Linus Walleij 98ac0cc270 ARM: ixp4xx: Convert to MULTI_IRQ_HANDLER
This rewrites the IXP4xx to use MULTI_IRQ_HANDLER and
create an irqdomain for the irqchip in the platform. We
convert the timer to request the interrupt like any other
driver in the process.

We bump all IRQs to 16+offset to avoid using IRQ 0 and
set NR_IRQS to 512 (the default for most systems).
This conveniently fits with the first 16 IRQs being
pre-allocated when using SPARSE_IRQ.

This is a prerequisite for SPARSE_IRQ and DT boot.

Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2019-04-19 20:37:34 +02:00

736 lines
17 KiB
C

/*
* arch/arm/mach-ixp4xx/common.c
*
* Generic code shared across all IXP4XX platforms
*
* Maintainer: Deepak Saxena <dsaxena@plexity.net>
*
* Copyright 2002 (c) Intel Corporation
* Copyright 2003-2004 (c) MontaVista, Software, Inc.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/serial.h>
#include <linux/tty.h>
#include <linux/platform_device.h>
#include <linux/serial_core.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/io.h>
#include <linux/export.h>
#include <linux/gpio/driver.h>
#include <linux/cpu.h>
#include <linux/pci.h>
#include <linux/sched_clock.h>
#include <linux/bitops.h>
#include <mach/udc.h>
#include <mach/hardware.h>
#include <mach/io.h>
#include <linux/uaccess.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/exception.h>
#include <asm/irq.h>
#include <asm/system_misc.h>
#include <asm/mach/map.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#define IXP4XX_TIMER_FREQ 66666000
/*
* The timer register doesn't allow to specify the two least significant bits of
* the timeout value and assumes them being zero. So make sure IXP4XX_LATCH is
* the best value with the two least significant bits unset.
*/
#define IXP4XX_LATCH DIV_ROUND_CLOSEST(IXP4XX_TIMER_FREQ, \
(IXP4XX_OST_RELOAD_MASK + 1) * HZ) * \
(IXP4XX_OST_RELOAD_MASK + 1)
static struct irq_domain *ixp4xx_irqdomain;
static void __init ixp4xx_clocksource_init(void);
static void __init ixp4xx_clockevent_init(void);
static struct clock_event_device clockevent_ixp4xx;
/*************************************************************************
* IXP4xx chipset I/O mapping
*************************************************************************/
static struct map_desc ixp4xx_io_desc[] __initdata = {
{ /* UART, Interrupt ctrl, GPIO, timers, NPEs, MACs, USB .... */
.virtual = (unsigned long)IXP4XX_PERIPHERAL_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_PERIPHERAL_BASE_PHYS),
.length = IXP4XX_PERIPHERAL_REGION_SIZE,
.type = MT_DEVICE
}, { /* Expansion Bus Config Registers */
.virtual = (unsigned long)IXP4XX_EXP_CFG_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_EXP_CFG_BASE_PHYS),
.length = IXP4XX_EXP_CFG_REGION_SIZE,
.type = MT_DEVICE
}, { /* PCI Registers */
.virtual = (unsigned long)IXP4XX_PCI_CFG_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_PCI_CFG_BASE_PHYS),
.length = IXP4XX_PCI_CFG_REGION_SIZE,
.type = MT_DEVICE
}, { /* Queue Manager */
.virtual = (unsigned long)IXP4XX_QMGR_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_QMGR_BASE_PHYS),
.length = IXP4XX_QMGR_REGION_SIZE,
.type = MT_DEVICE
},
};
void __init ixp4xx_map_io(void)
{
iotable_init(ixp4xx_io_desc, ARRAY_SIZE(ixp4xx_io_desc));
}
/*
* GPIO-functions
*/
/*
* The following converted to the real HW bits the gpio_line_config
*/
/* GPIO pin types */
#define IXP4XX_GPIO_OUT 0x1
#define IXP4XX_GPIO_IN 0x2
/* GPIO signal types */
#define IXP4XX_GPIO_LOW 0
#define IXP4XX_GPIO_HIGH 1
/* GPIO Clocks */
#define IXP4XX_GPIO_CLK_0 14
#define IXP4XX_GPIO_CLK_1 15
static void gpio_line_config(u8 line, u32 direction)
{
if (direction == IXP4XX_GPIO_IN)
*IXP4XX_GPIO_GPOER |= (1 << line);
else
*IXP4XX_GPIO_GPOER &= ~(1 << line);
}
static void gpio_line_get(u8 line, int *value)
{
*value = (*IXP4XX_GPIO_GPINR >> line) & 0x1;
}
static void gpio_line_set(u8 line, int value)
{
if (value == IXP4XX_GPIO_HIGH)
*IXP4XX_GPIO_GPOUTR |= (1 << line);
else if (value == IXP4XX_GPIO_LOW)
*IXP4XX_GPIO_GPOUTR &= ~(1 << line);
}
/*************************************************************************
* IXP4xx chipset IRQ handling
*
* TODO: GPIO IRQs should be marked invalid until the user of the IRQ
* (be it PCI or something else) configures that GPIO line
* as an IRQ.
