linux/arch/x86/include/asm/pgtable.h
Jia He f2c4e5970c x86/mm: implement arch_faults_on_old_pte() stub on x86
arch_faults_on_old_pte is a helper to indicate that it might cause page
fault when accessing old pte. But on x86, there is feature to setting
pte access flag by hardware. Hence implement an overriding stub which
always returns false.

Signed-off-by: Jia He <justin.he@arm.com>
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-10-18 11:11:25 +01:00

1476 lines
35 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_PGTABLE_H
#define _ASM_X86_PGTABLE_H
#include <linux/mem_encrypt.h>
#include <asm/page.h>
#include <asm/pgtable_types.h>
/*
* Macro to mark a page protection value as UC-
*/
#define pgprot_noncached(prot) \
((boot_cpu_data.x86 > 3) \
? (__pgprot(pgprot_val(prot) | \
cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
: (prot))
/*
* Macros to add or remove encryption attribute
*/
#define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot)))
#define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot)))
#ifndef __ASSEMBLY__
#include <asm/x86_init.h>
#include <asm/fpu/xstate.h>
#include <asm/fpu/api.h>
extern pgd_t early_top_pgt[PTRS_PER_PGD];
int __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user);
void ptdump_walk_pgd_level_checkwx(void);
void ptdump_walk_user_pgd_level_checkwx(void);
#ifdef CONFIG_DEBUG_WX
#define debug_checkwx() ptdump_walk_pgd_level_checkwx()
#define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx()
#else
#define debug_checkwx() do { } while (0)
#define debug_checkwx_user() do { } while (0)
#endif
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
__visible;
#define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
extern spinlock_t pgd_lock;
extern struct list_head pgd_list;
extern struct mm_struct *pgd_page_get_mm(struct page *page);
extern pmdval_t early_pmd_flags;
#ifdef CONFIG_PARAVIRT_XXL
#include <asm/paravirt.h>
#else /* !CONFIG_PARAVIRT_XXL */
#define set_pte(ptep, pte) native_set_pte(ptep, pte)
#define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
#define set_pte_atomic(ptep, pte) \
native_set_pte_atomic(ptep, pte)
#define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
#ifndef __PAGETABLE_P4D_FOLDED
#define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
#define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
#endif
#ifndef set_p4d
# define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
#endif
#ifndef __PAGETABLE_PUD_FOLDED
#define p4d_clear(p4d) native_p4d_clear(p4d)
#endif
#ifndef set_pud
# define set_pud(pudp, pud) native_set_pud(pudp, pud)
#endif
#ifndef __PAGETABLE_PUD_FOLDED
#define pud_clear(pud) native_pud_clear(pud)
#endif
#define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
#define pmd_clear(pmd) native_pmd_clear(pmd)
#define pgd_val(x) native_pgd_val(x)
#define __pgd(x) native_make_pgd(x)
#ifndef __PAGETABLE_P4D_FOLDED
#define p4d_val(x) native_p4d_val(x)
#define __p4d(x) native_make_p4d(x)
#endif
#ifndef __PAGETABLE_PUD_FOLDED
#define pud_val(x) native_pud_val(x)
#define __pud(x) native_make_pud(x)
#endif
#ifndef __PAGETABLE_PMD_FOLDED
#define pmd_val(x) native_pmd_val(x)
#define __pmd(x) native_make_pmd(x)
#endif
#define pte_val(x) native_pte_val(x)
#define __pte(x) native_make_pte(x)
#define arch_end_context_switch(prev) do {} while(0)
#endif /* CONFIG_PARAVIRT_XXL */
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_dirty(pte_t pte)
{
return pte_flags(pte) & _PAGE_DIRTY;
}
static inline u32 read_pkru(void)
{
if (boot_cpu_has(X86_FEATURE_OSPKE))
return rdpkru();
return 0;
}
static inline void write_pkru(u32 pkru)
{
struct pkru_state *pk;
if (!boot_cpu_has(X86_FEATURE_OSPKE))
return;
pk = get_xsave_addr(&current->thread.fpu.state.xsave, XFEATURE_PKRU);
/*
* The PKRU value in xstate needs to be in sync with the value that is
* written to the CPU. The FPU restore on return to userland would
* otherwise load the previous value again.
