|
|
return;
|
|
|
|
if (queue->hdr_digest || queue->data_digest)
|
|
nvme_tcp_free_crypto(queue);
|
|
|
|
if (queue->pf_cache.va) {
|
|
page = virt_to_head_page(queue->pf_cache.va);
|
|
__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
|
|
queue->pf_cache.va = NULL;
|
|
}
|
|
sock_release(queue->sock);
|
|
kfree(queue->pdu);
|
|
mutex_destroy(&queue->send_mutex);
|
|
mutex_destroy(&queue->queue_lock);
|
|
}
|
|
|
|
static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_icreq_pdu *icreq;
|
|
struct nvme_tcp_icresp_pdu *icresp;
|
|
struct msghdr msg = {};
|
|
struct kvec iov;
|
|
bool ctrl_hdgst, ctrl_ddgst;
|
|
u32 maxh2cdata;
|
|
int ret;
|
|
|
|
icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
|
|
if (!icreq)
|
|
return -ENOMEM;
|
|
|
|
icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
|
|
if (!icresp) {
|
|
ret = -ENOMEM;
|
|
goto free_icreq;
|
|
}
|
|
|
|
icreq->hdr.type = nvme_tcp_icreq;
|
|
icreq->hdr.hlen = sizeof(*icreq);
|
|
icreq->hdr.pdo = 0;
|
|
icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
|
|
icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
|
|
icreq->maxr2t = 0; /* single inflight r2t supported */
|
|
icreq->hpda = 0; /* no alignment constraint */
|
|
if (queue->hdr_digest)
|
|
icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
|
|
if (queue->data_digest)
|
|
icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
|
|
|
|
iov.iov_base = icreq;
|
|
iov.iov_len = sizeof(*icreq);
|
|
ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
|
|
if (ret < 0)
|
|
goto free_icresp;
|
|
|
|
memset(&msg, 0, sizeof(msg));
|
|
iov.iov_base = icresp;
|
|
iov.iov_len = sizeof(*icresp);
|
|
ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
|
|
iov.iov_len, msg.msg_flags);
|
|
if (ret < 0)
|
|
goto free_icresp;
|
|
|
|
ret = -EINVAL;
|
|
if (icresp->hdr.type != nvme_tcp_icresp) {
|
|
pr_err("queue %d: bad type returned %d\n",
|
|
nvme_tcp_queue_id(queue), icresp->hdr.type);
|
|
goto free_icresp;
|
|
}
|
|
|
|
if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
|
|
pr_err("queue %d: bad pdu length returned %d\n",
|
|
nvme_tcp_queue_id(queue), icresp->hdr.plen);
|
|
goto free_icresp;
|
|
}
|
|
|
|
if (icresp->pfv != NVME_TCP_PFV_1_0) {
|
|
pr_err("queue %d: bad pfv returned %d\n",
|
|
nvme_tcp_queue_id(queue), icresp->pfv);
|
|
goto free_icresp;
|
|
}
|
|
|
|
ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
|
|
if ((queue->data_digest && !ctrl_ddgst) ||
|
|
(!queue->data_digest && ctrl_ddgst)) {
|
|
pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
|
|
nvme_tcp_queue_id(queue),
|
|
queue->data_digest ? "enabled" : "disabled",
|
|
ctrl_ddgst ? "enabled" : "disabled");
|
|
goto free_icresp;
|
|
}
|
|
|
|
ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
|
|
if ((queue->hdr_digest && !ctrl_hdgst) ||
|
|
(!queue->hdr_digest && ctrl_hdgst)) {
|
|
pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
|
|
nvme_tcp_queue_id(queue),
|
|
queue->hdr_digest ? "enabled" : "disabled",
|
|
ctrl_hdgst ? "enabled" : "disabled");
|
|
goto free_icresp;
|
|
}
|
|
|
|
if (icresp->cpda != 0) {
|
|
pr_err("queue %d: unsupported cpda returned %d\n",
|
|
nvme_tcp_queue_id(queue), icresp->cpda);
|
|
goto free_icresp;
|
|
}
|
|
|
|
maxh2cdata = le32_to_cpu(icresp->maxdata);
|
|
if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
|
|
pr_err("queue %d: invalid maxh2cdata returned %u\n",
|
|
nvme_tcp_queue_id(queue), maxh2cdata);
|
|
goto free_icresp;
|
|
}
|
|
queue->maxh2cdata = maxh2cdata;
|
|
|
|
ret = 0;
|
|
free_icresp:
|
|
kfree(icresp);
|
|
free_icreq:
|
|
kfree(icreq);
|
|
return ret;
|
|
}
|
|
|
|
static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
|
|
{
|
|
return nvme_tcp_queue_id(queue) == 0;
|
|
}
|
|
|
|
static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
|
|
int qid = nvme_tcp_queue_id(queue);
|
|
|
|
return !nvme_tcp_admin_queue(queue) &&
|
|
qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
}
|
|
|
|
static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
|
|
int qid = nvme_tcp_queue_id(queue);
|
|
|
|
return !nvme_tcp_admin_queue(queue) &&
|
|
!nvme_tcp_default_queue(queue) &&
|
|
qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
|
|
ctrl->io_queues[HCTX_TYPE_READ];
|
|
}
|
|
|
|
static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
|
|
int qid = nvme_tcp_queue_id(queue);
|
|
|
|
return !nvme_tcp_admin_queue(queue) &&
|
|
!nvme_tcp_default_queue(queue) &&
|
|
!nvme_tcp_read_queue(queue) &&
|
|
qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
|
|
ctrl->io_queues[HCTX_TYPE_READ] +
|
|
ctrl->io_queues[HCTX_TYPE_POLL];
|
|
}
|
|
|
|
static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
|
|
int qid = nvme_tcp_queue_id(queue);
|
|
int n = 0;
|
|
|
|
if (nvme_tcp_default_queue(queue))
|
|
n = qid - 1;
|
|
else if (nvme_tcp_read_queue(queue))
|
|
n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
|
|
else if (nvme_tcp_poll_queue(queue))
|
|
n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
|
|
ctrl->io_queues[HCTX_TYPE_READ] - 1;
|
|
queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
|
|
}
|
|
|
|
static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[qid];
