linux/arch/mips/kernel/process.c
Matt Redfearn db8466c581 MIPS: IRQ Stack: Unwind IRQ stack onto task stack
When the separate IRQ stack was introduced, stack unwinding only
proceeded as far as the top of the IRQ stack, leading to kernel
backtraces being less useful, lacking the trace of what was interrupted.

Fix this by providing a means for the kernel to unwind the IRQ stack
onto the interrupted task stack. The processor state is saved to the
kernel task stack on interrupt. The IRQ_STACK_START macro reserves an
unsigned long at the top of the IRQ stack where the interrupted task
stack pointer can be saved. After the active stack is switched to the
IRQ stack, save the interrupted tasks stack pointer to the reserved
location.

Fix the stack unwinding code to look for the frame being the top of the
IRQ stack and if so get the next frame from the saved location. The
existing test does not work with the separate stack since the ra is no
longer pointed at ret_from_{irq,exception}.

The test to stop unwinding the stack 32 bytes from the top of a stack
must be modified to allow unwinding to continue up to the location of
the saved task stack pointer when on the IRQ stack. The low / high marks
of the stack are set depending on whether the sp is on an irq stack or
not.

Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Marcin Nowakowski <marcin.nowakowski@imgtec.com>
Cc: Masanari Iida <standby24x7@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jason A. Donenfeld <jason@zx2c4.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/15788/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-03-22 11:53:57 +01:00

799 lines
19 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
* Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
* Copyright (C) 2004 Thiemo Seufer
* Copyright (C) 2013 Imagination Technologies Ltd.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/tick.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/export.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/personality.h>
#include <linux/sys.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/kallsyms.h>
#include <linux/random.h>
#include <linux/prctl.h>
#include <asm/asm.h>
#include <asm/bootinfo.h>
#include <asm/cpu.h>
#include <asm/dsemul.h>
#include <asm/dsp.h>
#include <asm/fpu.h>
#include <asm/irq.h>
#include <asm/msa.h>
#include <asm/pgtable.h>
#include <asm/mipsregs.h>
#include <asm/processor.h>
#include <asm/reg.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/elf.h>
#include <asm/isadep.h>
#include <asm/inst.h>
#include <asm/stacktrace.h>
#include <asm/irq_regs.h>
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
play_dead();
}
#endif
asmlinkage void ret_from_fork(void);
asmlinkage void ret_from_kernel_thread(void);
void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
{
unsigned long status;
/* New thread loses kernel privileges. */
status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
status |= KU_USER;
regs->cp0_status = status;
lose_fpu(0);
clear_thread_flag(TIF_MSA_CTX_LIVE);
clear_used_math();
atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
init_dsp();
regs->cp0_epc = pc;
regs->regs[29] = sp;
}
void exit_thread(struct task_struct *tsk)
{
/*
* User threads may have allocated a delay slot emulation frame.
* If so, clean up that allocation.
*/
if (!(current->flags & PF_KTHREAD))
dsemul_thread_cleanup(tsk);
}
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
/*
* Save any process state which is live in hardware registers to the
* parent context prior to duplication. This prevents the new child
* state becoming stale if the parent is preempted before copy_thread()
* gets a chance to save the parent's live hardware registers to the
* child context.
