linux/tools/perf/builtin-stat.c
Kan Liang e8f4f794d7 perf stat: Always keep perf metrics topdown events in a group
If any member in a group has a different cpu mask than the other
members, the current perf stat disables group. when the perf metrics
topdown events are part of the group, the below <not supported> error
will be triggered.

  $ perf stat -e "{slots,topdown-retiring,uncore_imc_free_running_0/dclk/}" -a sleep 1
  WARNING: grouped events cpus do not match, disabling group:
    anon group { slots, topdown-retiring, uncore_imc_free_running_0/dclk/ }

   Performance counter stats for 'system wide':

         141,465,174      slots
     <not supported>      topdown-retiring
       1,605,330,334      uncore_imc_free_running_0/dclk/

The perf metrics topdown events must always be grouped with a slots
event as leader.

Factor out evsel__remove_from_group() to only remove the regular events
from the group.

Remove evsel__must_be_in_group(), since no one use it anymore.

With the patch, the topdown events aren't broken from the group for the
splitting.

  $ perf stat -e "{slots,topdown-retiring,uncore_imc_free_running_0/dclk/}" -a sleep 1
  WARNING: grouped events cpus do not match, disabling group:
    anon group { slots, topdown-retiring, uncore_imc_free_running_0/dclk/ }

   Performance counter stats for 'system wide':

         346,110,588      slots
         124,608,256      topdown-retiring
       1,606,869,976      uncore_imc_free_running_0/dclk/

         1.003877592 seconds time elapsed

Fixes: a9a1790247bdcf3b ("perf stat: Ensure group is defined on top of the same cpu mask")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Link: https://lore.kernel.org/r/20220518143900.1493980-3-kan.liang@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2022-05-20 11:11:13 -03:00

2669 lines
71 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* builtin-stat.c
*
* Builtin stat command: Give a precise performance counters summary
* overview about any workload, CPU or specific PID.
*
* Sample output:
$ perf stat ./hackbench 10
Time: 0.118
Performance counter stats for './hackbench 10':
1708.761321 task-clock # 11.037 CPUs utilized
41,190 context-switches # 0.024 M/sec
6,735 CPU-migrations # 0.004 M/sec
17,318 page-faults # 0.010 M/sec
5,205,202,243 cycles # 3.046 GHz
3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle
1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle
2,603,501,247 instructions # 0.50 insns per cycle
# 1.48 stalled cycles per insn
484,357,498 branches # 283.455 M/sec
6,388,934 branch-misses # 1.32% of all branches
0.154822978 seconds time elapsed
*
* Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
*
* Improvements and fixes by:
*
* Arjan van de Ven <arjan@linux.intel.com>
* Yanmin Zhang <yanmin.zhang@intel.com>
* Wu Fengguang <fengguang.wu@intel.com>
* Mike Galbraith <efault@gmx.de>
* Paul Mackerras <paulus@samba.org>
* Jaswinder Singh Rajput <jaswinder@kernel.org>
*/
#include "builtin.h"
#include "perf.h"
#include "util/cgroup.h"
#include <subcmd/parse-options.h>
#include "util/parse-events.h"
#include "util/pmu.h"
#include "util/event.h"
#include "util/evlist.h"
#include "util/evlist-hybrid.h"
#include "util/evsel.h"
#include "util/debug.h"
#include "util/color.h"
#include "util/stat.h"
#include "util/header.h"
#include "util/cpumap.h"
#include "util/thread_map.h"
#include "util/counts.h"
#include "util/topdown.h"
#include "util/session.h"
#include "util/tool.h"
#include "util/string2.h"
#include "util/metricgroup.h"
#include "util/synthetic-events.h"
#include "util/target.h"
#include "util/time-utils.h"
#include "util/top.h"
#include "util/affinity.h"
#include "util/pfm.h"
#include "util/bpf_counter.h"
#include "util/iostat.h"
#include "util/pmu-hybrid.h"
#include "asm/bug.h"
#include <linux/time64.h>
#include <linux/zalloc.h>
#include <api/fs/fs.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <inttypes.h>
#include <locale.h>
#include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <perf/evlist.h>
#define DEFAULT_SEPARATOR " "
#define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi"
static void print_counters(struct timespec *ts, int argc, const char **argv);
/* Default events used for perf stat -T */
static const char *transaction_attrs = {
"task-clock,"
"{"
"instructions,"
"cycles,"
"cpu/cycles-t/,"
"cpu/tx-start/,"
"cpu/el-start/,"
"cpu/cycles-ct/"
"}"
};
/* More limited version when the CPU does not have all events. */
static const char * transaction_limited_attrs = {
"task-clock,"
"{"
"instructions,"
"cycles,"
"cpu/cycles-t/,"
"cpu/tx-start/"
"}"
};
static const char * topdown_attrs[] = {
"topdown-total-slots",
"topdown-slots-retired",
"topdown-recovery-bubbles",
"topdown-fetch-bubbles",
"topdown-slots-issued",
NULL,
};
static const char *topdown_metric_attrs[] = {
"slots",
"topdown-retiring",
"topdown-bad-spec",
"topdown-fe-bound",
"topdown-be-bound",
NULL,
};
static const char *topdown_metric_L2_attrs[] = {
"slots",
"topdown-retiring",
"topdown-bad-spec",
"topdown-fe-bound",
"topdown-be-bound",
"topdown-heavy-ops",
"topdown-br-mispredict",
"topdown-fetch-lat",
"topdown-mem-bound",
NULL,
};
#define TOPDOWN_MAX_LEVEL 2
static const char *smi_cost_attrs = {
"{"
"msr/aperf/,"
"msr/smi/,"
"cycles"
"}"
};
static struct evlist *evsel_list;
static bool all_counters_use_bpf = true;
static struct target target = {
.uid = UINT_MAX,
};
#define METRIC_ONLY_LEN 20
static volatile pid_t child_pid = -1;
static int detailed_run = 0;
static bool transaction_run;
static bool topdown_run = false;
static bool smi_cost = false;
static bool smi_reset = false;
static int big_num_opt = -1;
static bool group = false;
static const char *pre_cmd = NULL;
static const char *post_cmd = NULL;
static bool sync_run = false;
static bool forever = false;
static bool force_metric_only = false;
static struct timespec ref_time;
static bool append_file;
static bool interval_count;
static const char *output_name;
static int output_fd;
struct perf_stat {
bool record;
struct perf_data data;
struct perf_session *session;
u64 bytes_written;
struct perf_tool tool;
bool maps_allocated;
struct perf_cpu_map *cpus;
struct perf_thread_map *threads;
enum aggr_mode aggr_mode;
};
static struct perf_stat perf_stat;
#define STAT_RECORD perf_stat.record
static volatile int done = 0;
static struct perf_stat_config stat_config = {
.aggr_mode = AGGR_GLOBAL,
.scale = true,
.unit_width = 4, /* strlen("unit") */
.run_count = 1,
.metric_only_len = METRIC_ONLY_LEN,
.walltime_nsecs_stats = &walltime_nsecs_stats,
.ru_stats = &ru_stats,
.big_num = true,
.ctl_fd = -1,
.ctl_fd_ack = -1,
.iostat_run = false,
};
static bool cpus_map_matched(struct evsel *a, struct evsel *b)
{
if (!a->core.cpus && !b->core.cpus)
return true;
if (!a->core.cpus || !b->core.cpus)
return false;
if (perf_cpu_map__nr(a->core.cpus) != perf_cpu_map__nr(b->core.cpus))
return false;
for (int i = 0; i < perf_cpu_map__nr(a->core.cpus); i++) {
if (perf_cpu_map__cpu(a->core.cpus, i).cpu !=
perf_cpu_map__cpu(b->core.cpus, i).cpu)
return false;
}
return true;
}
static void evlist__check_cpu_maps(struct evlist *evlist)
{
struct evsel *evsel, *pos, *leader;
char buf[1024];
if (evlist__has_hybrid(evlist))
evlist__warn_hybrid_group(evlist);
evlist__for_each_entry(evlist, evsel) {
leader = evsel__leader(evsel);
/* Check that leader matches cpus with each member. */
if (leader == evsel)
continue;
if (cpus_map_matched(leader, evsel))
continue;
/* If there's mismatch disable the group and warn user. */
WARN_ONCE(1, "WARNING: grouped events cpus do not match, disabling group:\n");
evsel__group_desc(leader, buf, sizeof(buf));
pr_warning(" %s\n", buf);
if (verbose) {
cpu_map__snprint(leader->core.cpus, buf, sizeof(buf));