*/
fpregs_lock();
if (pk)
pk->pkru = pkru;
__write_pkru(pkru);
fpregs_unlock();
}
static inline int pte_young(pte_t pte)
{
return pte_flags(pte) & _PAGE_ACCESSED;
}
static inline int pmd_dirty(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_DIRTY;
}
static inline int pmd_young(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_ACCESSED;
}
static inline int pud_dirty(pud_t pud)
{
return pud_flags(pud) & _PAGE_DIRTY;
}
static inline int pud_young(pud_t pud)
{
return pud_flags(pud) & _PAGE_ACCESSED;
}
static inline int pte_write(pte_t pte)
{
return pte_flags(pte) & _PAGE_RW;
}
static inline int pte_huge(pte_t pte)
{
return pte_flags(pte) & _PAGE_PSE;
}
static inline int pte_global(pte_t pte)
{
return pte_flags(pte) & _PAGE_GLOBAL;
}
static inline int pte_exec(pte_t pte)
{
return !(pte_flags(pte) & _PAGE_NX);
}
static inline int pte_special(pte_t pte)
{
return pte_flags(pte) & _PAGE_SPECIAL;
}
/* Entries that were set to PROT_NONE are inverted */
static inline u64 protnone_mask(u64 val);
static inline unsigned long pte_pfn(pte_t pte)
{
phys_addr_t pfn = pte_val(pte);
pfn ^= protnone_mask(pfn);
return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
phys_addr_t pfn = pmd_val(pmd);
pfn ^= protnone_mask(pfn);
return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
}
static inline unsigned long pud_pfn(pud_t pud)
{
phys_addr_t pfn = pud_val(pud);
pfn ^= protnone_mask(pfn);
return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
}
static inline unsigned long p4d_pfn(p4d_t p4d)
{
return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
}
static inline unsigned long pgd_pfn(pgd_t pgd)
{
return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
}
static inline int p4d_large(p4d_t p4d)
{
/* No 512 GiB pages yet */
return 0;
}
#define pte_page(pte) pfn_to_page(pte_pfn(pte))
static inline int pmd_large(pmd_t pte)
{
return pmd_flags(pte) & _PAGE_PSE;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
}
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static inline int pud_trans_huge(pud_t pud)
{
return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
}
#endif
#define has_transparent_hugepage has_transparent_hugepage
static inline int has_transparent_hugepage(void)
{
return boot_cpu_has(X86_FEATURE_PSE);
}
#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pmd_devmap(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_DEVMAP);
}
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static inline int pud_devmap(pud_t pud)
{
return !!(pud_val(pud) & _PAGE_DEVMAP);
}
#else
static inline int pud_devmap(pud_t pud)
{
return 0;
}
#endif
static inline int pgd_devmap(pgd_t pgd)
{
return 0;
}
#endif
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
{
pteval_t v = native_pte_val(pte);
return native_make_pte(v | set);
}
static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
{
pteval_t v = native_pte_val(pte);
return native_make_pte(v & ~clear);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_ACCESSED);
}
static inline pte_t pte_wrprotect(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_RW);
}
static inline pte_t pte_mkexec(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_NX);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return pte_set_flags(pte, _PAGE_ACCESSED);
}
static inline pte_t pte_mkwrite(pte_t pte)
{
return pte_set_flags(pte, _PAGE_RW);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte_set_flags(pte, _PAGE_PSE);
}
static inline pte_t pte_clrhuge(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_PSE);
}
static inline pte_t pte_mkglobal(pte_t pte)
{
return pte_set_flags(pte, _PAGE_GLOBAL);
}
static inline pte_t pte_clrglobal(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_GLOBAL);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SPECIAL);
}
static inline pte_t pte_mkdevmap(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
}
static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
{
pmdval_t v = native_pmd_val(pmd);