*/
preempt_disable();
if (is_msa_enabled())
save_msa(current);
else if (is_fpu_owner())
_save_fp(current);
save_dsp(current);
preempt_enable();
*dst = *src;
return 0;
}
/*
* Copy architecture-specific thread state
*/
int copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long kthread_arg, struct task_struct *p)
{
struct thread_info *ti = task_thread_info(p);
struct pt_regs *childregs, *regs = current_pt_regs();
unsigned long childksp;
p->set_child_tid = p->clear_child_tid = NULL;
childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
/* set up new TSS. */
childregs = (struct pt_regs *) childksp - 1;
/* Put the stack after the struct pt_regs. */
childksp = (unsigned long) childregs;
p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
unsigned long status = p->thread.cp0_status;
memset(childregs, 0, sizeof(struct pt_regs));
ti->addr_limit = KERNEL_DS;
p->thread.reg16 = usp; /* fn */
p->thread.reg17 = kthread_arg;
p->thread.reg29 = childksp;
p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
#if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
((status & (ST0_KUC | ST0_IEC)) << 2);
#else
status |= ST0_EXL;
#endif
childregs->cp0_status = status;
return 0;
}
/* user thread */
*childregs = *regs;
childregs->regs[7] = 0; /* Clear error flag */
childregs->regs[2] = 0; /* Child gets zero as return value */
if (usp)
childregs->regs[29] = usp;
ti->addr_limit = USER_DS;
p->thread.reg29 = (unsigned long) childregs;
p->thread.reg31 = (unsigned long) ret_from_fork;
/*
* New tasks lose permission to use the fpu. This accelerates context
* switching for most programs since they don't use the fpu.
*/
childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
clear_tsk_thread_flag(p, TIF_USEDFPU);
clear_tsk_thread_flag(p, TIF_USEDMSA);
clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
#ifdef CONFIG_MIPS_MT_FPAFF
clear_tsk_thread_flag(p, TIF_FPUBOUND);
#endif /* CONFIG_MIPS_MT_FPAFF */
atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
if (clone_flags & CLONE_SETTLS)
ti->tp_value = regs->regs[7];
return 0;
}
#ifdef CONFIG_CC_STACKPROTECTOR
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __read_mostly;
EXPORT_SYMBOL(__stack_chk_guard);
#endif
struct mips_frame_info {
void *func;
unsigned long func_size;
int frame_size;
int pc_offset;
};
#define J_TARGET(pc,target) \
(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
{
#ifdef CONFIG_CPU_MICROMIPS
/*
* swsp ra,offset
* swm16 reglist,offset(sp)
* swm32 reglist,offset(sp)
* sw32 ra,offset(sp)
* jradiussp - NOT SUPPORTED
*
* microMIPS is way more fun...
*/
if (mm_insn_16bit(ip->halfword[1])) {
switch (ip->mm16_r5_format.opcode) {
case mm_swsp16_op:
if (ip->mm16_r5_format.rt != 31)
return 0;
*poff = ip->mm16_r5_format.simmediate;
*poff = (*poff << 2) / sizeof(ulong);
return 1;
case mm_pool16c_op:
switch (ip->mm16_m_format.func) {
case mm_swm16_op:
*poff = ip->mm16_m_format.imm;
*poff += 1 + ip->mm16_m_format.rlist;
*poff = (*poff << 2) / sizeof(ulong);
return 1;
default:
return 0;
}
default:
return 0;
}
}
switch (ip->i_format.opcode) {
case mm_sw32_op:
if (ip->i_format.rs != 29)
return 0;
if (ip->i_format.rt != 31)
return 0;
*poff = ip->i_format.simmediate / sizeof(ulong);
return 1;
case mm_pool32b_op:
switch (ip->mm_m_format.func) {
case mm_swm32_func:
if (ip->mm_m_format.rd < 0x10)
return 0;
if (ip->mm_m_format.base != 29)
return 0;
*poff = ip->mm_m_format.simmediate;
*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
*poff /= sizeof(ulong);
return 1;
default:
return 0;
}
default:
return 0;
}
#else
/* sw / sd $ra, offset($sp) */
if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
ip->i_format.rs == 29 && ip->i_format.rt == 31) {
*poff = ip->i_format.simmediate / sizeof(ulong);
return 1;
}
return 0;
#endif
}
static inline int is_jump_ins(union mips_instruction *ip)
{
#ifdef CONFIG_CPU_MICROMIPS
/*
* jr16,jrc,jalr16,jalr16
* jal
* jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
* jraddiusp - NOT SUPPORTED
*
* microMIPS is kind of more fun...