**************************************************************************/
enum ixp4xx_irq_type {
IXP4XX_IRQ_LEVEL, IXP4XX_IRQ_EDGE
};
/* Each bit represents an IRQ: 1: edge-triggered, 0: level triggered */
static unsigned long long ixp4xx_irq_edge = 0;
/*
* IRQ -> GPIO mapping table
*/
static signed char irq2gpio[32] = {
-1, -1, -1, -1, -1, -1, 0, 1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, -1, -1,
};
static int ixp4xx_gpio_to_irq(struct gpio_chip *chip, unsigned gpio)
{
int irq;
for (irq = 0; irq < 32; irq++) {
if (irq2gpio[irq] == gpio)
return irq;
}
return -EINVAL;
}
static int ixp4xx_set_irq_type(struct irq_data *d, unsigned int type)
{
int line = irq2gpio[d->hwirq];
u32 int_style;
enum ixp4xx_irq_type irq_type;
volatile u32 *int_reg;
/*
* Only for GPIO IRQs
* all other IRQs are simply active low
*/
if (line < 0)
return 0;
switch (type){
case IRQ_TYPE_EDGE_BOTH:
int_style = IXP4XX_GPIO_STYLE_TRANSITIONAL;
irq_type = IXP4XX_IRQ_EDGE;
break;
case IRQ_TYPE_EDGE_RISING:
int_style = IXP4XX_GPIO_STYLE_RISING_EDGE;
irq_type = IXP4XX_IRQ_EDGE;
break;
case IRQ_TYPE_EDGE_FALLING:
int_style = IXP4XX_GPIO_STYLE_FALLING_EDGE;
irq_type = IXP4XX_IRQ_EDGE;
break;
case IRQ_TYPE_LEVEL_HIGH:
int_style = IXP4XX_GPIO_STYLE_ACTIVE_HIGH;
irq_type = IXP4XX_IRQ_LEVEL;
break;
case IRQ_TYPE_LEVEL_LOW:
int_style = IXP4XX_GPIO_STYLE_ACTIVE_LOW;
irq_type = IXP4XX_IRQ_LEVEL;
break;
default:
return -EINVAL;
}
if (irq_type == IXP4XX_IRQ_EDGE)
ixp4xx_irq_edge |= (1 << d->hwirq);
else
ixp4xx_irq_edge &= ~(1 << d->hwirq);
if (line >= 8) { /* pins 8-15 */
line -= 8;
int_reg = IXP4XX_GPIO_GPIT2R;
} else { /* pins 0-7 */
int_reg = IXP4XX_GPIO_GPIT1R;
}
/* Clear the style for the appropriate pin */
*int_reg &= ~(IXP4XX_GPIO_STYLE_CLEAR <<
(line * IXP4XX_GPIO_STYLE_SIZE));
*IXP4XX_GPIO_GPISR = (1 << line);
/* Set the new style */
*int_reg |= (int_style << (line * IXP4XX_GPIO_STYLE_SIZE));
/* Configure the line as an input */
gpio_line_config(irq2gpio[d->hwirq], IXP4XX_GPIO_IN);
return 0;
}
static void ixp4xx_irq_mask(struct irq_data *d)
{
if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->hwirq >= 32)
*IXP4XX_ICMR2 &= ~(1 << (d->hwirq - 32));
else
*IXP4XX_ICMR &= ~(1 << d->hwirq);
}
static void ixp4xx_irq_ack(struct irq_data *d)
{
int line = (d->hwirq < 32) ? irq2gpio[d->hwirq] : -1;
if (line >= 0)
*IXP4XX_GPIO_GPISR = (1 << line);
}
/*
* Level triggered interrupts on GPIO lines can only be cleared when the
* interrupt condition disappears.