|
|
int ret, rcv_pdu_size;
|
|
|
|
mutex_init(&queue->queue_lock);
|
|
queue->ctrl = ctrl;
|
|
init_llist_head(&queue->req_list);
|
|
INIT_LIST_HEAD(&queue->send_list);
|
|
mutex_init(&queue->send_mutex);
|
|
INIT_WORK(&queue->io_work, nvme_tcp_io_work);
|
|
|
|
if (qid > 0)
|
|
queue->cmnd_capsule_len = nctrl->ioccsz * 16;
|
|
else
|
|
queue->cmnd_capsule_len = sizeof(struct nvme_command) +
|
|
NVME_TCP_ADMIN_CCSZ;
|
|
|
|
ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
|
|
IPPROTO_TCP, &queue->sock);
|
|
if (ret) {
|
|
dev_err(nctrl->device,
|
|
"failed to create socket: %d\n", ret);
|
|
goto err_destroy_mutex;
|
|
}
|
|
|
|
nvme_tcp_reclassify_socket(queue->sock);
|
|
|
|
/* Single syn retry */
|
|
tcp_sock_set_syncnt(queue->sock->sk, 1);
|
|
|
|
/* Set TCP no delay */
|
|
tcp_sock_set_nodelay(queue->sock->sk);
|
|
|
|
/*
|
|
* Cleanup whatever is sitting in the TCP transmit queue on socket
|
|
* close. This is done to prevent stale data from being sent should
|
|
* the network connection be restored before TCP times out.
|
|
*/
|
|
sock_no_linger(queue->sock->sk);
|
|
|
|
if (so_priority > 0)
|
|
sock_set_priority(queue->sock->sk, so_priority);
|
|
|
|
/* Set socket type of service */
|
|
if (nctrl->opts->tos >= 0)
|
|
ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
|
|
|
|
/* Set 10 seconds timeout for icresp recvmsg */
|
|
queue->sock->sk->sk_rcvtimeo = 10 * HZ;
|
|
|
|
queue->sock->sk->sk_allocation = GFP_ATOMIC;
|
|
nvme_tcp_set_queue_io_cpu(queue);
|
|
queue->request = NULL;
|
|
queue->data_remaining = 0;
|
|
queue->ddgst_remaining = 0;
|
|
queue->pdu_remaining = 0;
|
|
queue->pdu_offset = 0;
|
|
sk_set_memalloc(queue->sock->sk);
|
|
|
|
if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
|
|
ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
|
|
sizeof(ctrl->src_addr));
|
|
if (ret) {
|
|
dev_err(nctrl->device,
|
|
"failed to bind queue %d socket %d\n",
|
|
qid, ret);
|
|
goto err_sock;
|
|
}
|
|
}
|
|
|
|
if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
|
|
char *iface = nctrl->opts->host_iface;
|
|
sockptr_t optval = KERNEL_SOCKPTR(iface);
|
|
|
|
ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
|
|
optval, strlen(iface));
|
|
if (ret) {
|
|
dev_err(nctrl->device,
|
|
"failed to bind to interface %s queue %d err %d\n",
|
|
iface, qid, ret);
|
|
goto err_sock;
|
|
}
|
|
}
|
|
|
|
queue->hdr_digest = nctrl->opts->hdr_digest;
|
|
queue->data_digest = nctrl->opts->data_digest;
|
|
if (queue->hdr_digest || queue->data_digest) {
|
|
ret = nvme_tcp_alloc_crypto(queue);
|
|
if (ret) {
|
|
dev_err(nctrl->device,
|
|
"failed to allocate queue %d crypto\n", qid);
|
|
goto err_sock;
|
|
}
|
|
}
|
|
|
|
rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
|
|
nvme_tcp_hdgst_len(queue);
|
|
queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
|
|
if (!queue->pdu) {
|
|
ret = -ENOMEM;
|
|
goto err_crypto;
|
|
}
|
|
|
|
dev_dbg(nctrl->device, "connecting queue %d\n",
|
|
nvme_tcp_queue_id(queue));
|
|
|
|
ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
|
|
sizeof(ctrl->addr), 0);
|
|
if (ret) {
|
|
dev_err(nctrl->device,
|
|
"failed to connect socket: %d\n", ret);
|
|
goto err_rcv_pdu;
|
|
}
|
|
|
|
ret = nvme_tcp_init_connection(queue);
|
|
if (ret)
|
|
goto err_init_connect;
|
|
|
|
queue->rd_enabled = true;
|
|
set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
|
|
nvme_tcp_init_recv_ctx(queue);
|
|
|
|
write_lock_bh(&queue->sock->sk->sk_callback_lock);
|
|
queue->sock->sk->sk_user_data = queue;
|
|
queue->state_change = queue->sock->sk->sk_state_change;
|
|
queue->data_ready = queue->sock->sk->sk_data_ready;
|
|
queue->write_space = queue->sock->sk->sk_write_space;
|
|
queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
|
|
queue->sock->sk->sk_state_change = nvme_tcp_state_change;
|
|
queue->sock->sk->sk_write_space = nvme_tcp_write_space;
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
queue->sock->sk->sk_ll_usec = 1;
|
|
#endif
|
|
write_unlock_bh(&queue->sock->sk->sk_callback_lock);
|
|
|
|
return 0;
|
|
|
|
err_init_connect:
|
|
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
|
|
err_rcv_pdu:
|
|
kfree(queue->pdu);
|
|
err_crypto:
|
|
if (queue->hdr_digest || queue->data_digest)
|
|
nvme_tcp_free_crypto(queue);
|
|
err_sock:
|
|
sock_release(queue->sock);
|
|
queue->sock = NULL;
|
|
err_destroy_mutex:
|
|
mutex_destroy(&queue->send_mutex);
|
|
mutex_destroy(&queue->queue_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
|
|
{
|
|
struct socket *sock = queue->sock;
|
|
|
|
write_lock_bh(&sock->sk->sk_callback_lock);
|
|
sock->sk->sk_user_data = NULL;
|
|
sock->sk->sk_data_ready = queue->data_ready;
|
|
sock->sk->sk_state_change = queue->state_change;
|
|
sock->sk->sk_write_space = queue->write_space;
|
|
write_unlock_bh(&sock->sk->sk_callback_lock);
|
|
}
|
|
|
|
static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
|
|
{
|
|
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
|
|
nvme_tcp_restore_sock_calls(queue);
|
|
cancel_work_sync(&queue->io_work);
|
|
}
|
|
|
|
static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[qid];
|
|
|
|
if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
