linux/drivers/gpu/drm/i915/gem/i915_gem_ttm.c
Maarten Lankhorst cf3e3e86d7 drm/i915: Use ttm mmap handling for ttm bo's.
Use the ttm handlers for servicing page faults, and vm_access.

We do our own validation of read-only access, otherwise use the
ttm handlers as much as possible.

Because the ttm handlers expect the vma_node at vma->base, we slightly
need to massage the mmap handlers to look at vma_node->driver_private
to fetch the bo, if it's NULL, we assume i915's normal mmap_offset uapi
is used.

This is the easiest way to achieve compatibility without changing ttm's
semantics.

Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210610070152.572423-5-thomas.hellstrom@linux.intel.com
2021-06-11 10:53:25 +02:00

648 lines
17 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include "i915_drv.h"
#include "intel_memory_region.h"
#include "intel_region_ttm.h"
#include "gem/i915_gem_object.h"
#include "gem/i915_gem_region.h"
#include "gem/i915_gem_ttm.h"
#include "gem/i915_gem_mman.h"
#define I915_PL_LMEM0 TTM_PL_PRIV
#define I915_PL_SYSTEM TTM_PL_SYSTEM
#define I915_PL_STOLEN TTM_PL_VRAM
#define I915_PL_GGTT TTM_PL_TT
#define I915_TTM_PRIO_PURGE 0
#define I915_TTM_PRIO_NO_PAGES 1
#define I915_TTM_PRIO_HAS_PAGES 2
/**
* struct i915_ttm_tt - TTM page vector with additional private information
* @ttm: The base TTM page vector.
* @dev: The struct device used for dma mapping and unmapping.
* @cached_st: The cached scatter-gather table.
*
* Note that DMA may be going on right up to the point where the page-
* vector is unpopulated in delayed destroy. Hence keep the
* scatter-gather table mapped and cached up to that point. This is
* different from the cached gem object io scatter-gather table which
* doesn't have an associated dma mapping.
*/
struct i915_ttm_tt {
struct ttm_tt ttm;
struct device *dev;
struct sg_table *cached_st;
};
static const struct ttm_place lmem0_sys_placement_flags[] = {
{
.fpfn = 0,
.lpfn = 0,
.mem_type = I915_PL_LMEM0,
.flags = 0,
}, {
.fpfn = 0,
.lpfn = 0,
.mem_type = I915_PL_SYSTEM,
.flags = 0,
}
};
static struct ttm_placement i915_lmem0_placement = {
.num_placement = 1,
.placement = &lmem0_sys_placement_flags[0],
.num_busy_placement = 1,
.busy_placement = &lmem0_sys_placement_flags[0],
};
static struct ttm_placement i915_sys_placement = {
.num_placement = 1,
.placement = &lmem0_sys_placement_flags[1],
.num_busy_placement = 1,
.busy_placement = &lmem0_sys_placement_flags[1],
};
static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj);
static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
uint32_t page_flags)
{
struct ttm_resource_manager *man =
ttm_manager_type(bo->bdev, bo->resource->mem_type);
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct i915_ttm_tt *i915_tt;
int ret;
i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
if (!i915_tt)
return NULL;
if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
man->use_tt)
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, ttm_write_combined);
if (ret) {
kfree(i915_tt);
return NULL;
}
i915_tt->dev = obj->base.dev->dev;
return &i915_tt->ttm;
}
static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
if (i915_tt->cached_st) {
dma_unmap_sgtable(i915_tt->dev, i915_tt->cached_st,
DMA_BIDIRECTIONAL, 0);
sg_free_table(i915_tt->cached_st);
kfree(i915_tt->cached_st);
i915_tt->cached_st = NULL;
}
ttm_pool_free(&bdev->pool, ttm);
}
static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
ttm_tt_destroy_common(bdev, ttm);
kfree(i915_tt);
}
static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
/* Will do for now. Our pinned objects are still on TTM's LRU lists */
if (!i915_gem_object_evictable(obj))
return false;
/* This isn't valid with a buddy allocator */
return ttm_bo_eviction_valuable(bo, place);
}
static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
*placement = i915_sys_placement;
}
static int i915_ttm_move_notify(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
int ret;
ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE);
if (ret)
return ret;
ret = __i915_gem_object_put_pages(obj);