*/
static void ixp4xx_irq_unmask(struct irq_data *d)
{
if (!(ixp4xx_irq_edge & (1 << d->hwirq)))
ixp4xx_irq_ack(d);
if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->hwirq >= 32)
*IXP4XX_ICMR2 |= (1 << (d->hwirq - 32));
else
*IXP4XX_ICMR |= (1 << d->hwirq);
}
static struct irq_chip ixp4xx_irq_chip = {
.name = "IXP4xx",
.irq_ack = ixp4xx_irq_ack,
.irq_mask = ixp4xx_irq_mask,
.irq_unmask = ixp4xx_irq_unmask,
.irq_set_type = ixp4xx_set_irq_type,
};
asmlinkage void __exception_irq_entry ixp4xx_handle_irq(struct pt_regs *regs)
{
unsigned long status;
int i;
status = *IXP4XX_ICIP;
for_each_set_bit(i, &status, 32)
handle_domain_irq(ixp4xx_irqdomain, i, regs);
/*
* IXP465/IXP435 has an upper IRQ status register
*/
if ((cpu_is_ixp46x() || cpu_is_ixp43x())) {
status = *IXP4XX_ICIP2;
for_each_set_bit(i, &status, 32)
handle_domain_irq(ixp4xx_irqdomain, i + 32, regs);
}
}
static int ixp4xx_irqdomain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_data(irq, &ixp4xx_irq_chip);
irq_set_chip_and_handler(irq, &ixp4xx_irq_chip, handle_level_irq);
irq_set_probe(irq);
return 0;
}
static void ixp4xx_irqdomain_unmap(struct irq_domain *d, unsigned int irq)
{
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops ixp4xx_irqdomain_ops = {
.map = ixp4xx_irqdomain_map,
.unmap = ixp4xx_irqdomain_unmap,
};
void __init ixp4xx_init_irq(void)
{
int nr_irqs;
/*
* ixp4xx does not implement the XScale PWRMODE register
* so it must not call cpu_do_idle().
*/
cpu_idle_poll_ctrl(true);
/* Route all sources to IRQ instead of FIQ */
*IXP4XX_ICLR = 0x0;
/* Disable all interrupt */
*IXP4XX_ICMR = 0x0;
if (cpu_is_ixp46x() || cpu_is_ixp43x()) {
/* Route upper 32 sources to IRQ instead of FIQ */
*IXP4XX_ICLR2 = 0x00;
/* Disable upper 32 interrupts */
*IXP4XX_ICMR2 = 0x00;
nr_irqs = 64;
} else {
nr_irqs = 32;
}
ixp4xx_irqdomain = irq_domain_add_simple(NULL, nr_irqs, IRQ_IXP4XX_BASE,
&ixp4xx_irqdomain_ops,
NULL);
if (!ixp4xx_irqdomain) {
pr_crit("can not add primary irqdomain\n");
return;
}
set_handle_irq(ixp4xx_handle_irq);
}
/*************************************************************************
* IXP4xx timer tick
* We use OS timer1 on the CPU for the timer tick and the timestamp
* counter as a source of real clock ticks to account for missed jiffies.
*************************************************************************/
static irqreturn_t ixp4xx_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
/* Clear Pending Interrupt by writing '1' to it */
*IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND;
evt->event_handler(evt);
return IRQ_HANDLED;
}
void __init ixp4xx_timer_init(void)
{
/* Reset/disable counter */
*IXP4XX_OSRT1 = 0;
/* Clear Pending Interrupt by writing '1' to it */
*IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND;
/* Reset time-stamp counter */
*IXP4XX_OSTS = 0;
ixp4xx_clocksource_init();
ixp4xx_clockevent_init();
}
static struct pxa2xx_udc_mach_info ixp4xx_udc_info;
void __init ixp4xx_set_udc_info(struct pxa2xx_udc_mach_info *info)
{
memcpy(&ixp4xx_udc_info, info, sizeof *info);
}
static struct resource ixp4xx_udc_resources[] = {
[0] = {
.start = 0xc800b000,
.end = 0xc800bfff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IXP4XX_USB,
.end = IRQ_IXP4XX_USB,
.flags = IORESOURCE_IRQ,
},
};
/*
* USB device controller. The IXP4xx uses the same controller as PXA25X,
* so we just use the same device.