|
|
return;
|
|
|
|
mutex_lock(&queue->queue_lock);
|
|
if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
|
|
__nvme_tcp_stop_queue(queue);
|
|
mutex_unlock(&queue->queue_lock);
|
|
}
|
|
|
|
static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
|
|
int ret;
|
|
|
|
if (idx)
|
|
ret = nvmf_connect_io_queue(nctrl, idx);
|
|
else
|
|
ret = nvmf_connect_admin_queue(nctrl);
|
|
|
|
if (!ret) {
|
|
set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
|
|
} else {
|
|
if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
|
|
__nvme_tcp_stop_queue(&ctrl->queues[idx]);
|
|
dev_err(nctrl->device,
|
|
"failed to connect queue: %d ret=%d\n", idx, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (to_tcp_ctrl(ctrl)->async_req.pdu) {
|
|
cancel_work_sync(&ctrl->async_event_work);
|
|
nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
|
|
to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
|
|
}
|
|
|
|
nvme_tcp_free_queue(ctrl, 0);
|
|
}
|
|
|
|
static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < ctrl->queue_count; i++)
|
|
nvme_tcp_free_queue(ctrl, i);
|
|
}
|
|
|
|
static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < ctrl->queue_count; i++)
|
|
nvme_tcp_stop_queue(ctrl, i);
|
|
}
|
|
|
|
static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
|
|
int first, int last)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = first; i < last; i++) {
|
|
ret = nvme_tcp_start_queue(ctrl, i);
|
|
if (ret)
|
|
goto out_stop_queues;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_stop_queues:
|
|
for (i--; i >= first; i--)
|
|
nvme_tcp_stop_queue(ctrl, i);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
|
|
{
|
|
int ret;
|
|
|
|
ret = nvme_tcp_alloc_queue(ctrl, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
|
|
if (ret)
|
|
goto out_free_queue;
|
|
|
|
return 0;
|
|
|
|
out_free_queue:
|
|
nvme_tcp_free_queue(ctrl, 0);
|
|
return ret;
|
|
}
|
|
|
|
static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 1; i < ctrl->queue_count; i++) {
|
|
ret = nvme_tcp_alloc_queue(ctrl, i);
|
|
if (ret)
|
|
goto out_free_queues;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_queues:
|
|
for (i--; i >= 1; i--)
|
|
nvme_tcp_free_queue(ctrl, i);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
unsigned int nr_io_queues;
|
|
|
|
nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
|
|
nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
|
|
nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
|
|
|
|
return nr_io_queues;
|
|
}
|
|
|
|
static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
|
|
unsigned int nr_io_queues)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
|
|
struct nvmf_ctrl_options *opts = nctrl->opts;
|
|
|
|
if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
|
|
/*
|
|
* separate read/write queues
|
|
* hand out dedicated default queues only after we have
|
|
* sufficient read queues.
|
|
*/
|
|
ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
|
|
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT] =
|
|
min(opts->nr_write_queues, nr_io_queues);
|
|
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
} else {
|
|
/*
|
|
* shared read/write queues
|
|
* either no write queues were requested, or we don't have
|
|
* sufficient queue count to have dedicated default queues.
|
|
*/
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT] =
|
|
min(opts->nr_io_queues, nr_io_queues);
|
|
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
}
|
|
|
|
if (opts->nr_poll_queues && nr_io_queues) {
|
|
/* map dedicated poll queues only if we have queues left */
|
|
ctrl->io_queues[HCTX_TYPE_POLL] =
|
|
min(opts->nr_poll_queues, nr_io_queues);
|
|
}
|
|
}
|
|
|
|
static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
unsigned int nr_io_queues;
|
|
int ret;
|
|
|
|
nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
|
|
ret = nvme_set_queue_count(ctrl, &nr_io_queues);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nr_io_queues == 0) {
|
|
dev_err(ctrl->device,
|
|
"unable to set any I/O queues\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ctrl->queue_count = nr_io_queues + 1;
|
|
dev_info(ctrl->device,
|
|
"creating %d I/O queues.\n", nr_io_queues);
|
|
|
|
nvme_tcp_set_io_queues(ctrl, nr_io_queues);
|
|
|
|
return __nvme_tcp_alloc_io_queues(ctrl);
|
|
}
|
|
|
|
static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
|
|
{
|
|
nvme_tcp_stop_io_queues(ctrl);
|
|
if (remove)
|
|
nvme_remove_io_tag_set(ctrl);
|
|
nvme_tcp_free_io_queues(ctrl);
|
|
}
|
|
|
|
static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
|
|
{
|
|
int ret, nr_queues;
|
|
|
|
ret = nvme_tcp_alloc_io_queues(ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (new) {
|
|
ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
|
|
&nvme_tcp_mq_ops,
|
|
BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING,
|
|
sizeof(struct nvme_tcp_request));
|
|
if (ret)
|
|
goto out_free_io_queues;
|
|
}
|
|
|
|
/*
|
|
* Only start IO queues for which we have allocated the tagset
|
|
* and limitted it to the available queues. On reconnects, the
|
|
* queue number might have changed.