return native_make_pmd(v | set);
}
static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
{
pmdval_t v = native_pmd_val(pmd);
return native_make_pmd(v & ~clear);
}
static inline pmd_t pmd_mkold(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_ACCESSED);
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_DIRTY);
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_RW);
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
}
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_DEVMAP);
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_PSE);
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_ACCESSED);
}
static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_RW);
}
static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
{
pudval_t v = native_pud_val(pud);
return native_make_pud(v | set);
}
static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
{
pudval_t v = native_pud_val(pud);
return native_make_pud(v & ~clear);
}
static inline pud_t pud_mkold(pud_t pud)
{
return pud_clear_flags(pud, _PAGE_ACCESSED);
}
static inline pud_t pud_mkclean(pud_t pud)
{
return pud_clear_flags(pud, _PAGE_DIRTY);
}
static inline pud_t pud_wrprotect(pud_t pud)
{
return pud_clear_flags(pud, _PAGE_RW);
}
static inline pud_t pud_mkdirty(pud_t pud)
{
return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
}
static inline pud_t pud_mkdevmap(pud_t pud)
{
return pud_set_flags(pud, _PAGE_DEVMAP);
}
static inline pud_t pud_mkhuge(pud_t pud)
{
return pud_set_flags(pud, _PAGE_PSE);
}
static inline pud_t pud_mkyoung(pud_t pud)
{
return pud_set_flags(pud, _PAGE_ACCESSED);
}
static inline pud_t pud_mkwrite(pud_t pud)
{
return pud_set_flags(pud, _PAGE_RW);
}
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline int pte_soft_dirty(pte_t pte)
{
return pte_flags(pte) & _PAGE_SOFT_DIRTY;
}
static inline int pmd_soft_dirty(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
}
static inline int pud_soft_dirty(pud_t pud)
{
return pud_flags(pud) & _PAGE_SOFT_DIRTY;
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
}
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
}
static inline pud_t pud_mksoft_dirty(pud_t pud)
{
return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
}
static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
}
static inline pud_t pud_clear_soft_dirty(pud_t pud)
{
return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
/*
* Mask out unsupported bits in a present pgprot. Non-present pgprots
* can use those bits for other purposes, so leave them be.
*/
static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
{
pgprotval_t protval = pgprot_val(pgprot);
if (protval & _PAGE_PRESENT)
protval &= __supported_pte_mask;
return protval;
}
static inline pgprotval_t check_pgprot(pgprot_t pgprot)
{
pgprotval_t massaged_val = massage_pgprot(pgprot);
/* mmdebug.h can not be included here because of dependencies */
#ifdef CONFIG_DEBUG_VM
WARN_ONCE(pgprot_val(pgprot) != massaged_val,
"attempted to set unsupported pgprot: %016llx "
"bits: %016llx supported: %016llx\n",
(u64)pgprot_val(pgprot),
(u64)pgprot_val(pgprot) ^ massaged_val,
(u64)__supported_pte_mask);
#endif
return massaged_val;
}
static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
{
phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
pfn ^= protnone_mask(pgprot_val(pgprot));
pfn &= PTE_PFN_MASK;
return __pte(pfn | check_pgprot(pgprot));
}
static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
{
phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
pfn ^= protnone_mask(pgprot_val(pgprot));
pfn &= PHYSICAL_PMD_PAGE_MASK;
return __pmd(pfn | check_pgprot(pgprot));
}
static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
{
phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
pfn ^= protnone_mask(pgprot_val(pgprot));
pfn &= PHYSICAL_PUD_PAGE_MASK;
return __pud(pfn | check_pgprot(pgprot));
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
return pfn_pmd(pmd_pfn(pmd),
__pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
}