pr_warning(" %s: %s\n", leader->name, buf);
cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf));
pr_warning(" %s: %s\n", evsel->name, buf);
}
for_each_group_evsel(pos, leader)
evsel__remove_from_group(pos, leader);
}
}
static inline void diff_timespec(struct timespec *r, struct timespec *a,
struct timespec *b)
{
r->tv_sec = a->tv_sec - b->tv_sec;
if (a->tv_nsec < b->tv_nsec) {
r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec;
r->tv_sec--;
} else {
r->tv_nsec = a->tv_nsec - b->tv_nsec ;
}
}
static void perf_stat__reset_stats(void)
{
int i;
evlist__reset_stats(evsel_list);
perf_stat__reset_shadow_stats();
for (i = 0; i < stat_config.stats_num; i++)
perf_stat__reset_shadow_per_stat(&stat_config.stats[i]);
}
static int process_synthesized_event(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) {
pr_err("failed to write perf data, error: %m\n");
return -1;
}
perf_stat.bytes_written += event->header.size;
return 0;
}
static int write_stat_round_event(u64 tm, u64 type)
{
return perf_event__synthesize_stat_round(NULL, tm, type,
process_synthesized_event,
NULL);
}
#define WRITE_STAT_ROUND_EVENT(time, interval) \
write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval)
#define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread,
struct perf_counts_values *count)
{
struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread);
struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx);
return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count,
process_synthesized_event, NULL);
}
static int read_single_counter(struct evsel *counter, int cpu_map_idx,
int thread, struct timespec *rs)
{
switch(counter->tool_event) {
case PERF_TOOL_DURATION_TIME: {
u64 val = rs->tv_nsec + rs->tv_sec*1000000000ULL;
struct perf_counts_values *count =
perf_counts(counter->counts, cpu_map_idx, thread);
count->ena = count->run = val;
count->val = val;
return 0;
}
case PERF_TOOL_USER_TIME:
case PERF_TOOL_SYSTEM_TIME: {
u64 val;
struct perf_counts_values *count =
perf_counts(counter->counts, cpu_map_idx, thread);
if (counter->tool_event == PERF_TOOL_USER_TIME)
val = ru_stats.ru_utime_usec_stat.mean;
else
val = ru_stats.ru_stime_usec_stat.mean;
count->ena = count->run = val;
count->val = val;
return 0;
}
default:
case PERF_TOOL_NONE:
return evsel__read_counter(counter, cpu_map_idx, thread);
case PERF_TOOL_MAX:
/* This should never be reached */
return 0;
}
}
/*
* Read out the results of a single counter:
* do not aggregate counts across CPUs in system-wide mode
*/
static int read_counter_cpu(struct evsel *counter, struct timespec *rs, int cpu_map_idx)
{
int nthreads = perf_thread_map__nr(evsel_list->core.threads);
int thread;
if (!counter->supported)
return -ENOENT;
if (counter->core.system_wide)
nthreads = 1;
for (thread = 0; thread < nthreads; thread++) {
struct perf_counts_values *count;
count = perf_counts(counter->counts, cpu_map_idx, thread);
/*
* The leader's group read loads data into its group members
* (via evsel__read_counter()) and sets their count->loaded.
*/
if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) &&
read_single_counter(counter, cpu_map_idx, thread, rs)) {
counter->counts->scaled = -1;
perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0;
perf_counts(counter->counts, cpu_map_idx, thread)->run = 0;
return -1;
}
perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false);
if (STAT_RECORD) {
if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) {
pr_err("failed to write stat event\n");
return -1;
}
}
if (verbose > 1) {
fprintf(stat_config.output,
"%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
evsel__name(counter),
perf_cpu_map__cpu(evsel__cpus(counter),
cpu_map_idx).cpu,
count->val, count->ena, count->run);
}
}
return 0;
}
static int read_affinity_counters(struct timespec *rs)
{
struct evlist_cpu_iterator evlist_cpu_itr;
struct affinity saved_affinity, *affinity;
if (all_counters_use_bpf)
return 0;
if (!target__has_cpu(&target) || target__has_per_thread(&target))
affinity = NULL;
else if (affinity__setup(&saved_affinity) < 0)
return -1;
else
affinity = &saved_affinity;
evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
struct evsel *counter = evlist_cpu_itr.evsel;
if (evsel__is_bpf(counter))
continue;
if (!counter->err) {
counter->err = read_counter_cpu(counter, rs,
evlist_cpu_itr.cpu_map_idx);
}
}
if (affinity)
affinity__cleanup(&saved_affinity);
return 0;
}
static int read_bpf_map_counters(void)
{
struct evsel *counter;
int err;
evlist__for_each_entry(evsel_list, counter) {
if (!evsel__is_bpf(counter))
continue;
err = bpf_counter__read(counter);
if (err)
return err;
}
return 0;
}
static void read_counters(struct timespec *rs)
{
struct evsel *counter;
if (!stat_config.stop_read_counter) {
if (read_bpf_map_counters() ||
read_affinity_counters(rs))
return;
}
evlist__for_each_entry(evsel_list, counter) {
if (counter->err)
pr_debug("failed to read counter %s\n", counter->name);
if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter))
pr_warning("failed to process counter %s\n", counter->name);
counter->err = 0;
}
}
static int runtime_stat_new(struct perf_stat_config *config, int nthreads)
{
int i;
config->stats = calloc(nthreads, sizeof(struct runtime_stat));
if (!config->stats)
return -1;
config->stats_num = nthreads;
for (i = 0; i < nthreads; i++)
runtime_stat__init(&config->stats[i]);
return 0;
}
static void runtime_stat_delete(struct perf_stat_config *config)
{
int i;
if (!config->stats)
return;
for (i = 0; i < config->stats_num; i++)
runtime_stat__exit(&config->stats[i]);
zfree(&config->stats);
}
static void runtime_stat_reset(struct perf_stat_config *config)
{
int i;
if (!config->stats)
return;
for (i = 0; i < config->stats_num; i++)
perf_stat__reset_shadow_per_stat(&config->stats[i]);
}
static void process_interval(void)
{
struct timespec ts, rs;
clock_gettime(CLOCK_MONOTONIC, &ts);
diff_timespec(&rs, &ts, &ref_time);
perf_stat__reset_shadow_per_stat(&rt_stat);
runtime_stat_reset(&stat_config);
read_counters(&rs);
if (STAT_RECORD) {
if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL))
pr_err("failed to write stat round event\n");
}
init_stats(&walltime_nsecs_stats);
update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL);
print_counters(&rs, 0, NULL);
}
static bool handle_interval(unsigned int interval, int *times)
{
if (interval) {
process_interval();
if (interval_count && !(--(*times)))
return true;
}
return false;
}
static int enable_counters(void)
{
struct evsel *evsel;
int err;
evlist__for_each_entry(evsel_list, evsel) {
if (!evsel__is_bpf(evsel))
continue;
err = bpf_counter__enable(evsel);
if (err)
return err;
}
if (stat_config.initial_delay < 0) {
pr_info(EVLIST_DISABLED_MSG);
return 0;
}
if (stat_config.initial_delay > 0) {
pr_info(EVLIST_DISABLED_MSG);
usleep(stat_config.initial_delay * USEC_PER_MSEC);
}
/*
* We need to enable counters only if:
* - we don't have tracee (attaching to task or cpu)
* - we have initial delay configured
*/
if (!target__none(&target) || stat_config.initial_delay) {
if (!all_counters_use_bpf)
evlist__enable(evsel_list);
if (stat_config.initial_delay > 0)
pr_info(EVLIST_ENABLED_MSG);
}
return 0;
}
static void disable_counters(void)
{
struct evsel *counter;
/*
* If we don't have tracee (attaching to task or cpu), counters may
* still be running. To get accurate group ratios, we must stop groups
* from counting before reading their constituent counters.
*/
if (!target__none(&target)) {
evlist__for_each_entry(evsel_list, counter)
bpf_counter__disable(counter);
if (!all_counters_use_bpf)
evlist__disable(evsel_list);
}
}
static volatile int workload_exec_errno;
/*
* evlist__prepare_workload will send a SIGUSR1
* if the fork fails, since we asked by setting its
* want_signal to true.
