b6319b061b
If VDDA != VDDIO and any of them is greater than 3.1V, charge pump source can be assigned automatically [1]. [1] https://www.nxp.com/docs/en/data-sheet/SGTL5000.pdf Signed-off-by: Oleksandr Suvorov <oleksandr.suvorov@toradex.com> Reviewed-by: Marcel Ziswiler <marcel.ziswiler@toradex.com> Reviewed-by: Igor Opaniuk <igor.opaniuk@toradex.com> Reviewed-by: Fabio Estevam <festevam@gmail.com> Link: https://lore.kernel.org/r/20190719100524.23300-7-oleksandr.suvorov@toradex.com Signed-off-by: Mark Brown <broonie@kernel.org>
1791 lines
49 KiB
C
1791 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
||
//
|
||
// sgtl5000.c -- SGTL5000 ALSA SoC Audio driver
|
||
//
|
||
// Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
|
||
|
||
#include <linux/module.h>
|
||
#include <linux/moduleparam.h>
|
||
#include <linux/init.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/pm.h>
|
||
#include <linux/i2c.h>
|
||
#include <linux/clk.h>
|
||
#include <linux/log2.h>
|
||
#include <linux/regmap.h>
|
||
#include <linux/regulator/driver.h>
|
||
#include <linux/regulator/machine.h>
|
||
#include <linux/regulator/consumer.h>
|
||
#include <linux/of_device.h>
|
||
#include <sound/core.h>
|
||
#include <sound/tlv.h>
|
||
#include <sound/pcm.h>
|
||
#include <sound/pcm_params.h>
|
||
#include <sound/soc.h>
|
||
#include <sound/soc-dapm.h>
|
||
#include <sound/initval.h>
|
||
|
||
#include "sgtl5000.h"
|
||
|
||
#define SGTL5000_DAP_REG_OFFSET 0x0100
|
||
#define SGTL5000_MAX_REG_OFFSET 0x013A
|
||
|
||
/* Delay for the VAG ramp up */
|
||
#define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
|
||
/* Delay for the VAG ramp down */
|
||
#define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
|
||
|
||
#define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
|
||
|
||
/* default value of sgtl5000 registers */
|
||
static const struct reg_default sgtl5000_reg_defaults[] = {
|
||
{ SGTL5000_CHIP_DIG_POWER, 0x0000 },
|
||
{ SGTL5000_CHIP_I2S_CTRL, 0x0010 },
|
||
{ SGTL5000_CHIP_SSS_CTRL, 0x0010 },
|
||
{ SGTL5000_CHIP_ADCDAC_CTRL, 0x020c },
|
||
{ SGTL5000_CHIP_DAC_VOL, 0x3c3c },
|
||
{ SGTL5000_CHIP_PAD_STRENGTH, 0x015f },
|
||
{ SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 },
|
||
{ SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 },
|
||
{ SGTL5000_CHIP_ANA_CTRL, 0x0111 },
|
||
{ SGTL5000_CHIP_REF_CTRL, 0x0000 },
|
||
{ SGTL5000_CHIP_MIC_CTRL, 0x0000 },
|
||
{ SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 },
|
||
{ SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 },
|
||
{ SGTL5000_CHIP_PLL_CTRL, 0x5000 },
|
||
{ SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 },
|
||
{ SGTL5000_CHIP_ANA_STATUS, 0x0000 },
|
||
{ SGTL5000_CHIP_SHORT_CTRL, 0x0000 },
|
||
{ SGTL5000_CHIP_ANA_TEST2, 0x0000 },
|
||
{ SGTL5000_DAP_CTRL, 0x0000 },
|
||
{ SGTL5000_DAP_PEQ, 0x0000 },
|
||
{ SGTL5000_DAP_BASS_ENHANCE, 0x0040 },
|
||
{ SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f },
|
||
{ SGTL5000_DAP_AUDIO_EQ, 0x0000 },
|
||
{ SGTL5000_DAP_SURROUND, 0x0040 },
|
||
{ SGTL5000_DAP_EQ_BASS_BAND0, 0x002f },
|
||
{ SGTL5000_DAP_EQ_BASS_BAND1, 0x002f },
|
||
{ SGTL5000_DAP_EQ_BASS_BAND2, 0x002f },
|
||
{ SGTL5000_DAP_EQ_BASS_BAND3, 0x002f },
|
||
{ SGTL5000_DAP_EQ_BASS_BAND4, 0x002f },
|
||
{ SGTL5000_DAP_MAIN_CHAN, 0x8000 },
|
||
{ SGTL5000_DAP_MIX_CHAN, 0x0000 },
|
||
{ SGTL5000_DAP_AVC_CTRL, 0x0510 },
|
||
{ SGTL5000_DAP_AVC_THRESHOLD, 0x1473 },
|
||
{ SGTL5000_DAP_AVC_ATTACK, 0x0028 },
|
||
{ SGTL5000_DAP_AVC_DECAY, 0x0050 },
|
||
};
|
||
|
||
/* AVC: Threshold dB -> register: pre-calculated values */
|
||
static const u16 avc_thr_db2reg[97] = {
|
||
0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
|
||
0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
|
||
0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
|
||
0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