|
|
*/
|
|
nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
|
|
ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
|
|
if (ret)
|
|
goto out_cleanup_connect_q;
|
|
|
|
if (!new) {
|
|
nvme_start_queues(ctrl);
|
|
if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
|
|
/*
|
|
* If we timed out waiting for freeze we are likely to
|
|
* be stuck. Fail the controller initialization just
|
|
* to be safe.
|
|
*/
|
|
ret = -ENODEV;
|
|
goto out_wait_freeze_timed_out;
|
|
}
|
|
blk_mq_update_nr_hw_queues(ctrl->tagset,
|
|
ctrl->queue_count - 1);
|
|
nvme_unfreeze(ctrl);
|
|
}
|
|
|
|
/*
|
|
* If the number of queues has increased (reconnect case)
|
|
* start all new queues now.
|
|
*/
|
|
ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
|
|
ctrl->tagset->nr_hw_queues + 1);
|
|
if (ret)
|
|
goto out_wait_freeze_timed_out;
|
|
|
|
return 0;
|
|
|
|
out_wait_freeze_timed_out:
|
|
nvme_stop_queues(ctrl);
|
|
nvme_sync_io_queues(ctrl);
|
|
nvme_tcp_stop_io_queues(ctrl);
|
|
out_cleanup_connect_q:
|
|
nvme_cancel_tagset(ctrl);
|
|
if (new)
|
|
nvme_remove_io_tag_set(ctrl);
|
|
out_free_io_queues:
|
|
nvme_tcp_free_io_queues(ctrl);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
|
|
{
|
|
nvme_tcp_stop_queue(ctrl, 0);
|
|
if (remove)
|
|
nvme_remove_admin_tag_set(ctrl);
|
|
nvme_tcp_free_admin_queue(ctrl);
|
|
}
|
|
|
|
static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
|
|
{
|
|
int error;
|
|
|
|
error = nvme_tcp_alloc_admin_queue(ctrl);
|
|
if (error)
|
|
return error;
|
|
|
|
if (new) {
|
|
error = nvme_alloc_admin_tag_set(ctrl,
|
|
&to_tcp_ctrl(ctrl)->admin_tag_set,
|
|
&nvme_tcp_admin_mq_ops, BLK_MQ_F_BLOCKING,
|
|
sizeof(struct nvme_tcp_request));
|
|
if (error)
|
|
goto out_free_queue;
|
|
}
|
|
|
|
error = nvme_tcp_start_queue(ctrl, 0);
|
|
if (error)
|
|
goto out_cleanup_tagset;
|
|
|
|
error = nvme_enable_ctrl(ctrl);
|
|
if (error)
|
|
goto out_stop_queue;
|
|
|
|
nvme_start_admin_queue(ctrl);
|
|
|
|
error = nvme_init_ctrl_finish(ctrl, false);
|
|
if (error)
|
|
goto out_quiesce_queue;
|
|
|
|
return 0;
|
|
|
|
out_quiesce_queue:
|
|
nvme_stop_admin_queue(ctrl);
|
|
blk_sync_queue(ctrl->admin_q);
|
|
out_stop_queue:
|
|
nvme_tcp_stop_queue(ctrl, 0);
|
|
nvme_cancel_admin_tagset(ctrl);
|
|
out_cleanup_tagset:
|
|
if (new)
|
|
nvme_remove_admin_tag_set(ctrl);
|
|
out_free_queue:
|
|
nvme_tcp_free_admin_queue(ctrl);
|
|
return error;
|
|
}
|
|
|
|
static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
|
|
bool remove)
|
|
{
|
|
nvme_stop_admin_queue(ctrl);
|
|
blk_sync_queue(ctrl->admin_q);
|
|
nvme_tcp_stop_queue(ctrl, 0);
|
|
nvme_cancel_admin_tagset(ctrl);
|
|
if (remove)
|
|
nvme_start_admin_queue(ctrl);
|
|
nvme_tcp_destroy_admin_queue(ctrl, remove);
|
|
}
|
|
|
|
static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
|
|
bool remove)
|
|
{
|
|
if (ctrl->queue_count <= 1)
|
|
return;
|
|
nvme_stop_admin_queue(ctrl);
|
|
nvme_start_freeze(ctrl);
|
|
nvme_stop_queues(ctrl);
|
|
nvme_sync_io_queues(ctrl);
|
|
nvme_tcp_stop_io_queues(ctrl);
|
|
nvme_cancel_tagset(ctrl);
|
|
if (remove)
|
|
nvme_start_queues(ctrl);
|
|
nvme_tcp_destroy_io_queues(ctrl, remove);
|
|
}
|
|
|
|
static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
|
|
{
|
|
/* If we are resetting/deleting then do nothing */
|
|
if (ctrl->state != NVME_CTRL_CONNECTING) {
|
|
WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
|
|
ctrl->state == NVME_CTRL_LIVE);
|
|
return;
|
|
}
|
|
|
|
if (nvmf_should_reconnect(ctrl)) {
|
|
dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
|
|
ctrl->opts->reconnect_delay);
|
|
queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
|
|
ctrl->opts->reconnect_delay * HZ);
|
|
} else {
|
|
dev_info(ctrl->device, "Removing controller...\n");
|
|
nvme_delete_ctrl(ctrl);
|
|
}
|
|
}
|
|
|
|
static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
|
|
{
|
|
struct nvmf_ctrl_options *opts = ctrl->opts;
|
|
int ret;
|
|
|
|
ret = nvme_tcp_configure_admin_queue(ctrl, new);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctrl->icdoff) {
|
|
ret = -EOPNOTSUPP;
|
|
dev_err(ctrl->device, "icdoff is not supported!\n");
|
|
goto destroy_admin;
|
|
}
|
|
|
|
if (!nvme_ctrl_sgl_supported(ctrl)) {
|
|
ret = -EOPNOTSUPP;
|
|
dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
|
|
goto destroy_admin;
|
|
}
|
|
|
|