*/
static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info,
void *ucontext __maybe_unused)
{
workload_exec_errno = info->si_value.sival_int;
}
static bool evsel__should_store_id(struct evsel *counter)
{
return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID;
}
static bool is_target_alive(struct target *_target,
struct perf_thread_map *threads)
{
struct stat st;
int i;
if (!target__has_task(_target))
return true;
for (i = 0; i < threads->nr; i++) {
char path[PATH_MAX];
scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(),
threads->map[i].pid);
if (!stat(path, &st))
return true;
}
return false;
}
static void process_evlist(struct evlist *evlist, unsigned int interval)
{
enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED;
if (evlist__ctlfd_process(evlist, &cmd) > 0) {
switch (cmd) {
case EVLIST_CTL_CMD_ENABLE:
if (interval)
process_interval();
break;
case EVLIST_CTL_CMD_DISABLE:
if (interval)
process_interval();
break;
case EVLIST_CTL_CMD_SNAPSHOT:
case EVLIST_CTL_CMD_ACK:
case EVLIST_CTL_CMD_UNSUPPORTED:
case EVLIST_CTL_CMD_EVLIST:
case EVLIST_CTL_CMD_STOP:
case EVLIST_CTL_CMD_PING:
default:
break;
}
}
}
static void compute_tts(struct timespec *time_start, struct timespec *time_stop,
int *time_to_sleep)
{
int tts = *time_to_sleep;
struct timespec time_diff;
diff_timespec(&time_diff, time_stop, time_start);
tts -= time_diff.tv_sec * MSEC_PER_SEC +
time_diff.tv_nsec / NSEC_PER_MSEC;
if (tts < 0)
tts = 0;
*time_to_sleep = tts;
}
static int dispatch_events(bool forks, int timeout, int interval, int *times)
{
int child_exited = 0, status = 0;
int time_to_sleep, sleep_time;
struct timespec time_start, time_stop;
if (interval)
sleep_time = interval;
else if (timeout)
sleep_time = timeout;
else
sleep_time = 1000;
time_to_sleep = sleep_time;
while (!done) {
if (forks)
child_exited = waitpid(child_pid, &status, WNOHANG);
else
child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0;
if (child_exited)
break;
clock_gettime(CLOCK_MONOTONIC, &time_start);
if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */
if (timeout || handle_interval(interval, times))
break;
time_to_sleep = sleep_time;
} else { /* fd revent */
process_evlist(evsel_list, interval);
clock_gettime(CLOCK_MONOTONIC, &time_stop);
compute_tts(&time_start, &time_stop, &time_to_sleep);
}
}
return status;
}
enum counter_recovery {
COUNTER_SKIP,
COUNTER_RETRY,
COUNTER_FATAL,
};
static enum counter_recovery stat_handle_error(struct evsel *counter)
{
char msg[BUFSIZ];
/*
* PPC returns ENXIO for HW counters until 2.6.37
* (behavior changed with commit b0a873e).
*/
if (errno == EINVAL || errno == ENOSYS ||
errno == ENOENT || errno == EOPNOTSUPP ||
errno == ENXIO) {
if (verbose > 0)
ui__warning("%s event is not supported by the kernel.\n",
evsel__name(counter));
counter->supported = false;
/*
* errored is a sticky flag that means one of the counter's
* cpu event had a problem and needs to be reexamined.
*/
counter->errored = true;
if ((evsel__leader(counter) != counter) ||
!(counter->core.leader->nr_members > 1))
return COUNTER_SKIP;
} else if (evsel__fallback(counter, errno, msg, sizeof(msg))) {
if (verbose > 0)
ui__warning("%s\n", msg);
return COUNTER_RETRY;
} else if (target__has_per_thread(&target) &&
evsel_list->core.threads &&
evsel_list->core.threads->err_thread != -1) {
/*
* For global --per-thread case, skip current
* error thread.
*/
if (!thread_map__remove(evsel_list->core.threads,
evsel_list->core.threads->err_thread)) {
evsel_list->core.threads->err_thread = -1;
return COUNTER_RETRY;
}
}
evsel__open_strerror(counter, &target, errno, msg, sizeof(msg));
ui__error("%s\n", msg);
if (child_pid != -1)
kill(child_pid, SIGTERM);
return COUNTER_FATAL;
}
static int __run_perf_stat(int argc, const char **argv, int run_idx)
{
int interval = stat_config.interval;
int times = stat_config.times;
int timeout = stat_config.timeout;
char msg[BUFSIZ];
unsigned long long t0, t1;
struct evsel *counter;
size_t l;
int status = 0;
const bool forks = (argc > 0);
bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false;
struct evlist_cpu_iterator evlist_cpu_itr;
struct affinity saved_affinity, *affinity = NULL;
int err;
bool second_pass = false;
if (forks) {
if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) {
perror("failed to prepare workload");
return -1;
}
child_pid = evsel_list->workload.pid;
}
if (group)
evlist__set_leader(evsel_list);
if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) {
if (affinity__setup(&saved_affinity) < 0)
return -1;
affinity = &saved_affinity;
}
evlist__for_each_entry(evsel_list, counter) {
if (bpf_counter__load(counter, &target))
return -1;
if (!evsel__is_bpf(counter))
all_counters_use_bpf = false;
}
evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
counter = evlist_cpu_itr.evsel;
/*
* bperf calls evsel__open_per_cpu() in bperf__load(), so
* no need to call it again here.
*/
if (target.use_bpf)
break;
if (counter->reset_group || counter->errored)
continue;
if (evsel__is_bpf(counter))
continue;
try_again:
if (create_perf_stat_counter(counter, &stat_config, &target,
evlist_cpu_itr.cpu_map_idx) < 0) {
/*
* Weak group failed. We cannot just undo this here
* because earlier CPUs might be in group mode, and the kernel
* doesn't support mixing group and non group reads. Defer
* it to later.
* Don't close here because we're in the wrong affinity.
*/
if ((errno == EINVAL || errno == EBADF) &&
evsel__leader(counter) != counter &&
counter->weak_group) {
evlist__reset_weak_group(evsel_list, counter, false);
assert(counter->reset_group);
second_pass = true;
continue;
}
switch (stat_handle_error(counter)) {
case COUNTER_FATAL:
return -1;
case COUNTER_RETRY:
goto try_again;
case COUNTER_SKIP:
continue;
default:
break;
}
}
counter->supported = true;
}
if (second_pass) {
/*
* Now redo all the weak group after closing them,
* and also close errored counters.
*/
/* First close errored or weak retry */
evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
counter = evlist_cpu_itr.evsel;
if (!counter->reset_group && !counter->errored)
continue;
perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx);
}
/* Now reopen weak */
evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
counter = evlist_cpu_itr.evsel;
if (!counter->reset_group && !counter->errored)
continue;
if (!counter->reset_group)
continue;
try_again_reset:
pr_debug2("reopening weak %s\n", evsel__name(counter));
if (create_perf_stat_counter(counter, &stat_config, &target,
evlist_cpu_itr.cpu_map_idx) < 0) {
switch (stat_handle_error(counter)) {
case COUNTER_FATAL:
return -1;
case COUNTER_RETRY:
goto try_again_reset;
case COUNTER_SKIP:
continue;
default:
break;
}
}
counter->supported = true;
}
}
affinity__cleanup(affinity);
evlist__for_each_entry(evsel_list, counter) {
if (!counter->supported) {
perf_evsel__free_fd(&counter->core);
continue;
}
l = strlen(counter->unit);
if (l > stat_config.unit_width)
stat_config.unit_width = l;
if (evsel__should_store_id(counter) &&
evsel__store_ids(counter, evsel_list))
return -1;
}
if (evlist__apply_filters(evsel_list, &counter)) {
pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n",
counter->filter, evsel__name(counter), errno,
str_error_r(errno, msg, sizeof(msg)));
return -1;
}
if (STAT_RECORD) {
int fd = perf_data__fd(&perf_stat.data);
if (is_pipe) {
err = perf_header__write_pipe(perf_data__fd(&perf_stat.data));
} else {
err = perf_session__write_header(perf_stat.session, evsel_list,
fd, false);
}
if (err < 0)
return err;
err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list,
process_synthesized_event, is_pipe);
if (err < 0)
return err;
}
/*
* Enable counters and exec the command:
*/
if (forks) {
err = enable_counters();
if (err)
return -1;
evlist__start_workload(evsel_list);
t0 = rdclock();
clock_gettime(CLOCK_MONOTONIC, &ref_time);
if (interval || timeout || evlist__ctlfd_initialized(evsel_list))
status = dispatch_events(forks, timeout, interval, &times);
if (child_pid != -1) {
if (timeout)
kill(child_pid, SIGTERM);
wait4(child_pid, &status, 0, &stat_config.ru_data);
}
if (workload_exec_errno) {
const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg));
pr_err("Workload failed: %s\n", emsg);
return -1;
}
if (WIFSIGNALED(status))
psignal(WTERMSIG(status), argv[0]);
} else {
err = enable_counters();
if (err)
return -1;
t0 = rdclock();
clock_gettime(CLOCK_MONOTONIC, &ref_time);
status = dispatch_events(forks, timeout, interval, &times);
}
disable_counters();
t1 = rdclock();
if (stat_config.walltime_run_table)
stat_config.walltime_run[run_idx] = t1 - t0;
if (interval && stat_config.summary) {
stat_config.interval = 0;
stat_config.stop_read_counter = true;
init_stats(&walltime_nsecs_stats);
update_stats(&walltime_nsecs_stats, t1 - t0);
if (stat_config.aggr_mode == AGGR_GLOBAL)
evlist__save_aggr_prev_raw_counts(evsel_list);
evlist__copy_prev_raw_counts(evsel_list);
evlist__reset_prev_raw_counts(evsel_list);
runtime_stat_reset(&stat_config);
perf_stat__reset_shadow_per_stat(&rt_stat);
} else {
update_stats(&walltime_nsecs_stats, t1 - t0);
update_rusage_stats(&ru_stats, &stat_config.ru_data);
}
/*
* Closing a group leader splits the group, and as we only disable
* group leaders, results in remaining events becoming enabled. To
* avoid arbitrary skew, we must read all counters before closing any
* group leaders.