|
||
0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
|
||
0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
|
||
0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
|
||
0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
|
||
0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
|
||
0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
|
||
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
|
||
|
||
/* regulator supplies for sgtl5000, VDDD is an optional external supply */
|
||
enum sgtl5000_regulator_supplies {
|
||
VDDA,
|
||
VDDIO,
|
||
VDDD,
|
||
SGTL5000_SUPPLY_NUM
|
||
};
|
||
|
||
/* vddd is optional supply */
|
||
static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
|
||
"VDDA",
|
||
"VDDIO",
|
||
"VDDD"
|
||
};
|
||
|
||
#define LDO_VOLTAGE 1200000
|
||
#define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50)
|
||
|
||
enum sgtl5000_micbias_resistor {
|
||
SGTL5000_MICBIAS_OFF = 0,
|
||
SGTL5000_MICBIAS_2K = 2,
|
||
SGTL5000_MICBIAS_4K = 4,
|
||
SGTL5000_MICBIAS_8K = 8,
|
||
};
|
||
|
||
enum {
|
||
I2S_LRCLK_STRENGTH_DISABLE,
|
||
I2S_LRCLK_STRENGTH_LOW,
|
||
I2S_LRCLK_STRENGTH_MEDIUM,
|
||
I2S_LRCLK_STRENGTH_HIGH,
|
||
};
|
||
|
||
enum {
|
||
I2S_SCLK_STRENGTH_DISABLE,
|
||
I2S_SCLK_STRENGTH_LOW,
|
||
I2S_SCLK_STRENGTH_MEDIUM,
|
||
I2S_SCLK_STRENGTH_HIGH,
|
||
};
|
||
|
||
enum {
|
||
HP_POWER_EVENT,
|
||
DAC_POWER_EVENT,
|
||
ADC_POWER_EVENT,
|
||
LAST_POWER_EVENT = ADC_POWER_EVENT
|
||
};
|
||
|
||
/* sgtl5000 private structure in codec */
|
||
struct sgtl5000_priv {
|
||
int sysclk; /* sysclk rate */
|
||
int master; /* i2s master or not */
|
||
int fmt; /* i2s data format */
|
||
struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
|
||
int num_supplies;
|
||
struct regmap *regmap;
|
||
struct clk *mclk;
|
||
int revision;
|
||
u8 micbias_resistor;
|
||
u8 micbias_voltage;
|
||
u8 lrclk_strength;
|
||
u8 sclk_strength;
|
||
u16 mute_state[LAST_POWER_EVENT + 1];
|
||
};
|
||
|
||
static inline int hp_sel_input(struct snd_soc_component *component)
|
||
{
|
||
return (snd_soc_component_read32(component, SGTL5000_CHIP_ANA_CTRL) &
|
||
SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
|
||
}
|
||
|
||
static inline u16 mute_output(struct snd_soc_component *component,
|
||
u16 mute_mask)
|
||
{
|
||
u16 mute_reg = snd_soc_component_read32(component,
|
||
SGTL5000_CHIP_ANA_CTRL);
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
|
||
mute_mask, mute_mask);
|
||
return mute_reg;
|
||
}
|
||
|
||
static inline void restore_output(struct snd_soc_component *component,
|
||
u16 mute_mask, u16 mute_reg)
|
||
{
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
|
||
mute_mask, mute_reg);
|
||
}
|
||
|
||
static void vag_power_on(struct snd_soc_component *component, u32 source)
|
||
{
|
||
if (snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER) &
|
||
SGTL5000_VAG_POWERUP)
|
||
return;
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
|
||
SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
|
||
|
||
/* When VAG powering on to get local loop from Line-In, the sleep
|
||
* is required to avoid loud pop.
|
||
*/
|
||
if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
|
||
source == HP_POWER_EVENT)
|
||
msleep(SGTL5000_VAG_POWERUP_DELAY);
|
||
}
|
||
|
||
static int vag_power_consumers(struct snd_soc_component *component,
|
||
u16 ana_pwr_reg, u32 source)
|
||
{
|
||
int consumers = 0;
|
||
|
||
/* count dac/adc consumers unconditional */
|
||
if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
|
||
consumers++;
|
||
if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
|
||
consumers++;
|
||
|
||
/*
|
||
* If the event comes from HP and Line-In is selected,
|
||
* current action is 'DAC to be powered down'.
|
||
* As HP_POWERUP is not set when HP muxed to line-in,
|
||
* we need to keep VAG power ON.