if (opts->queue_size > ctrl->sqsize + 1)
|
|
dev_warn(ctrl->device,
|
|
"queue_size %zu > ctrl sqsize %u, clamping down\n",
|
|
opts->queue_size, ctrl->sqsize + 1);
|
|
|
|
if (ctrl->sqsize + 1 > ctrl->maxcmd) {
|
|
dev_warn(ctrl->device,
|
|
"sqsize %u > ctrl maxcmd %u, clamping down\n",
|
|
ctrl->sqsize + 1, ctrl->maxcmd);
|
|
ctrl->sqsize = ctrl->maxcmd - 1;
|
|
}
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
ret = nvme_tcp_configure_io_queues(ctrl, new);
|
|
if (ret)
|
|
goto destroy_admin;
|
|
}
|
|
|
|
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
|
|
/*
|
|
* state change failure is ok if we started ctrl delete,
|
|
* unless we're during creation of a new controller to
|
|
* avoid races with teardown flow.
|
|
*/
|
|
WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
|
|
ctrl->state != NVME_CTRL_DELETING_NOIO);
|
|
WARN_ON_ONCE(new);
|
|
ret = -EINVAL;
|
|
goto destroy_io;
|
|
}
|
|
|
|
nvme_start_ctrl(ctrl);
|
|
return 0;
|
|
|
|
destroy_io:
|
|
if (ctrl->queue_count > 1) {
|
|
nvme_stop_queues(ctrl);
|
|
nvme_sync_io_queues(ctrl);
|
|
nvme_tcp_stop_io_queues(ctrl);
|
|
nvme_cancel_tagset(ctrl);
|
|
nvme_tcp_destroy_io_queues(ctrl, new);
|
|
}
|
|
destroy_admin:
|
|
nvme_stop_admin_queue(ctrl);
|
|
blk_sync_queue(ctrl->admin_q);
|
|
nvme_tcp_stop_queue(ctrl, 0);
|
|
nvme_cancel_admin_tagset(ctrl);
|
|
nvme_tcp_destroy_admin_queue(ctrl, new);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
|
|
struct nvme_tcp_ctrl, connect_work);
|
|
struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
|
|
|
|
++ctrl->nr_reconnects;
|
|
|
|
if (nvme_tcp_setup_ctrl(ctrl, false))
|
|
goto requeue;
|
|
|
|
dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
|
|
ctrl->nr_reconnects);
|
|
|
|
ctrl->nr_reconnects = 0;
|
|
|
|
return;
|
|
|
|
requeue:
|
|
dev_info(ctrl->device, "Failed reconnect attempt %d\n",
|
|
ctrl->nr_reconnects);
|
|
nvme_tcp_reconnect_or_remove(ctrl);
|
|
}
|
|
|
|
static void nvme_tcp_error_recovery_work(struct work_struct *work)
|
|
{
|
|
struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
|
|
struct nvme_tcp_ctrl, err_work);
|
|
struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
|
|
|
|
nvme_auth_stop(ctrl);
|
|
nvme_stop_keep_alive(ctrl);
|
|
flush_work(&ctrl->async_event_work);
|
|
nvme_tcp_teardown_io_queues(ctrl, false);
|
|
/* unquiesce to fail fast pending requests */
|
|
nvme_start_queues(ctrl);
|
|
nvme_tcp_teardown_admin_queue(ctrl, false);
|
|
nvme_start_admin_queue(ctrl);
|
|
|
|
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
|
|
/* state change failure is ok if we started ctrl delete */
|
|
WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
|
|
ctrl->state != NVME_CTRL_DELETING_NOIO);
|
|
return;
|
|
}
|
|
|
|
nvme_tcp_reconnect_or_remove(ctrl);
|
|
}
|
|
|
|
static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
|
|
{
|
|
nvme_tcp_teardown_io_queues(ctrl, shutdown);
|
|
nvme_stop_admin_queue(ctrl);
|
|
if (shutdown)
|
|
nvme_shutdown_ctrl(ctrl);
|
|
else
|
|
nvme_disable_ctrl(ctrl);
|
|
nvme_tcp_teardown_admin_queue(ctrl, shutdown);
|
|
}
|
|
|
|
static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
nvme_tcp_teardown_ctrl(ctrl, true);
|
|
}
|
|
|
|
static void nvme_reset_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(work, struct nvme_ctrl, reset_work);
|
|
|
|
nvme_stop_ctrl(ctrl);
|
|
nvme_tcp_teardown_ctrl(ctrl, false);
|
|
|
|
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
|
|
/* state change failure is ok if we started ctrl delete */
|
|
WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
|
|
ctrl->state != NVME_CTRL_DELETING_NOIO);
|
|
return;
|
|
}
|
|
|
|
if (nvme_tcp_setup_ctrl(ctrl, false))
|
|
goto out_fail;
|
|
|
|
return;
|
|
|
|
out_fail:
|
|
++ctrl->nr_reconnects;
|
|
nvme_tcp_reconnect_or_remove(ctrl);
|
|
}
|
|
|
|
static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
flush_work(&to_tcp_ctrl(ctrl)->err_work);
|
|
cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
|
|
}
|
|
|
|
static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
|
|
|
|
if (list_empty(&ctrl->list))
|
|
goto free_ctrl;
|
|
|
|
mutex_lock(&nvme_tcp_ctrl_mutex);
|
|
list_del(&ctrl->list);
|
|
mutex_unlock(&nvme_tcp_ctrl_mutex);
|
|
|
|
nvmf_free_options(nctrl->opts);
|
|
free_ctrl:
|
|
kfree(ctrl->queues);
|
|
kfree(ctrl);
|
|
}
|
|
|
|