*/
if (mm_insn_16bit(ip->halfword[1])) {
if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
(ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
return 1;
return 0;
}
if (ip->j_format.opcode == mm_j32_op)
return 1;
if (ip->j_format.opcode == mm_jal32_op)
return 1;
if (ip->r_format.opcode != mm_pool32a_op ||
ip->r_format.func != mm_pool32axf_op)
return 0;
return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
#else
if (ip->j_format.opcode == j_op)
return 1;
if (ip->j_format.opcode == jal_op)
return 1;
if (ip->r_format.opcode != spec_op)
return 0;
return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
#endif
}
static inline int is_sp_move_ins(union mips_instruction *ip)
{
#ifdef CONFIG_CPU_MICROMIPS
/*
* addiusp -imm
* addius5 sp,-imm
* addiu32 sp,sp,-imm
* jradiussp - NOT SUPPORTED
*
* microMIPS is not more fun...
*/
if (mm_insn_16bit(ip->halfword[1])) {
return (ip->mm16_r3_format.opcode == mm_pool16d_op &&
ip->mm16_r3_format.simmediate && mm_addiusp_func) ||
(ip->mm16_r5_format.opcode == mm_pool16d_op &&
ip->mm16_r5_format.rt == 29);
}
return ip->mm_i_format.opcode == mm_addiu32_op &&
ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29;
#else
/* addiu/daddiu sp,sp,-imm */
if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
return 0;
if (ip->i_format.opcode == addiu_op || ip->i_format.opcode == daddiu_op)
return 1;
#endif
return 0;
}
static int get_frame_info(struct mips_frame_info *info)
{
bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
union mips_instruction insn, *ip, *ip_end;
const unsigned int max_insns = 128;
unsigned int i;
info->pc_offset = -1;
info->frame_size = 0;
ip = (void *)msk_isa16_mode((ulong)info->func);
if (!ip)
goto err;
ip_end = (void *)ip + info->func_size;
for (i = 0; i < max_insns && ip < ip_end; i++, ip++) {
if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
insn.halfword[0] = 0;
insn.halfword[1] = ip->halfword[0];
} else if (is_mmips) {
insn.halfword[0] = ip->halfword[1];
insn.halfword[1] = ip->halfword[0];
} else {
insn.word = ip->word;
}
if (is_jump_ins(&insn))
break;
if (!info->frame_size) {
if (is_sp_move_ins(&insn))
{
#ifdef CONFIG_CPU_MICROMIPS
if (mm_insn_16bit(ip->halfword[0]))
{
unsigned short tmp;
if (ip->halfword[0] & mm_addiusp_func)
{
tmp = (((ip->halfword[0] >> 1) & 0x1ff) << 2);
info->frame_size = -(signed short)(tmp | ((tmp & 0x100) ? 0xfe00 : 0));
} else {
tmp = (ip->halfword[0] >> 1);
info->frame_size = -(signed short)(tmp & 0xf);
}
ip = (void *) &ip->halfword[1];
ip--;
} else
#endif
info->frame_size = - ip->i_format.simmediate;
}
continue;
}
if (info->pc_offset == -1 &&
is_ra_save_ins(&insn, &info->pc_offset))
break;
}
if (info->frame_size && info->pc_offset >= 0) /* nested */
return 0;
if (info->pc_offset < 0) /* leaf */
return 1;
/* prologue seems bogus... */
err:
return -1;
}
static struct mips_frame_info schedule_mfi __read_mostly;
#ifdef CONFIG_KALLSYMS
static unsigned long get___schedule_addr(void)
{
return kallsyms_lookup_name("__schedule");
}
#else
static unsigned long get___schedule_addr(void)
{
union mips_instruction *ip = (void *)schedule;
int max_insns = 8;
int i;
for (i = 0; i < max_insns; i++, ip++) {
if (ip->j_format.opcode == j_op)
return J_TARGET(ip, ip->j_format.target);
}
return 0;
}
#endif
static int __init frame_info_init(void)
{
unsigned long size = 0;
#ifdef CONFIG_KALLSYMS
unsigned long ofs;
#endif
unsigned long addr;
addr = get___schedule_addr();
if (!addr)
addr = (unsigned long)schedule;
#ifdef CONFIG_KALLSYMS
kallsyms_lookup_size_offset(addr, &size, &ofs);
#endif
schedule_mfi.func = (void *)addr;
schedule_mfi.func_size = size;
get_frame_info(&schedule_mfi);
/*
* Without schedule() frame info, result given by
* thread_saved_pc() and get_wchan() are not reliable.