static inline pud_t pud_mknotpresent(pud_t pud)
{
return pfn_pud(pud_pfn(pud),
__pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
}
static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pteval_t val = pte_val(pte), oldval = val;
/*
* Chop off the NX bit (if present), and add the NX portion of
* the newprot (if present):
*/
val &= _PAGE_CHG_MASK;
val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
return __pte(val);
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
pmdval_t val = pmd_val(pmd), oldval = val;
val &= _HPAGE_CHG_MASK;
val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
return __pmd(val);
}
/* mprotect needs to preserve PAT bits when updating vm_page_prot */
#define pgprot_modify pgprot_modify
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
{
pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
pgprotval_t addbits = pgprot_val(newprot);
return __pgprot(preservebits | addbits);
}
#define pte_pgprot(x) __pgprot(pte_flags(x))
#define pmd_pgprot(x) __pgprot(pmd_flags(x))
#define pud_pgprot(x) __pgprot(pud_flags(x))
#define p4d_pgprot(x) __pgprot(p4d_flags(x))
#define canon_pgprot(p) __pgprot(massage_pgprot(p))
static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
{
return canon_pgprot(prot);
}
static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
enum page_cache_mode pcm,
enum page_cache_mode new_pcm)
{
/*
* PAT type is always WB for untracked ranges, so no need to check.
*/
if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
return 1;
/*
* Certain new memtypes are not allowed with certain
* requested memtype:
* - request is uncached, return cannot be write-back
* - request is write-combine, return cannot be write-back
* - request is write-through, return cannot be write-back
* - request is write-through, return cannot be write-combine
*/
if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
new_pcm == _PAGE_CACHE_MODE_WB) ||
(pcm == _PAGE_CACHE_MODE_WC &&
new_pcm == _PAGE_CACHE_MODE_WB) ||
(pcm == _PAGE_CACHE_MODE_WT &&
new_pcm == _PAGE_CACHE_MODE_WB) ||
(pcm == _PAGE_CACHE_MODE_WT &&
new_pcm == _PAGE_CACHE_MODE_WC)) {
return 0;
}
return 1;
}
pmd_t *populate_extra_pmd(unsigned long vaddr);
pte_t *populate_extra_pte(unsigned long vaddr);
#ifdef CONFIG_PAGE_TABLE_ISOLATION
pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
/*
* Take a PGD location (pgdp) and a pgd value that needs to be set there.
* Populates the user and returns the resulting PGD that must be set in
* the kernel copy of the page tables.
*/
static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
{
if (!static_cpu_has(X86_FEATURE_PTI))
return pgd;
return __pti_set_user_pgtbl(pgdp, pgd);
}
#else /* CONFIG_PAGE_TABLE_ISOLATION */
static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
{
return pgd;
}
#endif /* CONFIG_PAGE_TABLE_ISOLATION */
#endif /* __ASSEMBLY__ */
#ifdef CONFIG_X86_32
# include <asm/pgtable_32.h>
#else
# include <asm/pgtable_64.h>
#endif
#ifndef __ASSEMBLY__
#include <linux/mm_types.h>
#include <linux/mmdebug.h>
#include <linux/log2.h>
#include <asm/fixmap.h>
static inline int pte_none(pte_t pte)
{
return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t a, pte_t b)
{
return a.pte == b.pte;
}
static inline int pte_present(pte_t a)
{
return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
}
#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pte_devmap(pte_t a)
{
return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
}
#endif
#define pte_accessible pte_accessible
static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
{
if (pte_flags(a) & _PAGE_PRESENT)
return true;
if ((pte_flags(a) & _PAGE_PROTNONE) &&
mm_tlb_flush_pending(mm))
return true;
return false;
}
static inline int pmd_present(pmd_t pmd)
{
/*
* Checking for _PAGE_PSE is needed too because
* split_huge_page will temporarily clear the present bit (but
* the _PAGE_PSE flag will remain set at all times while the
* _PAGE_PRESENT bit is clear).