*/
static struct platform_device ixp4xx_udc_device = {
.name = "pxa25x-udc",
.id = -1,
.num_resources = 2,
.resource = ixp4xx_udc_resources,
.dev = {
.platform_data = &ixp4xx_udc_info,
},
};
static struct platform_device *ixp4xx_devices[] __initdata = {
&ixp4xx_udc_device,
};
static struct resource ixp46x_i2c_resources[] = {
[0] = {
.start = 0xc8011000,
.end = 0xc801101c,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IXP4XX_I2C,
.end = IRQ_IXP4XX_I2C,
.flags = IORESOURCE_IRQ
}
};
/*
* I2C controller. The IXP46x uses the same block as the IOP3xx, so
* we just use the same device name.
*/
static struct platform_device ixp46x_i2c_controller = {
.name = "IOP3xx-I2C",
.id = 0,
.num_resources = 2,
.resource = ixp46x_i2c_resources
};
static struct platform_device *ixp46x_devices[] __initdata = {
&ixp46x_i2c_controller
};
unsigned long ixp4xx_exp_bus_size;
EXPORT_SYMBOL(ixp4xx_exp_bus_size);
static int ixp4xx_gpio_direction_input(struct gpio_chip *chip, unsigned gpio)
{
gpio_line_config(gpio, IXP4XX_GPIO_IN);
return 0;
}
static int ixp4xx_gpio_direction_output(struct gpio_chip *chip, unsigned gpio,
int level)
{
gpio_line_set(gpio, level);
gpio_line_config(gpio, IXP4XX_GPIO_OUT);
return 0;
}
static int ixp4xx_gpio_get_value(struct gpio_chip *chip, unsigned gpio)
{
int value;
gpio_line_get(gpio, &value);
return value;
}
static void ixp4xx_gpio_set_value(struct gpio_chip *chip, unsigned gpio,
int value)
{
gpio_line_set(gpio, value);
}
static struct gpio_chip ixp4xx_gpio_chip = {
.label = "IXP4XX_GPIO_CHIP",
.direction_input = ixp4xx_gpio_direction_input,
.direction_output = ixp4xx_gpio_direction_output,
.get = ixp4xx_gpio_get_value,
.set = ixp4xx_gpio_set_value,
.to_irq = ixp4xx_gpio_to_irq,
.base = 0,
.ngpio = 16,
};
void __init ixp4xx_sys_init(void)
{
ixp4xx_exp_bus_size = SZ_16M;
platform_add_devices(ixp4xx_devices, ARRAY_SIZE(ixp4xx_devices));
gpiochip_add_data(&ixp4xx_gpio_chip, NULL);
if (cpu_is_ixp46x()) {
int region;
platform_add_devices(ixp46x_devices,
ARRAY_SIZE(ixp46x_devices));
for (region = 0; region < 7; region++) {
if((*(IXP4XX_EXP_REG(0x4 * region)) & 0x200)) {
ixp4xx_exp_bus_size = SZ_32M;
break;
}
}
}
printk("IXP4xx: Using %luMiB expansion bus window size\n",
ixp4xx_exp_bus_size >> 20);
}
/*
* sched_clock()
*/
static u64 notrace ixp4xx_read_sched_clock(void)
{
return *IXP4XX_OSTS;
}
/*
* clocksource
*/
static u64 ixp4xx_clocksource_read(struct clocksource *c)
{
return *IXP4XX_OSTS;
}
unsigned long ixp4xx_timer_freq = IXP4XX_TIMER_FREQ;
EXPORT_SYMBOL(ixp4xx_timer_freq);
static void __init ixp4xx_clocksource_init(void)
{
sched_clock_register(ixp4xx_read_sched_clock, 32, ixp4xx_timer_freq);
clocksource_mmio_init(NULL, "OSTS", ixp4xx_timer_freq, 200, 32,
ixp4xx_clocksource_read);
}
/*
* clockevents
*/
static int ixp4xx_set_next_event(unsigned long evt,
struct clock_event_device *unused)
{
unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
*IXP4XX_OSRT1 = (evt & ~IXP4XX_OST_RELOAD_MASK) | opts;
return 0;
}
static int ixp4xx_shutdown(struct clock_event_device *evt)
{
unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
unsigned long osrt = *IXP4XX_OSRT1 & ~IXP4XX_OST_RELOAD_MASK;
opts &= ~IXP4XX_OST_ENABLE;
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static int ixp4xx_set_oneshot(struct clock_event_device *evt)
{
unsigned long opts = IXP4XX_OST_ENABLE | IXP4XX_OST_ONE_SHOT;
unsigned long osrt = 0;
/* period set by 'set next_event' */
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static int ixp4xx_set_periodic(struct clock_event_device *evt)