if (ret)
return ret;
return 0;
}
static void i915_ttm_free_cached_io_st(struct drm_i915_gem_object *obj)
{
struct radix_tree_iter iter;
void __rcu **slot;
if (!obj->ttm.cached_io_st)
return;
rcu_read_lock();
radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
rcu_read_unlock();
sg_free_table(obj->ttm.cached_io_st);
kfree(obj->ttm.cached_io_st);
obj->ttm.cached_io_st = NULL;
}
static void i915_ttm_purge(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
};
struct ttm_placement place = {};
int ret;
if (obj->mm.madv == __I915_MADV_PURGED)
return;
/* TTM's purge interface. Note that we might be reentering. */
ret = ttm_bo_validate(bo, &place, &ctx);
if (!ret) {
i915_ttm_free_cached_io_st(obj);
obj->mm.madv = __I915_MADV_PURGED;
}
}
static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
int ret = i915_ttm_move_notify(bo);
GEM_WARN_ON(ret);
GEM_WARN_ON(obj->ttm.cached_io_st);
if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
i915_ttm_purge(obj);
}
static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
if (likely(obj)) {
/* This releases all gem object bindings to the backend. */
__i915_gem_free_object(obj);
}
}
static struct intel_memory_region *
i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type)
{
struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
/* There's some room for optimization here... */
GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM &&
ttm_mem_type < I915_PL_LMEM0);
if (ttm_mem_type == I915_PL_SYSTEM)
return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM,
0);
return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL,
ttm_mem_type - I915_PL_LMEM0);
}
static struct sg_table *i915_ttm_tt_get_st(struct ttm_tt *ttm)
{
struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
struct scatterlist *sg;
struct sg_table *st;
int ret;
if (i915_tt->cached_st)
return i915_tt->cached_st;
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
return ERR_PTR(-ENOMEM);
sg = __sg_alloc_table_from_pages
(st, ttm->pages, ttm->num_pages, 0,
(unsigned long)ttm->num_pages << PAGE_SHIFT,
i915_sg_segment_size(), NULL, 0, GFP_KERNEL);
if (IS_ERR(sg)) {
kfree(st);
return ERR_CAST(sg);
}
ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
if (ret) {
sg_free_table(st);
kfree(st);
return ERR_PTR(ret);
}
i915_tt->cached_st = st;
return st;
}
static struct sg_table *
i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
struct ttm_resource *res)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
struct ttm_resource_manager *man =
ttm_manager_type(bo->bdev, res->mem_type);
if (man->use_tt)
return i915_ttm_tt_get_st(bo->ttm);
return intel_region_ttm_node_to_st(obj->mm.region, res);
}
static int i915_ttm_move(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *dst_mem,
struct ttm_place *hop)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct ttm_resource_manager *dst_man =
ttm_manager_type(bo->bdev, dst_mem->mem_type);
struct ttm_resource_manager *src_man =
ttm_manager_type(bo->bdev, bo->resource->mem_type);
struct intel_memory_region *dst_reg, *src_reg;
union {
struct ttm_kmap_iter_tt tt;
struct ttm_kmap_iter_iomap io;
} _dst_iter, _src_iter;
struct ttm_kmap_iter *dst_iter, *src_iter;
struct sg_table *dst_st;
int ret;
dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type);
src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type);
GEM_BUG_ON(!dst_reg || !src_reg);
/* Sync for now. We could do the actual copy async. */
ret = ttm_bo_wait_ctx(bo, ctx);
if (ret)
return ret;
ret = i915_ttm_move_notify(bo);
if (ret)
return ret;
if (obj->mm.madv != I915_MADV_WILLNEED) {
i915_ttm_purge(obj);
ttm_resource_free(bo, &dst_mem);
return 0;
}
/* Populate ttm with pages if needed. Typically system memory. */
if (bo->ttm && (dst_man->use_tt ||
(bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED))) {
ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
if (ret)
return ret;
}
dst_st = i915_ttm_resource_get_st(obj, dst_mem);
if (IS_ERR(dst_st))
return PTR_ERR(dst_st);
/* If we start mapping GGTT, we can no longer use man::use_tt here. */
dst_iter = dst_man->use_tt ?
ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm) :
ttm_kmap_iter_iomap_init(&_dst_iter.io, &dst_reg->iomap,
dst_st, dst_reg->region.start);
src_iter = src_man->use_tt ?
ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm) :
ttm_kmap_iter_iomap_init(&_src_iter.io, &src_reg->iomap,
obj->ttm.cached_io_st,
src_reg->region.start);
ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter);
ttm_bo_move_sync_cleanup(bo, dst_mem);
i915_ttm_free_cached_io_st(obj);
if (!dst_man->use_tt) {
obj->ttm.cached_io_st = dst_st;
obj->ttm.get_io_page.sg_pos = dst_st->sgl;
obj->ttm.get_io_page.sg_idx = 0;
}
return 0;
}
static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
{
if (mem->mem_type < I915_PL_LMEM0)
return 0;
mem->bus.caching = ttm_write_combined;
mem->bus.is_iomem = true;
return 0;
}
static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
unsigned long page_offset)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
unsigned long base = obj->mm.region->iomap.base - obj->mm.region->region.start;
struct scatterlist *sg;
unsigned int ofs;
GEM_WARN_ON(bo->ttm);
sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true, true);
return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
}
static struct ttm_device_funcs i915_ttm_bo_driver = {
.ttm_tt_create = i915_ttm_tt_create,
.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
.ttm_tt_destroy = i915_ttm_tt_destroy,
.eviction_valuable = i915_ttm_eviction_valuable,
.evict_flags = i915_ttm_evict_flags,
.move = i915_ttm_move,
.swap_notify = i915_ttm_swap_notify,
.delete_mem_notify = i915_ttm_delete_mem_notify,
.io_mem_reserve = i915_ttm_io_mem_reserve,
.io_mem_pfn = i915_ttm_io_mem_pfn,
};
/**
* i915_ttm_driver - Return a pointer to the TTM device funcs
*
* Return: Pointer to statically allocated TTM device funcs.
*/
struct ttm_device_funcs *i915_ttm_driver(void)
{
return &i915_ttm_bo_driver;
}
static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
};
struct sg_table *st;
int ret;
/* Move to the requested placement. */
ret = ttm_bo_validate(bo, &i915_lmem0_placement, &ctx);
if (ret)
return ret == -ENOSPC ? -ENXIO : ret;
/* Object either has a page vector or is an iomem object */
st = bo->ttm ? i915_ttm_tt_get_st(bo->ttm) : obj->ttm.cached_io_st;
if (IS_ERR(st))
return PTR_ERR(st);
__i915_gem_object_set_pages(obj, st, i915_sg_dma_sizes(st->sgl));
i915_ttm_adjust_lru(obj);
return ret;
}
static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
struct sg_table *st)
{
/*
* We're currently not called from a shrinker, so put_pages()
* typically means the object is about to destroyed, or called
* from move_notify(). So just avoid doing much for now.
* If the object is not destroyed next, The TTM eviction logic
* and shrinkers will move it out if needed.
*/
i915_ttm_adjust_lru(obj);
}
static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
/*
* Don't manipulate the TTM LRUs while in TTM bo destruction.
* We're called through i915_ttm_delete_mem_notify().
*/
if (!kref_read(&bo->kref))
return;
/*
* Put on the correct LRU list depending on the MADV status
*/
spin_lock(&bo->bdev->lru_lock);
if (obj->mm.madv != I915_MADV_WILLNEED) {
bo->priority = I915_TTM_PRIO_PURGE;
} else if (!i915_gem_object_has_pages(obj)) {
if (bo->priority < I915_TTM_PRIO_HAS_PAGES)
bo->priority = I915_TTM_PRIO_HAS_PAGES;
} else {
if (bo->priority > I915_TTM_PRIO_NO_PAGES)
bo->priority = I915_TTM_PRIO_NO_PAGES;
}
ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
spin_unlock(&bo->bdev->lru_lock);
}
/*
* TTM-backed gem object destruction requires some clarification.
* Basically we have two possibilities here. We can either rely on the
* i915 delayed destruction and put the TTM object when the object
* is idle. This would be detected by TTM which would bypass the
* TTM delayed destroy handling. The other approach is to put the TTM
* object early and rely on the TTM destroyed handling, and then free
* the leftover parts of the GEM object once TTM's destroyed list handling is
* complete. For now, we rely on the latter for two reasons:
* a) TTM can evict an object even when it's on the delayed destroy list,
* which in theory allows for complete eviction.