*/
return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
}
#ifdef CONFIG_NUMA_BALANCING
/*
* These work without NUMA balancing but the kernel does not care. See the
* comment in include/asm-generic/pgtable.h
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
== _PAGE_PROTNONE;
}
static inline int pmd_protnone(pmd_t pmd)
{
return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
== _PAGE_PROTNONE;
}
#endif /* CONFIG_NUMA_BALANCING */
static inline int pmd_none(pmd_t pmd)
{
/* Only check low word on 32-bit platforms, since it might be
out of sync with upper half. */
unsigned long val = native_pmd_val(pmd);
return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
}
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
/*
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
*
* this macro returns the index of the entry in the pmd page which would
* control the given virtual address
*/
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* (Currently stuck as a macro because of indirect forward reference
* to linux/mm.h:page_to_nid())
*/
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
/*
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
*
* this function returns the index of the entry in the pte page which would
* control the given virtual address
*/
static inline unsigned long pte_index(unsigned long address)
{
return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
}
static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
{
return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
}
static inline int pmd_bad(pmd_t pmd)
{
return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
}
static inline unsigned long pages_to_mb(unsigned long npg)
{
return npg >> (20 - PAGE_SHIFT);
}
#if CONFIG_PGTABLE_LEVELS > 2
static inline int pud_none(pud_t pud)
{
return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
}
static inline int pud_present(pud_t pud)
{
return pud_flags(pud) & _PAGE_PRESENT;
}
static inline unsigned long pud_page_vaddr(pud_t pud)
{
return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define pud_page(pud) pfn_to_page(pud_pfn(pud))
/* Find an entry in the second-level page table.. */
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
static inline int pud_large(pud_t pud)
{
return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
(_PAGE_PSE | _PAGE_PRESENT);
}
static inline int pud_bad(pud_t pud)
{
return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
}
#else
static inline int pud_large(pud_t pud)
{
return 0;
}
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
static inline unsigned long pud_index(unsigned long address)
{
return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
}
#if CONFIG_PGTABLE_LEVELS > 3
static inline int p4d_none(p4d_t p4d)
{
return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
}
static inline int p4d_present(p4d_t p4d)
{
return p4d_flags(p4d) & _PAGE_PRESENT;
}
static inline unsigned long p4d_page_vaddr(p4d_t p4d)
{
return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
/* Find an entry in the third-level page table.. */
static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
{
return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
}
static inline int p4d_bad(p4d_t p4d)
{
unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
ignore_flags |= _PAGE_NX;
return (p4d_flags(p4d) & ~ignore_flags) != 0;
}
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
static inline unsigned long p4d_index(unsigned long address)
{
return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
}
#if CONFIG_PGTABLE_LEVELS > 4
static inline int pgd_present(pgd_t pgd)
{
if (!pgtable_l5_enabled())
return 1;
return pgd_flags(pgd) & _PAGE_PRESENT;
}
static inline unsigned long pgd_page_vaddr(pgd_t pgd)
{
return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
}
/*
* Currently stuck as a macro due to indirect forward reference to
* linux/mmzone.h's __section_mem_map_addr() definition:
*/
#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
/* to find an entry in a page-table-directory. */
static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
{
if (!pgtable_l5_enabled())
return (p4d_t *)pgd;
return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
}
static inline int pgd_bad(pgd_t pgd)
{
unsigned long ignore_flags = _PAGE_USER;
if (!pgtable_l5_enabled())
return 0;
if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
ignore_flags |= _PAGE_NX;
return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
}
static inline int pgd_none(pgd_t pgd)
{
if (!pgtable_l5_enabled())
return 0;
/*
* There is no need to do a workaround for the KNL stray
* A/D bit erratum here. PGDs only point to page tables
* except on 32-bit non-PAE which is not supported on
* KNL.