*/
read_counters(&(struct timespec) { .tv_nsec = t1-t0 });
/*
* We need to keep evsel_list alive, because it's processed
* later the evsel_list will be closed after.
*/
if (!STAT_RECORD)
evlist__close(evsel_list);
return WEXITSTATUS(status);
}
static int run_perf_stat(int argc, const char **argv, int run_idx)
{
int ret;
if (pre_cmd) {
ret = system(pre_cmd);
if (ret)
return ret;
}
if (sync_run)
sync();
ret = __run_perf_stat(argc, argv, run_idx);
if (ret)
return ret;
if (post_cmd) {
ret = system(post_cmd);
if (ret)
return ret;
}
return ret;
}
static void print_counters(struct timespec *ts, int argc, const char **argv)
{
/* Do not print anything if we record to the pipe. */
if (STAT_RECORD && perf_stat.data.is_pipe)
return;
if (stat_config.quiet)
return;
evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv);
}
static volatile int signr = -1;
static void skip_signal(int signo)
{
if ((child_pid == -1) || stat_config.interval)
done = 1;
signr = signo;
/*
* render child_pid harmless
* won't send SIGTERM to a random
* process in case of race condition
* and fast PID recycling
*/
child_pid = -1;
}
static void sig_atexit(void)
{
sigset_t set, oset;
/*
* avoid race condition with SIGCHLD handler
* in skip_signal() which is modifying child_pid
* goal is to avoid send SIGTERM to a random
* process
*/
sigemptyset(&set);
sigaddset(&set, SIGCHLD);
sigprocmask(SIG_BLOCK, &set, &oset);
if (child_pid != -1)
kill(child_pid, SIGTERM);
sigprocmask(SIG_SETMASK, &oset, NULL);
if (signr == -1)
return;
signal(signr, SIG_DFL);
kill(getpid(), signr);
}
void perf_stat__set_big_num(int set)
{
stat_config.big_num = (set != 0);
}
void perf_stat__set_no_csv_summary(int set)
{
stat_config.no_csv_summary = (set != 0);
}
static int stat__set_big_num(const struct option *opt __maybe_unused,
const char *s __maybe_unused, int unset)
{
big_num_opt = unset ? 0 : 1;
perf_stat__set_big_num(!unset);
return 0;
}
static int enable_metric_only(const struct option *opt __maybe_unused,
const char *s __maybe_unused, int unset)
{
force_metric_only = true;
stat_config.metric_only = !unset;
return 0;
}
static int parse_metric_groups(const struct option *opt,
const char *str,
int unset __maybe_unused)
{
return metricgroup__parse_groups(opt, str,
stat_config.metric_no_group,
stat_config.metric_no_merge,
&stat_config.metric_events);
}
static int parse_control_option(const struct option *opt,
const char *str,
int unset __maybe_unused)
{
struct perf_stat_config *config = opt->value;
return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close);
}
static int parse_stat_cgroups(const struct option *opt,
const char *str, int unset)
{
if (stat_config.cgroup_list) {
pr_err("--cgroup and --for-each-cgroup cannot be used together\n");
return -1;
}
return parse_cgroups(opt, str, unset);
}
static int parse_hybrid_type(const struct option *opt,
const char *str,
int unset __maybe_unused)
{
struct evlist *evlist = *(struct evlist **)opt->value;
if (!list_empty(&evlist->core.entries)) {
fprintf(stderr, "Must define cputype before events/metrics\n");
return -1;
}
evlist->hybrid_pmu_name = perf_pmu__hybrid_type_to_pmu(str);
if (!evlist->hybrid_pmu_name) {
fprintf(stderr, "--cputype %s is not supported!\n", str);
return -1;
}
return 0;
}
static struct option stat_options[] = {
OPT_BOOLEAN('T', "transaction", &transaction_run,
"hardware transaction statistics"),
OPT_CALLBACK('e', "event", &evsel_list, "event",
"event selector. use 'perf list' to list available events",
parse_events_option),
OPT_CALLBACK(0, "filter", &evsel_list, "filter",
"event filter", parse_filter),
OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit,
"child tasks do not inherit counters"),
OPT_STRING('p', "pid", &target.pid, "pid",
"stat events on existing process id"),
OPT_STRING('t', "tid", &target.tid, "tid",
"stat events on existing thread id"),
#ifdef HAVE_BPF_SKEL
OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id",
"stat events on existing bpf program id"),
OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf,
"use bpf program to count events"),
OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path",
"path to perf_event_attr map"),
#endif
OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
"system-wide collection from all CPUs"),
OPT_BOOLEAN('g', "group", &group,
"put the counters into a counter group"),
OPT_BOOLEAN(0, "scale", &stat_config.scale,
"Use --no-scale to disable counter scaling for multiplexing"),
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show counter open errors, etc)"),
OPT_INTEGER('r', "repeat", &stat_config.run_count,
"repeat command and print average + stddev (max: 100, forever: 0)"),
OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table,
"display details about each run (only with -r option)"),
OPT_BOOLEAN('n', "null", &stat_config.null_run,
"null run - dont start any counters"),
OPT_INCR('d', "detailed", &detailed_run,
"detailed run - start a lot of events"),
OPT_BOOLEAN('S', "sync", &sync_run,
"call sync() before starting a run"),
OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL,
"print large numbers with thousands\' separators",
stat__set_big_num),
OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
"list of cpus to monitor in system-wide"),
OPT_SET_UINT('A', "no-aggr", &stat_config.aggr_mode,
"disable CPU count aggregation", AGGR_NONE),
OPT_BOOLEAN(0, "no-merge", &stat_config.no_merge, "Do not merge identical named events"),
OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge,
"Merge identical named hybrid events"),
OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator",
"print counts with custom separator"),
OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
"monitor event in cgroup name only", parse_stat_cgroups),
OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name",
"expand events for each cgroup"),
OPT_STRING('o', "output", &output_name, "file", "output file name"),
OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
OPT_INTEGER(0, "log-fd", &output_fd,
"log output to fd, instead of stderr"),
OPT_STRING(0, "pre", &pre_cmd, "command",
"command to run prior to the measured command"),
OPT_STRING(0, "post", &post_cmd, "command",
"command to run after to the measured command"),
OPT_UINTEGER('I', "interval-print", &stat_config.interval,
"print counts at regular interval in ms "
"(overhead is possible for values <= 100ms)"),
OPT_INTEGER(0, "interval-count", &stat_config.times,
"print counts for fixed number of times"),
OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear,
"clear screen in between new interval"),
OPT_UINTEGER(0, "timeout", &stat_config.timeout,
"stop workload and print counts after a timeout period in ms (>= 10ms)"),
OPT_SET_UINT(0, "per-socket", &stat_config.aggr_mode,
"aggregate counts per processor socket", AGGR_SOCKET),
OPT_SET_UINT(0, "per-die", &stat_config.aggr_mode,
"aggregate counts per processor die", AGGR_DIE),
OPT_SET_UINT(0, "per-core", &stat_config.aggr_mode,
"aggregate counts per physical processor core", AGGR_CORE),
OPT_SET_UINT(0, "per-thread", &stat_config.aggr_mode,
"aggregate counts per thread", AGGR_THREAD),
OPT_SET_UINT(0, "per-node", &stat_config.aggr_mode,
"aggregate counts per numa node", AGGR_NODE),
OPT_INTEGER('D', "delay", &stat_config.initial_delay,
"ms to wait before starting measurement after program start (-1: start with events disabled)"),
OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL,
"Only print computed metrics. No raw values", enable_metric_only),
OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group,
"don't group metric events, impacts multiplexing"),
OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge,
"don't try to share events between metrics in a group"),
OPT_BOOLEAN(0, "topdown", &topdown_run,
"measure top-down statistics"),
OPT_UINTEGER(0, "td-level", &stat_config.topdown_level,
"Set the metrics level for the top-down statistics (0: max level)"),
OPT_BOOLEAN(0, "smi-cost", &smi_cost,
"measure SMI cost"),
OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list",
"monitor specified metrics or metric groups (separated by ,)",
parse_metric_groups),
OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel,
"Configure all used events to run in kernel space.",
PARSE_OPT_EXCLUSIVE),
OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user,
"Configure all used events to run in user space.",
PARSE_OPT_EXCLUSIVE),
OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread,
"Use with 'percore' event qualifier to show the event "
"counts of one hardware thread by sum up total hardware "
"threads of same physical core"),
OPT_BOOLEAN(0, "summary", &stat_config.summary,
"print summary for interval mode"),
OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary,
"don't print 'summary' for CSV summary output"),
OPT_BOOLEAN(0, "quiet", &stat_config.quiet,
"don't print output (useful with record)"),
OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type",