static void nvme_tcp_set_sg_null(struct nvme_command *c)
|
|
{
|
|
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
|
|
|
|
sg->addr = 0;
|
|
sg->length = 0;
|
|
sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
|
|
NVME_SGL_FMT_TRANSPORT_A;
|
|
}
|
|
|
|
static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
|
|
struct nvme_command *c, u32 data_len)
|
|
{
|
|
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
|
|
|
|
sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
|
|
sg->length = cpu_to_le32(data_len);
|
|
sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
|
|
}
|
|
|
|
static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
|
|
u32 data_len)
|
|
{
|
|
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
|
|
|
|
sg->addr = 0;
|
|
sg->length = cpu_to_le32(data_len);
|
|
sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
|
|
NVME_SGL_FMT_TRANSPORT_A;
|
|
}
|
|
|
|
static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
|
|
struct nvme_tcp_queue *queue = &ctrl->queues[0];
|
|
struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
|
|
struct nvme_command *cmd = &pdu->cmd;
|
|
u8 hdgst = nvme_tcp_hdgst_len(queue);
|
|
|
|
memset(pdu, 0, sizeof(*pdu));
|
|
pdu->hdr.type = nvme_tcp_cmd;
|
|
if (queue->hdr_digest)
|
|
pdu->hdr.flags |= NVME_TCP_F_HDGST;
|
|
pdu->hdr.hlen = sizeof(*pdu);
|
|
pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
|
|
|
|
cmd->common.opcode = nvme_admin_async_event;
|
|
cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
|
|
cmd->common.flags |= NVME_CMD_SGL_METABUF;
|
|
nvme_tcp_set_sg_null(cmd);
|
|
|
|
ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
|
|
ctrl->async_req.offset = 0;
|
|
ctrl->async_req.curr_bio = NULL;
|
|
ctrl->async_req.data_len = 0;
|
|
|
|
nvme_tcp_queue_request(&ctrl->async_req, true, true);
|
|
}
|
|
|
|
static void nvme_tcp_complete_timed_out(struct request *rq)
|
|
{
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
|
|
|
|
nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
|
|
nvmf_complete_timed_out_request(rq);
|
|
}
|
|
|
|
static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
|
|
{
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
|
|
struct nvme_tcp_cmd_pdu *pdu = req->pdu;
|
|
|
|
dev_warn(ctrl->device,
|
|
"queue %d: timeout request %#x type %d\n",
|
|
nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
|
|
|
|
if (ctrl->state != NVME_CTRL_LIVE) {
|
|
/*
|
|
* If we are resetting, connecting or deleting we should
|
|
* complete immediately because we may block controller
|
|
* teardown or setup sequence
|
|
* - ctrl disable/shutdown fabrics requests
|
|
* - connect requests
|
|
* - initialization admin requests
|
|
* - I/O requests that entered after unquiescing and
|
|
* the controller stopped responding
|
|
*
|
|
* All other requests should be cancelled by the error
|
|
* recovery work, so it's fine that we fail it here.
|
|
*/
|
|
nvme_tcp_complete_timed_out(rq);
|
|
return BLK_EH_DONE;
|
|
}
|
|
|
|
/*
|
|
* LIVE state should trigger the normal error recovery which will
|
|
* handle completing this request.
|
|
*/
|
|
nvme_tcp_error_recovery(ctrl);
|
|
return BLK_EH_RESET_TIMER;
|
|
}
|
|
|
|
static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
|
|
struct request *rq)
|
|
{
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_tcp_cmd_pdu *pdu = req->pdu;
|
|
struct nvme_command *c = &pdu->cmd;
|
|
|
|
c->common.flags |= NVME_CMD_SGL_METABUF;
|
|
|
|
if (!blk_rq_nr_phys_segments(rq))
|
|
nvme_tcp_set_sg_null(c);
|
|
else if (rq_data_dir(rq) == WRITE &&
|
|
req->data_len <= nvme_tcp_inline_data_size(req))
|
|
nvme_tcp_set_sg_inline(queue, c, req->data_len);
|
|
else
|
|
nvme_tcp_set_sg_host_data(c, req->data_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
|
|
struct request *rq)
|
|
{
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
struct nvme_tcp_cmd_pdu *pdu = req->pdu;
|
|
struct nvme_tcp_queue *queue = req->queue;
|
|
u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
|
|
blk_status_t ret;
|
|
|
|
ret = nvme_setup_cmd(ns, rq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
req->state = NVME_TCP_SEND_CMD_PDU;
|
|
req->status = cpu_to_le16(NVME_SC_SUCCESS);
|
|
req->offset = 0;
|
|
req->data_sent = 0;
|
|
req->pdu_len = 0;
|
|
req->pdu_sent = 0;
|
|
req->h2cdata_left = 0;
|
|
req->data_len = blk_rq_nr_phys_segments(rq) ?