* b) There is work going on in TTM to allow freeing an object even when
* it's not idle, and using the TTM destroyed list handling could help us
* benefit from that.
*/
static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
{
if (obj->ttm.created) {
ttm_bo_put(i915_gem_to_ttm(obj));
} else {
__i915_gem_free_object(obj);
call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
}
}
static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
{
struct vm_area_struct *area = vmf->vma;
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(area->vm_private_data);
/* Sanity check that we allow writing into this object */
if (unlikely(i915_gem_object_is_readonly(obj) &&
area->vm_flags & VM_WRITE))
return VM_FAULT_SIGBUS;
return ttm_bo_vm_fault(vmf);
}
static int
vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
void *buf, int len, int write)
{
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(area->vm_private_data);
if (i915_gem_object_is_readonly(obj) && write)
return -EACCES;
return ttm_bo_vm_access(area, addr, buf, len, write);
}
static void ttm_vm_open(struct vm_area_struct *vma)
{
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(vma->vm_private_data);
GEM_BUG_ON(!obj);
i915_gem_object_get(obj);
}
static void ttm_vm_close(struct vm_area_struct *vma)
{
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(vma->vm_private_data);
GEM_BUG_ON(!obj);
i915_gem_object_put(obj);
}
static const struct vm_operations_struct vm_ops_ttm = {
.fault = vm_fault_ttm,
.access = vm_access_ttm,
.open = ttm_vm_open,
.close = ttm_vm_close,
};
static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
{
/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
return drm_vma_node_offset_addr(&obj->base.vma_node);
}
const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
.name = "i915_gem_object_ttm",
.flags = I915_GEM_OBJECT_HAS_IOMEM,
.get_pages = i915_ttm_get_pages,
.put_pages = i915_ttm_put_pages,
.truncate = i915_ttm_purge,
.adjust_lru = i915_ttm_adjust_lru,
.delayed_free = i915_ttm_delayed_free,
.mmap_offset = i915_ttm_mmap_offset,
.mmap_ops = &vm_ops_ttm,
};
void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
i915_gem_object_release_memory_region(obj);
mutex_destroy(&obj->ttm.get_io_page.lock);
if (obj->ttm.created)
call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
}
/**
* __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
* @mem: The initial memory region for the object.
* @obj: The gem object.
* @size: Object size in bytes.
* @flags: gem object flags.
*
* Return: 0 on success, negative error code on failure.
*/
int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
struct drm_i915_gem_object *obj,
resource_size_t size,
unsigned int flags)
{
static struct lock_class_key lock_class;
struct drm_i915_private *i915 = mem->i915;
enum ttm_bo_type bo_type;
size_t alignment = 0;
int ret;
/* Adjust alignment to GPU- and CPU huge page sizes. */
if (mem->is_range_manager) {
if (size >= SZ_1G)
alignment = SZ_1G >> PAGE_SHIFT;
else if (size >= SZ_2M)
alignment = SZ_2M >> PAGE_SHIFT;
else if (size >= SZ_64K)
alignment = SZ_64K >> PAGE_SHIFT;
}
drm_gem_private_object_init(&i915->drm, &obj->base, size);
i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
i915_gem_object_init_memory_region(obj, mem);
i915_gem_object_make_unshrinkable(obj);
obj->read_domains = I915_GEM_DOMAIN_WC | I915_GEM_DOMAIN_GTT;
i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
mutex_init(&obj->ttm.get_io_page.lock);
bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
ttm_bo_type_kernel;
/*
* If this function fails, it will call the destructor, but
* our caller still owns the object. So no freeing in the
* destructor until obj->ttm.created is true.
* Similarly, in delayed_destroy, we can't call ttm_bo_put()
* until successful initialization.
*/
obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
ret = ttm_bo_init(&i915->bdev, i915_gem_to_ttm(obj), size,
bo_type, &i915_sys_placement, alignment,
true, NULL, NULL, i915_ttm_bo_destroy);
if (!ret)
obj->ttm.created = true;
/* i915 wants -ENXIO when out of memory region space. */
return (ret == -ENOSPC) ? -ENXIO : ret;
}