*/
return !native_pgd_val(pgd);
}
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
#endif /* __ASSEMBLY__ */
/*
* the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
*
* this macro returns the index of the entry in the pgd page which would
* control the given virtual address
*/
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
/*
* pgd_offset() returns a (pgd_t *)
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
*/
#define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address)))
/*
* a shortcut to get a pgd_t in a given mm
*/
#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
/*
* a shortcut which implies the use of the kernel's pgd, instead
* of a process's
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
#define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
#ifndef __ASSEMBLY__
extern int direct_gbpages;
void init_mem_mapping(void);
void early_alloc_pgt_buf(void);
extern void memblock_find_dma_reserve(void);
#ifdef CONFIG_X86_64
/* Realmode trampoline initialization. */
extern pgd_t trampoline_pgd_entry;
static inline void __meminit init_trampoline_default(void)
{
/* Default trampoline pgd value */
trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
}
void __init poking_init(void);
# ifdef CONFIG_RANDOMIZE_MEMORY
void __meminit init_trampoline(void);
# else
# define init_trampoline init_trampoline_default
# endif
#else
static inline void init_trampoline(void) { }
#endif
/* local pte updates need not use xchg for locking */
static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
{
pte_t res = *ptep;
/* Pure native function needs no input for mm, addr */
native_pte_clear(NULL, 0, ptep);
return res;
}
static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
{
pmd_t res = *pmdp;
native_pmd_clear(pmdp);
return res;
}
static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
{
pud_t res = *pudp;
native_pud_clear(pudp);
return res;
}
static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep , pte_t pte)
{
native_set_pte(ptep, pte);
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
set_pmd(pmdp, pmd);
}
static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
pud_t *pudp, pud_t pud)
{
native_set_pud(pudp, pud);
}
/*
* We only update the dirty/accessed state if we set
* the dirty bit by hand in the kernel, since the hardware
* will do the accessed bit for us, and we don't want to
* race with other CPU's that might be updating the dirty
* bit at the same time.
*/
struct vm_area_struct;
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
extern int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
extern int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep);
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_t pte = native_ptep_get_and_clear(ptep);
return pte;
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long addr, pte_t *ptep,
int full)
{
pte_t pte;
if (full) {
/*
* Full address destruction in progress; paravirt does not
* care about updates and native needs no locking
*/
pte = native_local_ptep_get_and_clear(ptep);
} else {
pte = ptep_get_and_clear(mm, addr, ptep);
}
return pte;
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
}
#define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
extern int pudp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
pud_t entry, int dirty);
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp);
extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pud_t *pudp);
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define pmd_write pmd_write
static inline int pmd_write(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_RW;
}
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp)
{
return native_pmdp_get_and_clear(pmdp);
}
#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pud_t *pudp)
{
return native_pudp_get_and_clear(pudp);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
}
#define pud_write pud_write
static inline int pud_write(pud_t pud)
{
return pud_flags(pud) & _PAGE_RW;
}
#ifndef pmdp_establish
#define pmdp_establish pmdp_establish
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
if (IS_ENABLED(CONFIG_SMP)) {
return xchg(pmdp, pmd);
} else {
pmd_t old = *pmdp;
WRITE_ONCE(*pmdp, pmd);
return old;
}
}
#endif
/*
* Page table pages are page-aligned. The lower half of the top
* level is used for userspace and the top half for the kernel.
*
* Returns true for parts of the PGD that map userspace and
* false for the parts that map the kernel.
*/
static inline bool pgdp_maps_userspace(void *__ptr)
{
unsigned long ptr = (unsigned long)__ptr;
return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
}
static inline int pgd_large(pgd_t pgd) { return 0; }
#ifdef CONFIG_PAGE_TABLE_ISOLATION
/*
* All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages
* (8k-aligned and 8k in size). The kernel one is at the beginning 4k and
* the user one is in the last 4k. To switch between them, you
* just need to flip the 12th bit in their addresses.
*/
#define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT
/*
* This generates better code than the inline assembly in
* __set_bit().