|
|
blk_rq_payload_bytes(rq) : 0;
|
|
req->curr_bio = rq->bio;
|
|
if (req->curr_bio && req->data_len)
|
|
nvme_tcp_init_iter(req, rq_data_dir(rq));
|
|
|
|
if (rq_data_dir(rq) == WRITE &&
|
|
req->data_len <= nvme_tcp_inline_data_size(req))
|
|
req->pdu_len = req->data_len;
|
|
|
|
pdu->hdr.type = nvme_tcp_cmd;
|
|
pdu->hdr.flags = 0;
|
|
if (queue->hdr_digest)
|
|
pdu->hdr.flags |= NVME_TCP_F_HDGST;
|
|
if (queue->data_digest && req->pdu_len) {
|
|
pdu->hdr.flags |= NVME_TCP_F_DDGST;
|
|
ddgst = nvme_tcp_ddgst_len(queue);
|
|
}
|
|
pdu->hdr.hlen = sizeof(*pdu);
|
|
pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
|
|
pdu->hdr.plen =
|
|
cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
|
|
|
|
ret = nvme_tcp_map_data(queue, rq);
|
|
if (unlikely(ret)) {
|
|
nvme_cleanup_cmd(rq);
|
|
dev_err(queue->ctrl->ctrl.device,
|
|
"Failed to map data (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct nvme_tcp_queue *queue = hctx->driver_data;
|
|
|
|
if (!llist_empty(&queue->req_list))
|
|
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
|
|
}
|
|
|
|
static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
|
|
const struct blk_mq_queue_data *bd)
|
|
{
|
|
struct nvme_ns *ns = hctx->queue->queuedata;
|
|
struct nvme_tcp_queue *queue = hctx->driver_data;
|
|
struct request *rq = bd->rq;
|
|
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
|
|
bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
|
|
blk_status_t ret;
|
|
|
|
if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
|
|
return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
|
|
|
|
ret = nvme_tcp_setup_cmd_pdu(ns, rq);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
blk_mq_start_request(rq);
|
|
|
|
nvme_tcp_queue_request(req, true, bd->last);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
|
|
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
|
|
|
|
if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
|
|
/* separate read/write queues */
|
|
set->map[HCTX_TYPE_DEFAULT].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
|
|
set->map[HCTX_TYPE_READ].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_READ];
|
|
set->map[HCTX_TYPE_READ].queue_offset =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
} else {
|
|
/* shared read/write queues */
|
|
set->map[HCTX_TYPE_DEFAULT].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
|
|
set->map[HCTX_TYPE_READ].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT];
|
|
set->map[HCTX_TYPE_READ].queue_offset = 0;
|
|
}
|
|
blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
|
|
blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
|
|
|
|
if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
|
|
/* map dedicated poll queues only if we have queues left */
|
|
set->map[HCTX_TYPE_POLL].nr_queues =
|
|
ctrl->io_queues[HCTX_TYPE_POLL];
|
|
set->map[HCTX_TYPE_POLL].queue_offset =
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT] +
|
|
ctrl->io_queues[HCTX_TYPE_READ];
|
|
blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
|
|
}
|
|
|
|
dev_info(ctrl->ctrl.device,
|
|
"mapped %d/%d/%d default/read/poll queues.\n",
|
|
ctrl->io_queues[HCTX_TYPE_DEFAULT],
|
|
ctrl->io_queues[HCTX_TYPE_READ],
|
|
ctrl->io_queues[HCTX_TYPE_POLL]);
|
|
}
|
|
|
|
static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
|
|
{
|
|
struct nvme_tcp_queue *queue = hctx->driver_data;
|
|
struct sock *sk = queue->sock->sk;
|
|
|
|
if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
|
|
return 0;
|
|
|
|
set_bit(NVME_TCP_Q_POLLING, &queue->flags);
|
|
if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
|
|
sk_busy_loop(sk, true);
|
|
nvme_tcp_try_recv(queue);
|
|
clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
|
|
return queue->nr_cqe;
|
|
}
|
|
|
|
static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
|
|
{
|
|
struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
|
|
struct sockaddr_storage src_addr;
|
|
int ret, len;
|
|
|
|
len = nvmf_get_address(ctrl, buf, size);
|
|
|
|
ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
|
|
if (ret > 0) {
|
|
if (len > 0)
|
|
len--; /* strip trailing newline */
|
|
len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
|
|
(len) ? "," : "", &src_addr);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static const struct blk_mq_ops nvme_tcp_mq_ops = {
|
|
.queue_rq = nvme_tcp_queue_rq,
|
|
.commit_rqs = nvme_tcp_commit_rqs,
|
|
.complete = nvme_complete_rq,
|
|
.init_request = nvme_tcp_init_request,
|
|
.exit_request = nvme_tcp_exit_request,
|
|
.init_hctx = nvme_tcp_init_hctx,
|
|
.timeout = nvme_tcp_timeout,
|
|
.map_queues = nvme_tcp_map_queues,
|
|
.poll = nvme_tcp_poll,
|
|
};
|
|
|
|
static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
|
|
.queue_rq = nvme_tcp_queue_rq,
|
|
.complete = nvme_complete_rq,
|
|
.init_request = nvme_tcp_init_request,
|
|
.exit_request = nvme_tcp_exit_request,
|
|
.init_hctx = nvme_tcp_init_admin_hctx,
|
|
.timeout = nvme_tcp_timeout,
|
|
};
|
|
|
|