{
unsigned long opts = IXP4XX_OST_ENABLE;
unsigned long osrt = IXP4XX_LATCH & ~IXP4XX_OST_RELOAD_MASK;
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static int ixp4xx_resume(struct clock_event_device *evt)
{
unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
unsigned long osrt = *IXP4XX_OSRT1 & ~IXP4XX_OST_RELOAD_MASK;
opts |= IXP4XX_OST_ENABLE;
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static struct clock_event_device clockevent_ixp4xx = {
.name = "ixp4xx timer1",
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.rating = 200,
.set_state_shutdown = ixp4xx_shutdown,
.set_state_periodic = ixp4xx_set_periodic,
.set_state_oneshot = ixp4xx_set_oneshot,
.tick_resume = ixp4xx_resume,
.set_next_event = ixp4xx_set_next_event,
};
static void __init ixp4xx_clockevent_init(void)
{
int ret;
clockevent_ixp4xx.cpumask = cpumask_of(0);
clockevent_ixp4xx.irq = IRQ_IXP4XX_TIMER1;
ret = request_irq(IRQ_IXP4XX_TIMER1, ixp4xx_timer_interrupt,
IRQF_TIMER, "IXP4XX-TIMER1", &clockevent_ixp4xx);
if (ret) {
pr_crit("no timer IRQ\n");
return;
}
clockevents_config_and_register(&clockevent_ixp4xx, IXP4XX_TIMER_FREQ,
0xf, 0xfffffffe);
}
void ixp4xx_restart(enum reboot_mode mode, const char *cmd)
{
if (mode == REBOOT_SOFT) {
/* Jump into ROM at address 0 */
soft_restart(0);
} else {
/* Use on-chip reset capability */
/* set the "key" register to enable access to
* "timer" and "enable" registers
*/
*IXP4XX_OSWK = IXP4XX_WDT_KEY;
/* write 0 to the timer register for an immediate reset */
*IXP4XX_OSWT = 0;
*IXP4XX_OSWE = IXP4XX_WDT_RESET_ENABLE | IXP4XX_WDT_COUNT_ENABLE;
}
}
#ifdef CONFIG_PCI
static int ixp4xx_needs_bounce(struct device *dev, dma_addr_t dma_addr, size_t size)
{
return (dma_addr + size) > SZ_64M;
}
static int ixp4xx_platform_notify_remove(struct device *dev)
{
if (dev_is_pci(dev))
dmabounce_unregister_dev(dev);
return 0;
}
#endif
/*
* Setup DMA mask to 64MB on PCI devices and 4 GB on all other things.
*/
static int ixp4xx_platform_notify(struct device *dev)
{
dev->dma_mask = &dev->coherent_dma_mask;
#ifdef CONFIG_PCI
if (dev_is_pci(dev)) {
dev->coherent_dma_mask = DMA_BIT_MASK(28); /* 64 MB */
dmabounce_register_dev(dev, 2048, 4096, ixp4xx_needs_bounce);
return 0;
}
#endif
dev->coherent_dma_mask = DMA_BIT_MASK(32);
return 0;
}
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
if (dev_is_pci(dev))
mask &= DMA_BIT_MASK(28); /* 64 MB */
if ((mask & DMA_BIT_MASK(28)) == DMA_BIT_MASK(28)) {
dev->coherent_dma_mask = mask;
return 0;
}
return -EIO; /* device wanted sub-64MB mask */
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#ifdef CONFIG_IXP4XX_INDIRECT_PCI
/*
* In the case of using indirect PCI, we simply return the actual PCI
* address and our read/write implementation use that to drive the
* access registers. If something outside of PCI is ioremap'd, we
* fallback to the default.
*/
static void __iomem *ixp4xx_ioremap_caller(phys_addr_t addr, size_t size,
unsigned int mtype, void *caller)
{
if (!is_pci_memory(addr))
return __arm_ioremap_caller(addr, size, mtype, caller);
return (void __iomem *)addr;
}
static void ixp4xx_iounmap(volatile void __iomem *addr)
{
if (!is_pci_memory((__force u32)addr))
__iounmap(addr);
}
#endif
void __init ixp4xx_init_early(void)
{
platform_notify = ixp4xx_platform_notify;
#ifdef CONFIG_PCI
platform_notify_remove = ixp4xx_platform_notify_remove;
#endif
#ifdef CONFIG_IXP4XX_INDIRECT_PCI
arch_ioremap_caller = ixp4xx_ioremap_caller;
arch_iounmap = ixp4xx_iounmap;
#endif
}