"Only enable events on applying cpu with this type "
"for hybrid platform (e.g. core or atom)",
parse_hybrid_type),
#ifdef HAVE_LIBPFM
OPT_CALLBACK(0, "pfm-events", &evsel_list, "event",
"libpfm4 event selector. use 'perf list' to list available events",
parse_libpfm_events_option),
#endif
OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]",
"Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n"
"\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n"
"\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.",
parse_control_option),
OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default",
"measure I/O performance metrics provided by arch/platform",
iostat_parse),
OPT_END()
};
static const char *const aggr_mode__string[] = {
[AGGR_CORE] = "core",
[AGGR_DIE] = "die",
[AGGR_GLOBAL] = "global",
[AGGR_NODE] = "node",
[AGGR_NONE] = "none",
[AGGR_SOCKET] = "socket",
[AGGR_THREAD] = "thread",
[AGGR_UNSET] = "unset",
};
static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return aggr_cpu_id__socket(cpu, /*data=*/NULL);
}
static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return aggr_cpu_id__die(cpu, /*data=*/NULL);
}
static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return aggr_cpu_id__core(cpu, /*data=*/NULL);
}
static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return aggr_cpu_id__node(cpu, /*data=*/NULL);
}
static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config,
aggr_get_id_t get_id, struct perf_cpu cpu)
{
struct aggr_cpu_id id = aggr_cpu_id__empty();
if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu]))
config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu);
id = config->cpus_aggr_map->map[cpu.cpu];
return id;
}
static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config,
struct perf_cpu cpu)
{
return perf_stat__get_aggr(config, perf_stat__get_socket, cpu);
}
static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config,
struct perf_cpu cpu)
{
return perf_stat__get_aggr(config, perf_stat__get_die, cpu);
}
static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config,
struct perf_cpu cpu)
{
return perf_stat__get_aggr(config, perf_stat__get_core, cpu);
}
static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config,
struct perf_cpu cpu)
{
return perf_stat__get_aggr(config, perf_stat__get_node, cpu);
}
static bool term_percore_set(void)
{
struct evsel *counter;
evlist__for_each_entry(evsel_list, counter) {
if (counter->percore)
return true;
}
return false;
}
static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode)
{
switch (aggr_mode) {
case AGGR_SOCKET:
return aggr_cpu_id__socket;
case AGGR_DIE:
return aggr_cpu_id__die;
case AGGR_CORE:
return aggr_cpu_id__core;
case AGGR_NODE:
return aggr_cpu_id__node;
case AGGR_NONE:
if (term_percore_set())
return aggr_cpu_id__core;
return NULL;
case AGGR_GLOBAL:
case AGGR_THREAD:
case AGGR_UNSET:
default:
return NULL;
}
}
static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode)
{
switch (aggr_mode) {
case AGGR_SOCKET:
return perf_stat__get_socket_cached;
case AGGR_DIE:
return perf_stat__get_die_cached;
case AGGR_CORE:
return perf_stat__get_core_cached;
case AGGR_NODE:
return perf_stat__get_node_cached;
case AGGR_NONE:
if (term_percore_set()) {
return perf_stat__get_core_cached;
}
return NULL;
case AGGR_GLOBAL:
case AGGR_THREAD:
case AGGR_UNSET:
default:
return NULL;
}
}
static int perf_stat_init_aggr_mode(void)
{
int nr;
aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode);
if (get_id) {
stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus,
get_id, /*data=*/NULL);
if (!stat_config.aggr_map) {
pr_err("cannot build %s map", aggr_mode__string[stat_config.aggr_mode]);
return -1;
}
stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode);
}
/*
* The evsel_list->cpus is the base we operate on,
* taking the highest cpu number to be the size of
* the aggregation translate cpumap.
*/
if (evsel_list->core.user_requested_cpus)
nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu;
else
nr = 0;
stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1);
return stat_config.cpus_aggr_map ? 0 : -ENOMEM;
}
static void cpu_aggr_map__delete(struct cpu_aggr_map *map)
{
if (map) {
WARN_ONCE(refcount_read(&map->refcnt) != 0,
"cpu_aggr_map refcnt unbalanced\n");
free(map);
}
}
static void cpu_aggr_map__put(struct cpu_aggr_map *map)
{
if (map && refcount_dec_and_test(&map->refcnt))
cpu_aggr_map__delete(map);
}
static void perf_stat__exit_aggr_mode(void)
{
cpu_aggr_map__put(stat_config.aggr_map);
cpu_aggr_map__put(stat_config.cpus_aggr_map);
stat_config.aggr_map = NULL;
stat_config.cpus_aggr_map = NULL;
}
static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data)
{
struct perf_env *env = data;
struct aggr_cpu_id id = aggr_cpu_id__empty();
if (cpu.cpu != -1)
id.socket = env->cpu[cpu.cpu].socket_id;
return id;
}
static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data)
{
struct perf_env *env = data;
struct aggr_cpu_id id = aggr_cpu_id__empty();
if (cpu.cpu != -1) {
/*
* die_id is relative to socket, so start
* with the socket ID and then add die to
* make a unique ID.
*/
id.socket = env->cpu[cpu.cpu].socket_id;
id.die = env->cpu[cpu.cpu].die_id;
}
return id;
}
static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data)
{
struct perf_env *env = data;
struct aggr_cpu_id id = aggr_cpu_id__empty();
if (cpu.cpu != -1) {
/*
* core_id is relative to socket and die,
* we need a global id. So we set
* socket, die id and core id
*/
id.socket = env->cpu[cpu.cpu].socket_id;
id.die = env->cpu[cpu.cpu].die_id;
id.core = env->cpu[cpu.cpu].core_id;
}
return id;
}
static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data)
{
struct aggr_cpu_id id = aggr_cpu_id__empty();
id.node = perf_env__numa_node(data, cpu);
return id;
}
static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env);
}
static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env);
}
static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env);
}
static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused,
struct perf_cpu cpu)
{
return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env);
}
static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode)
{
switch (aggr_mode) {
case AGGR_SOCKET:
return perf_env__get_socket_aggr_by_cpu;
case AGGR_DIE:
return perf_env__get_die_aggr_by_cpu;
case AGGR_CORE:
return perf_env__get_core_aggr_by_cpu;
case AGGR_NODE:
return perf_env__get_node_aggr_by_cpu;
case AGGR_NONE:
case AGGR_GLOBAL:
case AGGR_THREAD:
case AGGR_UNSET:
default:
return NULL;
}
}
static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode)
{
switch (aggr_mode) {
case AGGR_SOCKET:
return perf_stat__get_socket_file;
case AGGR_DIE:
return perf_stat__get_die_file;
case AGGR_CORE:
return perf_stat__get_core_file;
case AGGR_NODE:
return perf_stat__get_node_file;
case AGGR_NONE:
case AGGR_GLOBAL:
case AGGR_THREAD:
case AGGR_UNSET:
default:
return NULL;
}
}
static int perf_stat_init_aggr_mode_file(struct perf_stat *st)
{
struct perf_env *env = &st->session->header.env;
aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode);
if (!get_id)
return 0;
stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, get_id, env);
if (!stat_config.aggr_map) {
pr_err("cannot build %s map", aggr_mode__string[stat_config.aggr_mode]);
return -1;
}
stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode);
return 0;
}
/*
* Add default attributes, if there were no attributes specified or
* if -d/--detailed, -d -d or -d -d -d is used:
*/
static int add_default_attributes(void)
{
int err;
struct perf_event_attr default_attrs0[] = {
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
};
struct perf_event_attr frontend_attrs[] = {
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND },
};
struct perf_event_attr backend_attrs[] = {
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND },
};
struct perf_event_attr default_attrs1[] = {
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES },
};
struct perf_event_attr default_sw_attrs[] = {
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
};
/*
* Detailed stats (-d), covering the L1 and last level data caches:
*/
struct perf_event_attr detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very detailed stats (-d -d), covering the instruction cache and the TLB caches:
*/
struct perf_event_attr very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very, very detailed stats (-d -d -d), adding prefetch events:
*/
struct perf_event_attr very_very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/* Set attrs if no event is selected and !null_run: */
if (stat_config.null_run)
return 0;
if (transaction_run) {
struct parse_events_error errinfo;
/* Handle -T as -M transaction. Once platform specific metrics
* support has been added to the json files, all architectures
* will use this approach. To determine transaction support
* on an architecture test for such a metric name.