static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
|
|
.name = "tcp",
|
|
.module = THIS_MODULE,
|
|
.flags = NVME_F_FABRICS,
|
|
.reg_read32 = nvmf_reg_read32,
|
|
.reg_read64 = nvmf_reg_read64,
|
|
.reg_write32 = nvmf_reg_write32,
|
|
.free_ctrl = nvme_tcp_free_ctrl,
|
|
.submit_async_event = nvme_tcp_submit_async_event,
|
|
.delete_ctrl = nvme_tcp_delete_ctrl,
|
|
.get_address = nvme_tcp_get_address,
|
|
.stop_ctrl = nvme_tcp_stop_ctrl,
|
|
};
|
|
|
|
static bool
|
|
nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl;
|
|
bool found = false;
|
|
|
|
mutex_lock(&nvme_tcp_ctrl_mutex);
|
|
list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
|
|
found = nvmf_ip_options_match(&ctrl->ctrl, opts);
|
|
if (found)
|
|
break;
|
|
}
|
|
mutex_unlock(&nvme_tcp_ctrl_mutex);
|
|
|
|
return found;
|
|
}
|
|
|
|
static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
|
|
struct nvmf_ctrl_options *opts)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl;
|
|
int ret;
|
|
|
|
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
|
|
if (!ctrl)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&ctrl->list);
|
|
ctrl->ctrl.opts = opts;
|
|
ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
|
|
opts->nr_poll_queues + 1;
|
|
ctrl->ctrl.sqsize = opts->queue_size - 1;
|
|
ctrl->ctrl.kato = opts->kato;
|
|
|
|
INIT_DELAYED_WORK(&ctrl->connect_work,
|
|
nvme_tcp_reconnect_ctrl_work);
|
|
INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
|
|
INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
|
|
|
|
if (!(opts->mask & NVMF_OPT_TRSVCID)) {
|
|
opts->trsvcid =
|
|
kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
|
|
if (!opts->trsvcid) {
|
|
ret = -ENOMEM;
|
|
goto out_free_ctrl;
|
|
}
|
|
opts->mask |= NVMF_OPT_TRSVCID;
|
|
}
|
|
|
|
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
|
|
opts->traddr, opts->trsvcid, &ctrl->addr);
|
|
if (ret) {
|
|
pr_err("malformed address passed: %s:%s\n",
|
|
opts->traddr, opts->trsvcid);
|
|
goto out_free_ctrl;
|
|
}
|
|
|
|
if (opts->mask & NVMF_OPT_HOST_TRADDR) {
|
|
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
|
|
opts->host_traddr, NULL, &ctrl->src_addr);
|
|
if (ret) {
|
|
pr_err("malformed src address passed: %s\n",
|
|
opts->host_traddr);
|
|
goto out_free_ctrl;
|
|
}
|
|
}
|
|
|
|
if (opts->mask & NVMF_OPT_HOST_IFACE) {
|
|
if (!__dev_get_by_name(&init_net, opts->host_iface)) {
|
|
pr_err("invalid interface passed: %s\n",
|
|
opts->host_iface);
|
|
ret = -ENODEV;
|
|
goto out_free_ctrl;
|
|
}
|
|
}
|
|
|
|
if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
|
|
ret = -EALREADY;
|
|
goto out_free_ctrl;
|
|
}
|
|
|
|
ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
|
|
GFP_KERNEL);
|
|
if (!ctrl->queues) {
|
|
ret = -ENOMEM;
|
|
goto out_free_ctrl;
|
|
}
|
|
|
|
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
|
|
if (ret)
|
|
goto out_kfree_queues;
|
|
|
|
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
|
|
WARN_ON_ONCE(1);
|
|
ret = -EINTR;
|
|
goto out_uninit_ctrl;
|
|
}
|
|
|
|
ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
|
|
if (ret)
|
|
goto out_uninit_ctrl;
|
|
|
|
dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
|
|
nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
|
|
|
|
mutex_lock(&nvme_tcp_ctrl_mutex);
|
|
list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
|
|
mutex_unlock(&nvme_tcp_ctrl_mutex);
|
|
|
|
return &ctrl->ctrl;
|
|
|
|
out_uninit_ctrl:
|
|
nvme_uninit_ctrl(&ctrl->ctrl);
|
|
nvme_put_ctrl(&ctrl->ctrl);
|
|
if (ret > 0)
|
|
ret = -EIO;
|
|
return ERR_PTR(ret);
|
|
out_kfree_queues:
|
|
kfree(ctrl->queues);
|
|
out_free_ctrl:
|
|
kfree(ctrl);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct nvmf_transport_ops nvme_tcp_transport = {
|
|
.name = "tcp",
|
|
.module = THIS_MODULE,
|
|
.required_opts = NVMF_OPT_TRADDR,
|
|
.allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
|
|
NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
|
|
NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
|
|
NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
|
|
NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
|
|
.create_ctrl = nvme_tcp_create_ctrl,
|
|
};
|
|
|
|
static int __init nvme_tcp_init_module(void)
|
|
{
|
|
nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
|
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
|
|
if (!nvme_tcp_wq)
|
|
return -ENOMEM;
|
|
|
|
nvmf_register_transport(&nvme_tcp_transport);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit nvme_tcp_cleanup_module(void)
|
|
{
|
|
struct nvme_tcp_ctrl *ctrl;
|
|
|
|
nvmf_unregister_transport(&nvme_tcp_transport);
|
|
|
|
mutex_lock(&nvme_tcp_ctrl_mutex);
|
|
list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
|
|
nvme_delete_ctrl(&ctrl->ctrl);
|
|
mutex_unlock(&nvme_tcp_ctrl_mutex);
|
|
flush_workqueue(nvme_delete_wq);
|
|
|
|
destroy_workqueue(nvme_tcp_wq);
|
|
}
|
|
|
|
module_init(nvme_tcp_init_module);
|
|
module_exit(nvme_tcp_cleanup_module);
|
|
|
|
MODULE_LICENSE("GPL v2");
|