*/
static inline void *ptr_set_bit(void *ptr, int bit)
{
unsigned long __ptr = (unsigned long)ptr;
__ptr |= BIT(bit);
return (void *)__ptr;
}
static inline void *ptr_clear_bit(void *ptr, int bit)
{
unsigned long __ptr = (unsigned long)ptr;
__ptr &= ~BIT(bit);
return (void *)__ptr;
}
static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
{
return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
}
static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
{
return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
}
static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
{
return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
}
static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
{
return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
}
#endif /* CONFIG_PAGE_TABLE_ISOLATION */
/*
* clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
*
* dst - pointer to pgd range anwhere on a pgd page
* src - ""
* count - the number of pgds to copy.
*
* dst and src can be on the same page, but the range must not overlap,
* and must not cross a page boundary.
*/
static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
{
memcpy(dst, src, count * sizeof(pgd_t));
#ifdef CONFIG_PAGE_TABLE_ISOLATION
if (!static_cpu_has(X86_FEATURE_PTI))
return;
/* Clone the user space pgd as well */
memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
count * sizeof(pgd_t));
#endif
}
#define PTE_SHIFT ilog2(PTRS_PER_PTE)
static inline int page_level_shift(enum pg_level level)
{
return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
}
static inline unsigned long page_level_size(enum pg_level level)
{
return 1UL << page_level_shift(level);
}
static inline unsigned long page_level_mask(enum pg_level level)
{
return ~(page_level_size(level) - 1);
}
/*
* The x86 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
static inline void update_mmu_cache(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
}
static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmd)
{
}
static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
unsigned long addr, pud_t *pud)
{
}
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
}
static inline int pte_swp_soft_dirty(pte_t pte)
{
return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
}
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
{
return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
}
static inline int pmd_swp_soft_dirty(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
}
static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
{
return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
}
#endif
#endif
#define PKRU_AD_BIT 0x1
#define PKRU_WD_BIT 0x2
#define PKRU_BITS_PER_PKEY 2
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
extern u32 init_pkru_value;
#else
#define init_pkru_value 0
#endif
static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
{
int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
}
static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
{
int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
/*
* Access-disable disables writes too so we need to check
* both bits here.
*/
return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
}
static inline u16 pte_flags_pkey(unsigned long pte_flags)
{
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
/* ifdef to avoid doing 59-bit shift on 32-bit values */
return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
#else
return 0;
#endif
}
static inline bool __pkru_allows_pkey(u16 pkey, bool write)
{
u32 pkru = read_pkru();
if (!__pkru_allows_read(pkru, pkey))
return false;
if (write && !__pkru_allows_write(pkru, pkey))
return false;
return true;
}
/*
* 'pteval' can come from a PTE, PMD or PUD. We only check
* _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
* same value on all 3 types.
*/
static inline bool __pte_access_permitted(unsigned long pteval, bool write)
{
unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
if (write)
need_pte_bits |= _PAGE_RW;
if ((pteval & need_pte_bits) != need_pte_bits)
return 0;
return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
}
#define pte_access_permitted pte_access_permitted
static inline bool pte_access_permitted(pte_t pte, bool write)
{
return __pte_access_permitted(pte_val(pte), write);
}
#define pmd_access_permitted pmd_access_permitted
static inline bool pmd_access_permitted(pmd_t pmd, bool write)
{
return __pte_access_permitted(pmd_val(pmd), write);
}
#define pud_access_permitted pud_access_permitted
static inline bool pud_access_permitted(pud_t pud, bool write)
{
return __pte_access_permitted(pud_val(pud), write);
}
#define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
static inline bool arch_has_pfn_modify_check(void)
{
return boot_cpu_has_bug(X86_BUG_L1TF);
}
#define arch_faults_on_old_pte arch_faults_on_old_pte
static inline bool arch_faults_on_old_pte(void)
{
return false;
}
#include <asm-generic/pgtable.h>
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_PGTABLE_H */