*/
if (metricgroup__has_metric("transaction")) {
struct option opt = { .value = &evsel_list };
return metricgroup__parse_groups(&opt, "transaction",
stat_config.metric_no_group,
stat_config.metric_no_merge,
&stat_config.metric_events);
}
parse_events_error__init(&errinfo);
if (pmu_have_event("cpu", "cycles-ct") &&
pmu_have_event("cpu", "el-start"))
err = parse_events(evsel_list, transaction_attrs,
&errinfo);
else
err = parse_events(evsel_list,
transaction_limited_attrs,
&errinfo);
if (err) {
fprintf(stderr, "Cannot set up transaction events\n");
parse_events_error__print(&errinfo, transaction_attrs);
}
parse_events_error__exit(&errinfo);
return err ? -1 : 0;
}
if (smi_cost) {
struct parse_events_error errinfo;
int smi;
if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) {
fprintf(stderr, "freeze_on_smi is not supported.\n");
return -1;
}
if (!smi) {
if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) {
fprintf(stderr, "Failed to set freeze_on_smi.\n");
return -1;
}
smi_reset = true;
}
if (!pmu_have_event("msr", "aperf") ||
!pmu_have_event("msr", "smi")) {
fprintf(stderr, "To measure SMI cost, it needs "
"msr/aperf/, msr/smi/ and cpu/cycles/ support\n");
return -1;
}
if (!force_metric_only)
stat_config.metric_only = true;
parse_events_error__init(&errinfo);
err = parse_events(evsel_list, smi_cost_attrs, &errinfo);
if (err) {
parse_events_error__print(&errinfo, smi_cost_attrs);
fprintf(stderr, "Cannot set up SMI cost events\n");
}
parse_events_error__exit(&errinfo);
return err ? -1 : 0;
}
if (topdown_run) {
const char **metric_attrs = topdown_metric_attrs;
unsigned int max_level = 1;
char *str = NULL;
bool warn = false;
const char *pmu_name = "cpu";
if (!force_metric_only)
stat_config.metric_only = true;
if (perf_pmu__has_hybrid()) {
if (!evsel_list->hybrid_pmu_name) {
pr_warning("WARNING: default to use cpu_core topdown events\n");
evsel_list->hybrid_pmu_name = perf_pmu__hybrid_type_to_pmu("core");
}
pmu_name = evsel_list->hybrid_pmu_name;
if (!pmu_name)
return -1;
}
if (pmu_have_event(pmu_name, topdown_metric_L2_attrs[5])) {
metric_attrs = topdown_metric_L2_attrs;
max_level = 2;
}
if (stat_config.topdown_level > max_level) {
pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level);
return -1;
} else if (!stat_config.topdown_level)
stat_config.topdown_level = max_level;
if (topdown_filter_events(metric_attrs, &str, 1, pmu_name) < 0) {
pr_err("Out of memory\n");
return -1;
}
if (metric_attrs[0] && str) {
if (!stat_config.interval && !stat_config.metric_only) {
fprintf(stat_config.output,
"Topdown accuracy may decrease when measuring long periods.\n"
"Please print the result regularly, e.g. -I1000\n");
}
goto setup_metrics;
}
zfree(&str);
if (stat_config.aggr_mode != AGGR_GLOBAL &&
stat_config.aggr_mode != AGGR_CORE) {
pr_err("top down event configuration requires --per-core mode\n");
return -1;
}
stat_config.aggr_mode = AGGR_CORE;
if (nr_cgroups || !target__has_cpu(&target)) {
pr_err("top down event configuration requires system-wide mode (-a)\n");
return -1;
}
if (topdown_filter_events(topdown_attrs, &str,
arch_topdown_check_group(&warn),
pmu_name) < 0) {
pr_err("Out of memory\n");
return -1;
}
if (topdown_attrs[0] && str) {
struct parse_events_error errinfo;
if (warn)
arch_topdown_group_warn();
setup_metrics:
parse_events_error__init(&errinfo);
err = parse_events(evsel_list, str, &errinfo);
if (err) {
fprintf(stderr,
"Cannot set up top down events %s: %d\n",
str, err);
parse_events_error__print(&errinfo, str);
parse_events_error__exit(&errinfo);
free(str);
return -1;
}
parse_events_error__exit(&errinfo);
} else {
fprintf(stderr, "System does not support topdown\n");
return -1;
}
free(str);
}
if (!evsel_list->core.nr_entries) {
if (perf_pmu__has_hybrid()) {
struct parse_events_error errinfo;
const char *hybrid_str = "cycles,instructions,branches,branch-misses";
if (target__has_cpu(&target))
default_sw_attrs[0].config = PERF_COUNT_SW_CPU_CLOCK;
if (evlist__add_default_attrs(evsel_list,
default_sw_attrs) < 0) {
return -1;
}
parse_events_error__init(&errinfo);
err = parse_events(evsel_list, hybrid_str, &errinfo);
if (err) {
fprintf(stderr,
"Cannot set up hybrid events %s: %d\n",
hybrid_str, err);
parse_events_error__print(&errinfo, hybrid_str);
}
parse_events_error__exit(&errinfo);
return err ? -1 : 0;
}
if (target__has_cpu(&target))
default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK;
if (evlist__add_default_attrs(evsel_list, default_attrs0) < 0)
return -1;
if (pmu_have_event("cpu", "stalled-cycles-frontend")) {
if (evlist__add_default_attrs(evsel_list, frontend_attrs) < 0)
return -1;
}
if (pmu_have_event("cpu", "stalled-cycles-backend")) {
if (evlist__add_default_attrs(evsel_list, backend_attrs) < 0)
return -1;
}
if (evlist__add_default_attrs(evsel_list, default_attrs1) < 0)
return -1;
stat_config.topdown_level = TOPDOWN_MAX_LEVEL;
if (arch_evlist__add_default_attrs(evsel_list) < 0)
return -1;
}
/* Detailed events get appended to the event list: */
if (detailed_run < 1)
return 0;
/* Append detailed run extra attributes: */
if (evlist__add_default_attrs(evsel_list, detailed_attrs) < 0)
return -1;
if (detailed_run < 2)
return 0;
/* Append very detailed run extra attributes: */
if (evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0)
return -1;
if (detailed_run < 3)
return 0;
/* Append very, very detailed run extra attributes: */
return evlist__add_default_attrs(evsel_list, very_very_detailed_attrs);
}
static const char * const stat_record_usage[] = {
"perf stat record [<options>]",
NULL,
};
static void init_features(struct perf_session *session)
{
int feat;
for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++)
perf_header__set_feat(&session->header, feat);
perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT);
perf_header__clear_feat(&session->header, HEADER_BUILD_ID);
perf_header__clear_feat(&session->header, HEADER_TRACING_DATA);
perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK);
perf_header__clear_feat(&session->header, HEADER_AUXTRACE);
}
static int __cmd_record(int argc, const char **argv)
{
struct perf_session *session;
struct perf_data *data = &perf_stat.data;
argc = parse_options(argc, argv, stat_options, stat_record_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
if (output_name)
data->path = output_name;
if (stat_config.run_count != 1 || forever) {
pr_err("Cannot use -r option with perf stat record.\n");
return -1;
}
session = perf_session__new(data, NULL);
if (IS_ERR(session)) {
pr_err("Perf session creation failed\n");
return PTR_ERR(session);
}
init_features(session);
session->evlist = evsel_list;
perf_stat.session = session;
perf_stat.record = true;
return argc;
}
static int process_stat_round_event(struct perf_session *session,
union perf_event *event)
{
struct perf_record_stat_round *stat_round = &event->stat_round;
struct evsel *counter;
struct timespec tsh, *ts = NULL;
const char **argv = session->header.env.cmdline_argv;
int argc = session->header.env.nr_cmdline;
evlist__for_each_entry(evsel_list, counter)
perf_stat_process_counter(&stat_config, counter);
if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL)
update_stats(&walltime_nsecs_stats, stat_round->time);
if (stat_config.interval && stat_round->time) {
tsh.tv_sec = stat_round->time / NSEC_PER_SEC;
tsh.tv_nsec = stat_round->time % NSEC_PER_SEC;
ts = &tsh;
}
print_counters(ts, argc, argv);
return 0;
}
static
int process_stat_config_event(struct perf_session *session,
union perf_event *event)
{
struct perf_tool *tool = session->tool;