*/
if (schedule_mfi.pc_offset < 0)
printk("Can't analyze schedule() prologue at %p\n", schedule);
return 0;
}
arch_initcall(frame_info_init);
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
struct thread_struct *t = &tsk->thread;
/* New born processes are a special case */
if (t->reg31 == (unsigned long) ret_from_fork)
return t->reg31;
if (schedule_mfi.pc_offset < 0)
return 0;
return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
}
#ifdef CONFIG_KALLSYMS
/* generic stack unwinding function */
unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
unsigned long *sp,
unsigned long pc,
unsigned long *ra)
{
unsigned long low, high, irq_stack_high;
struct mips_frame_info info;
unsigned long size, ofs;
struct pt_regs *regs;
int leaf;
if (!stack_page)
return 0;
/*
* IRQ stacks start at IRQ_STACK_START
* task stacks at THREAD_SIZE - 32
*/
low = stack_page;
if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
high = stack_page + IRQ_STACK_START;
irq_stack_high = high;
} else {
high = stack_page + THREAD_SIZE - 32;
irq_stack_high = 0;
}
/*
* If we reached the top of the interrupt stack, start unwinding
* the interrupted task stack.
*/
if (unlikely(*sp == irq_stack_high)) {
unsigned long task_sp = *(unsigned long *)*sp;
/*
* Check that the pointer saved in the IRQ stack head points to
* something within the stack of the current task
*/
if (!object_is_on_stack((void *)task_sp))
return 0;
/*
* Follow pointer to tasks kernel stack frame where interrupted
* state was saved.
*/
regs = (struct pt_regs *)task_sp;
pc = regs->cp0_epc;
if (!user_mode(regs) && __kernel_text_address(pc)) {
*sp = regs->regs[29];
*ra = regs->regs[31];
return pc;
}
return 0;
}
if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
return 0;
/*
* Return ra if an exception occurred at the first instruction
*/
if (unlikely(ofs == 0)) {
pc = *ra;
*ra = 0;
return pc;
}
info.func = (void *)(pc - ofs);
info.func_size = ofs; /* analyze from start to ofs */
leaf = get_frame_info(&info);
if (leaf < 0)
return 0;
if (*sp < low || *sp + info.frame_size > high)
return 0;
if (leaf)
/*
* For some extreme cases, get_frame_info() can
* consider wrongly a nested function as a leaf
* one. In that cases avoid to return always the
* same value.
*/
pc = pc != *ra ? *ra : 0;
else
pc = ((unsigned long *)(*sp))[info.pc_offset];
*sp += info.frame_size;
*ra = 0;
return __kernel_text_address(pc) ? pc : 0;
}
EXPORT_SYMBOL(unwind_stack_by_address);
/* used by show_backtrace() */
unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
unsigned long pc, unsigned long *ra)
{
unsigned long stack_page = 0;
int cpu;
for_each_possible_cpu(cpu) {
if (on_irq_stack(cpu, *sp)) {
stack_page = (unsigned long)irq_stack[cpu];
break;
}
}
if (!stack_page)
stack_page = (unsigned long)task_stack_page(task);
return unwind_stack_by_address(stack_page, sp, pc, ra);
}
#endif
/*
* get_wchan - a maintenance nightmare^W^Wpain in the ass ...