struct perf_stat *st = container_of(tool, struct perf_stat, tool);
perf_event__read_stat_config(&stat_config, &event->stat_config);
if (perf_cpu_map__empty(st->cpus)) {
if (st->aggr_mode != AGGR_UNSET)
pr_warning("warning: processing task data, aggregation mode not set\n");
return 0;
}
if (st->aggr_mode != AGGR_UNSET)
stat_config.aggr_mode = st->aggr_mode;
if (perf_stat.data.is_pipe)
perf_stat_init_aggr_mode();
else
perf_stat_init_aggr_mode_file(st);
return 0;
}
static int set_maps(struct perf_stat *st)
{
if (!st->cpus || !st->threads)
return 0;
if (WARN_ONCE(st->maps_allocated, "stats double allocation\n"))
return -EINVAL;
perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads);
if (evlist__alloc_stats(evsel_list, true))
return -ENOMEM;
st->maps_allocated = true;
return 0;
}
static
int process_thread_map_event(struct perf_session *session,
union perf_event *event)
{
struct perf_tool *tool = session->tool;
struct perf_stat *st = container_of(tool, struct perf_stat, tool);
if (st->threads) {
pr_warning("Extra thread map event, ignoring.\n");
return 0;
}
st->threads = thread_map__new_event(&event->thread_map);
if (!st->threads)
return -ENOMEM;
return set_maps(st);
}
static
int process_cpu_map_event(struct perf_session *session,
union perf_event *event)
{
struct perf_tool *tool = session->tool;
struct perf_stat *st = container_of(tool, struct perf_stat, tool);
struct perf_cpu_map *cpus;
if (st->cpus) {
pr_warning("Extra cpu map event, ignoring.\n");
return 0;
}
cpus = cpu_map__new_data(&event->cpu_map.data);
if (!cpus)
return -ENOMEM;
st->cpus = cpus;
return set_maps(st);
}
static const char * const stat_report_usage[] = {
"perf stat report [<options>]",
NULL,
};
static struct perf_stat perf_stat = {
.tool = {
.attr = perf_event__process_attr,
.event_update = perf_event__process_event_update,
.thread_map = process_thread_map_event,
.cpu_map = process_cpu_map_event,
.stat_config = process_stat_config_event,
.stat = perf_event__process_stat_event,
.stat_round = process_stat_round_event,
},
.aggr_mode = AGGR_UNSET,
};
static int __cmd_report(int argc, const char **argv)
{
struct perf_session *session;
const struct option options[] = {
OPT_STRING('i', "input", &input_name, "file", "input file name"),
OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode,
"aggregate counts per processor socket", AGGR_SOCKET),
OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode,
"aggregate counts per processor die", AGGR_DIE),
OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode,
"aggregate counts per physical processor core", AGGR_CORE),
OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode,
"aggregate counts per numa node", AGGR_NODE),
OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode,
"disable CPU count aggregation", AGGR_NONE),
OPT_END()
};
struct stat st;
int ret;
argc = parse_options(argc, argv, options, stat_report_usage, 0);
if (!input_name || !strlen(input_name)) {
if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
input_name = "-";
else
input_name = "perf.data";
}
perf_stat.data.path = input_name;
perf_stat.data.mode = PERF_DATA_MODE_READ;
session = perf_session__new(&perf_stat.data, &perf_stat.tool);
if (IS_ERR(session))
return PTR_ERR(session);
perf_stat.session = session;
stat_config.output = stderr;
evsel_list = session->evlist;
ret = perf_session__process_events(session);
if (ret)
return ret;
perf_session__delete(session);
return 0;
}
static void setup_system_wide(int forks)
{
/*
* Make system wide (-a) the default target if
* no target was specified and one of following
* conditions is met:
*
* - there's no workload specified
* - there is workload specified but all requested
* events are system wide events
*/
if (!target__none(&target))
return;
if (!forks)
target.system_wide = true;
else {
struct evsel *counter;
evlist__for_each_entry(evsel_list, counter) {
if (!counter->core.system_wide &&
strcmp(counter->name, "duration_time")) {
return;
}
}
if (evsel_list->core.nr_entries)
target.system_wide = true;
}
}
int cmd_stat(int argc, const char **argv)
{
const char * const stat_usage[] = {
"perf stat [<options>] [<command>]",
NULL
};
int status = -EINVAL, run_idx, err;
const char *mode;
FILE *output = stderr;
unsigned int interval, timeout;
const char * const stat_subcommands[] = { "record", "report" };
char errbuf[BUFSIZ];
setlocale(LC_ALL, "");
evsel_list = evlist__new();
if (evsel_list == NULL)
return -ENOMEM;
parse_events__shrink_config_terms();
/* String-parsing callback-based options would segfault when negated */
set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG);
set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG);
set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG);
argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands,
(const char **) stat_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
perf_stat__collect_metric_expr(evsel_list);
perf_stat__init_shadow_stats();
if (stat_config.csv_sep) {
stat_config.csv_output = true;
if (!strcmp(stat_config.csv_sep, "\\t"))
stat_config.csv_sep = "\t";
} else
stat_config.csv_sep = DEFAULT_SEPARATOR;
if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
argc = __cmd_record(argc, argv);
if (argc < 0)
return -1;
} else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0]))
return __cmd_report(argc, argv);
interval = stat_config.interval;
timeout = stat_config.timeout;
/*
* For record command the -o is already taken care of.
*/
if (!STAT_RECORD && output_name && strcmp(output_name, "-"))
output = NULL;
if (output_name && output_fd) {
fprintf(stderr, "cannot use both --output and --log-fd\n");
parse_options_usage(stat_usage, stat_options, "o", 1);
parse_options_usage(NULL, stat_options, "log-fd", 0);
goto out;
}
if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) {
fprintf(stderr, "--metric-only is not supported with --per-thread\n");
goto out;
}
if (stat_config.metric_only && stat_config.run_count > 1) {
fprintf(stderr, "--metric-only is not supported with -r\n");
goto out;
}
if (stat_config.walltime_run_table && stat_config.run_count <= 1) {
fprintf(stderr, "--table is only supported with -r\n");
parse_options_usage(stat_usage, stat_options, "r", 1);
parse_options_usage(NULL, stat_options, "table", 0);
goto out;
}
if (output_fd < 0) {
fprintf(stderr, "argument to --log-fd must be a > 0\n");
parse_options_usage(stat_usage, stat_options, "log-fd", 0);
goto out;
}
if (!output && !stat_config.quiet) {
struct timespec tm;
mode = append_file ? "a" : "w";
output = fopen(output_name, mode);
if (!output) {
perror("failed to create output file");
return -1;
}
clock_gettime(CLOCK_REALTIME, &tm);
fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
} else if (output_fd > 0) {
mode = append_file ? "a" : "w";
output = fdopen(output_fd, mode);
if (!output) {
perror("Failed opening logfd");
return -errno;
}
}
stat_config.output = output;
/*
* let the spreadsheet do the pretty-printing
*/
if (stat_config.csv_output) {
/* User explicitly passed -B? */
if (big_num_opt == 1) {
fprintf(stderr, "-B option not supported with -x\n");
parse_options_usage(stat_usage, stat_options, "B", 1);
parse_options_usage(NULL, stat_options, "x", 1);
goto out;
} else /* Nope, so disable big number formatting */
stat_config.big_num = false;
} else if (big_num_opt == 0) /* User passed --no-big-num */
stat_config.big_num = false;
err = target__validate(&target);
if (err) {
target__strerror(&target, err, errbuf, BUFSIZ);
pr_warning("%s\n", errbuf);
}
setup_system_wide(argc);
/*
* Display user/system times only for single
* run and when there's specified tracee.
*/
if ((stat_config.run_count == 1) && target__none(&target))
stat_config.ru_display = true;
if (stat_config.run_count < 0) {
pr_err("Run count must be a positive number\n");
parse_options_usage(stat_usage, stat_options, "r", 1);
goto out;
} else if (stat_config.run_count == 0) {
forever = true;
stat_config.run_count = 1;
}
if (stat_config.walltime_run_table) {
stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0]));
if (!stat_config.walltime_run) {
pr_err("failed to setup -r option");
goto out;
}
}
if ((stat_config.aggr_mode == AGGR_THREAD) &&
!target__has_task(&target)) {
if (!target.system_wide || target.cpu_list) {
fprintf(stderr, "The --per-thread option is only "
"available when monitoring via -p -t -a "
"options or only --per-thread.\n");
parse_options_usage(NULL, stat_options, "p", 1);
parse_options_usage(NULL, stat_options, "t", 1);
goto out;
}
}
/*
* no_aggr, cgroup are for system-wide only
* --per-thread is aggregated per thread, we dont mix it with cpu mode
*/
if (((stat_config.aggr_mode != AGGR_GLOBAL &&
stat_config.aggr_mode != AGGR_THREAD) ||
(nr_cgroups || stat_config.cgroup_list)) &&
!target__has_cpu(&target)) {
fprintf(stderr, "both cgroup and no-aggregation "
"modes only available in system-wide mode\n");
parse_options_usage(stat_usage, stat_options, "G", 1);
parse_options_usage(NULL, stat_options, "A", 1);
parse_options_usage(NULL, stat_options, "a", 1);
parse_options_usage(NULL, stat_options, "for-each-cgroup", 0);
goto out;
}
if (stat_config.iostat_run) {
status = iostat_prepare(evsel_list, &stat_config);
if (status)
goto out;
if (iostat_mode == IOSTAT_LIST) {
iostat_list(evsel_list, &stat_config);
goto out;
} else if (verbose)
iostat_list(evsel_list, &stat_config);
if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target))
target.system_wide = true;
}
if (add_default_attributes())
goto out;
if (stat_config.cgroup_list) {
if (nr_cgroups > 0) {
pr_err("--cgroup and --for-each-cgroup cannot be used together\n");
parse_options_usage(stat_usage, stat_options, "G", 1);
parse_options_usage(NULL, stat_options, "for-each-cgroup", 0);
goto out;
}
if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list,
&stat_config.metric_events, true) < 0) {
parse_options_usage(stat_usage, stat_options,
"for-each-cgroup", 0);
goto out;
}
}
if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide))
target.per_thread = true;
if (evlist__fix_hybrid_cpus(evsel_list, target.cpu_list)) {
pr_err("failed to use cpu list %s\n", target.cpu_list);
goto out;
}
target.hybrid = perf_pmu__has_hybrid();
if (evlist__create_maps(evsel_list, &target) < 0) {
if (target__has_task(&target)) {
pr_err("Problems finding threads of monitor\n");
parse_options_usage(stat_usage, stat_options, "p", 1);
parse_options_usage(NULL, stat_options, "t", 1);
} else if (target__has_cpu(&target)) {
perror("failed to parse CPUs map");
parse_options_usage(stat_usage, stat_options, "C", 1);
parse_options_usage(NULL, stat_options, "a", 1);
}
goto out;
}
evlist__check_cpu_maps(evsel_list);
/*
* Initialize thread_map with comm names,
* so we could print it out on output.
*/
if (stat_config.aggr_mode == AGGR_THREAD) {
thread_map__read_comms(evsel_list->core.threads);
if (target.system_wide) {
if (runtime_stat_new(&stat_config,
perf_thread_map__nr(evsel_list->core.threads))) {
goto out;
}
}
}
if (stat_config.aggr_mode == AGGR_NODE)
cpu__setup_cpunode_map();
if (stat_config.times && interval)
interval_count = true;
else if (stat_config.times && !interval) {
pr_err("interval-count option should be used together with "
"interval-print.\n");
parse_options_usage(stat_usage, stat_options, "interval-count", 0);
parse_options_usage(stat_usage, stat_options, "I", 1);
goto out;
}
if (timeout && timeout < 100) {
if (timeout < 10) {
pr_err("timeout must be >= 10ms.\n");
parse_options_usage(stat_usage, stat_options, "timeout", 0);
goto out;
} else
pr_warning("timeout < 100ms. "
"The overhead percentage could be high in some cases. "
"Please proceed with caution.\n");
}
if (timeout && interval) {
pr_err("timeout option is not supported with interval-print.\n");
parse_options_usage(stat_usage, stat_options, "timeout", 0);
parse_options_usage(stat_usage, stat_options, "I", 1);
goto out;
}
if (evlist__alloc_stats(evsel_list, interval))
goto out;
if (perf_stat_init_aggr_mode())
goto out;
/*
* Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless
* while avoiding that older tools show confusing messages.
*
* However for pipe sessions we need to keep it zero,
* because script's perf_evsel__check_attr is triggered
* by attr->sample_type != 0, and we can't run it on
* stat sessions.
*/
stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe);
/*
* We dont want to block the signals - that would cause
* child tasks to inherit that and Ctrl-C would not work.
* What we want is for Ctrl-C to work in the exec()-ed
* task, but being ignored by perf stat itself:
*/
atexit(sig_atexit);
if (!forever)
signal(SIGINT, skip_signal);
signal(SIGCHLD, skip_signal);
signal(SIGALRM, skip_signal);
signal(SIGABRT, skip_signal);
if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack))
goto out;
status = 0;
for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) {
if (stat_config.run_count != 1 && verbose > 0)
fprintf(output, "[ perf stat: executing run #%d ... ]\n",
run_idx + 1);
if (run_idx != 0)
evlist__reset_prev_raw_counts(evsel_list);
status = run_perf_stat(argc, argv, run_idx);
if (forever && status != -1 && !interval) {
print_counters(NULL, argc, argv);
perf_stat__reset_stats();
}
}
if (!forever && status != -1 && (!interval || stat_config.summary))
print_counters(NULL, argc, argv);
evlist__finalize_ctlfd(evsel_list);
if (STAT_RECORD) {
/*
* We synthesize the kernel mmap record just so that older tools
* don't emit warnings about not being able to resolve symbols
* due to /proc/sys/kernel/kptr_restrict settings and instead provide
* a saner message about no samples being in the perf.data file.
*
* This also serves to suppress a warning about f_header.data.size == 0
* in header.c at the moment 'perf stat record' gets introduced, which
* is not really needed once we start adding the stat specific PERF_RECORD_
* records, but the need to suppress the kptr_restrict messages in older
* tools remain -acme
*/
int fd = perf_data__fd(&perf_stat.data);
err = perf_event__synthesize_kernel_mmap((void *)&perf_stat,
process_synthesized_event,
&perf_stat.session->machines.host);
if (err) {
pr_warning("Couldn't synthesize the kernel mmap record, harmless, "
"older tools may produce warnings about this file\n.");
}
if (!interval) {
if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL))
pr_err("failed to write stat round event\n");
}
if (!perf_stat.data.is_pipe) {
perf_stat.session->header.data_size += perf_stat.bytes_written;
perf_session__write_header(perf_stat.session, evsel_list, fd, true);
}
evlist__close(evsel_list);
perf_session__delete(perf_stat.session);
}
perf_stat__exit_aggr_mode();
evlist__free_stats(evsel_list);
out:
if (stat_config.iostat_run)
iostat_release(evsel_list);
zfree(&stat_config.walltime_run);
if (smi_cost && smi_reset)
sysfs__write_int(FREEZE_ON_SMI_PATH, 0);
evlist__delete(evsel_list);
metricgroup__rblist_exit(&stat_config.metric_events);
runtime_stat_delete(&stat_config);
evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close);
return status;
}