*/
unsigned long get_wchan(struct task_struct *task)
{
unsigned long pc = 0;
#ifdef CONFIG_KALLSYMS
unsigned long sp;
unsigned long ra = 0;
#endif
if (!task || task == current || task->state == TASK_RUNNING)
goto out;
if (!task_stack_page(task))
goto out;
pc = thread_saved_pc(task);
#ifdef CONFIG_KALLSYMS
sp = task->thread.reg29 + schedule_mfi.frame_size;
while (in_sched_functions(pc))
pc = unwind_stack(task, &sp, pc, &ra);
#endif
out:
return pc;
}
/*
* Don't forget that the stack pointer must be aligned on a 8 bytes
* boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
*/
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ALMASK;
}
static void arch_dump_stack(void *info)
{
struct pt_regs *regs;
regs = get_irq_regs();
if (regs)
show_regs(regs);
dump_stack();
}
void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
{
long this_cpu = get_cpu();
if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
dump_stack();
smp_call_function_many(mask, arch_dump_stack, NULL, 1);
put_cpu();
}
int mips_get_process_fp_mode(struct task_struct *task)
{
int value = 0;
if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
value |= PR_FP_MODE_FR;
if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
value |= PR_FP_MODE_FRE;
return value;
}
static void prepare_for_fp_mode_switch(void *info)
{
struct mm_struct *mm = info;
if (current->mm == mm)
lose_fpu(1);
}
int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
{
const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
struct task_struct *t;
int max_users;
/* Check the value is valid */
if (value & ~known_bits)
return -EOPNOTSUPP;
/* Avoid inadvertently triggering emulation */
if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
!(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
return -EOPNOTSUPP;
if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
return -EOPNOTSUPP;
/* FR = 0 not supported in MIPS R6 */
if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
return -EOPNOTSUPP;
/* Proceed with the mode switch */
preempt_disable();
/* Save FP & vector context, then disable FPU & MSA */
if (task->signal == current->signal)
lose_fpu(1);
/* Prevent any threads from obtaining live FP context */
atomic_set(&task->mm->context.fp_mode_switching, 1);
smp_mb__after_atomic();
/*
* If there are multiple online CPUs then force any which are running
* threads in this process to lose their FPU context, which they can't
* regain until fp_mode_switching is cleared later.
*/
if (num_online_cpus() > 1) {
/* No need to send an IPI for the local CPU */
max_users = (task->mm == current->mm) ? 1 : 0;
if (atomic_read(&current->mm->mm_users) > max_users)
smp_call_function(prepare_for_fp_mode_switch,
(void *)current->mm, 1);
}
/*
* There are now no threads of the process with live FP context, so it
* is safe to proceed with the FP mode switch.
*/
for_each_thread(task, t) {
/* Update desired FP register width */
if (value & PR_FP_MODE_FR) {
clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
} else {
set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
}
/* Update desired FP single layout */
if (value & PR_FP_MODE_FRE)
set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
else
clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
}
/* Allow threads to use FP again */
atomic_set(&task->mm->context.fp_mode_switching, 0);
preempt_enable();
return 0;
}
#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
{
unsigned int i;
for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
/* k0/k1 are copied as zero. */
if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
uregs[i] = 0;
else
uregs[i] = regs->regs[i - MIPS32_EF_R0];
}
uregs[MIPS32_EF_LO] = regs->lo;
uregs[MIPS32_EF_HI] = regs->hi;
uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
}
#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
#ifdef CONFIG_64BIT
void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
{
unsigned int i;
for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
/* k0/k1 are copied as zero. */
if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
uregs[i] = 0;
else
uregs[i] = regs->regs[i - MIPS64_EF_R0];
}
uregs[MIPS64_EF_LO] = regs->lo;
uregs[MIPS64_EF_HI] = regs->hi;
uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
}
#endif /* CONFIG_64BIT */