|
||
*/
|
||
if (source == HP_POWER_EVENT) {
|
||
if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
|
||
consumers++;
|
||
} else {
|
||
if (ana_pwr_reg & SGTL5000_HP_POWERUP)
|
||
consumers++;
|
||
}
|
||
|
||
return consumers;
|
||
}
|
||
|
||
static void vag_power_off(struct snd_soc_component *component, u32 source)
|
||
{
|
||
u16 ana_pwr = snd_soc_component_read32(component,
|
||
SGTL5000_CHIP_ANA_POWER);
|
||
|
||
if (!(ana_pwr & SGTL5000_VAG_POWERUP))
|
||
return;
|
||
|
||
/*
|
||
* This function calls when any of VAG power consumers is disappearing.
|
||
* Thus, if there is more than one consumer at the moment, as minimum
|
||
* one consumer will definitely stay after the end of the current
|
||
* event.
|
||
* Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
|
||
* - LINE_IN (for HP events) / HP (for DAC/ADC events)
|
||
* - DAC
|
||
* - ADC
|
||
* (the current consumer is disappearing right now)
|
||
*/
|
||
if (vag_power_consumers(component, ana_pwr, source) >= 2)
|
||
return;
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
|
||
SGTL5000_VAG_POWERUP, 0);
|
||
/* In power down case, we need wait 400-1000 ms
|
||
* when VAG fully ramped down.
|
||
* As longer we wait, as smaller pop we've got.
|
||
*/
|
||
msleep(SGTL5000_VAG_POWERDOWN_DELAY);
|
||
}
|
||
|
||
/*
|
||
* mic_bias power on/off share the same register bits with
|
||
* output impedance of mic bias, when power on mic bias, we
|
||
* need reclaim it to impedance value.
|
||
* 0x0 = Powered off
|
||
* 0x1 = 2Kohm
|
||
* 0x2 = 4Kohm
|
||
* 0x3 = 8Kohm
|
||
*/
|
||
static int mic_bias_event(struct snd_soc_dapm_widget *w,
|
||
struct snd_kcontrol *kcontrol, int event)
|
||
{
|
||
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
|
||
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
|
||
|
||
switch (event) {
|
||
case SND_SOC_DAPM_POST_PMU:
|
||
/* change mic bias resistor */
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
|
||
SGTL5000_BIAS_R_MASK,
|
||
sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
|
||
break;
|
||
|
||
case SND_SOC_DAPM_PRE_PMD:
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
|
||
SGTL5000_BIAS_R_MASK, 0);
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static int vag_and_mute_control(struct snd_soc_component *component,
|
||
int event, int event_source)
|
||
{
|
||
static const u16 mute_mask[] = {
|
||
/*
|
||
* Mask for HP_POWER_EVENT.
|
||
* Muxing Headphones have to be wrapped with mute/unmute
|
||
* headphones only.
|
||
*/
|
||
SGTL5000_HP_MUTE,
|
||
/*
|
||
* Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
|
||
* Muxing DAC or ADC block have to wrapped with mute/unmute
|
||
* both headphones and line-out.
|
||
*/
|
||
SGTL5000_OUTPUTS_MUTE,
|
||
SGTL5000_OUTPUTS_MUTE
|
||
};
|
||
|
||
struct sgtl5000_priv *sgtl5000 =
|
||
snd_soc_component_get_drvdata(component);
|
||
|
||
switch (event) {
|
||
case SND_SOC_DAPM_PRE_PMU:
|
||
sgtl5000->mute_state[event_source] =
|
||
mute_output(component, mute_mask[event_source]);
|
||
break;
|
||
case SND_SOC_DAPM_POST_PMU:
|
||
vag_power_on(component, event_source);
|
||
restore_output(component, mute_mask[event_source],
|
||
sgtl5000->mute_state[event_source]);
|
||
break;
|
||
case SND_SOC_DAPM_PRE_PMD:
|
||
sgtl5000->mute_state[event_source] =
|
||
mute_output(component, mute_mask[event_source]);
|
||
vag_power_off(component, event_source);
|
||
break;
|
||
case SND_SOC_DAPM_POST_PMD:
|
||
restore_output(component, mute_mask[event_source],
|
||
sgtl5000->mute_state[event_source]);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Mute Headphone when power it up/down.
|
||
* Control VAG power on HP power path.
|
||
*/
|
||
static int headphone_pga_event(struct snd_soc_dapm_widget *w,
|
||
struct snd_kcontrol *kcontrol, int event)
|
||
{
|
||
struct snd_soc_component *component =
|
||
snd_soc_dapm_to_component(w->dapm);
|
||
|
||
return vag_and_mute_control(component, event, HP_POWER_EVENT);
|
||
}
|
||
|
||
/* As manual describes, ADC/DAC powering up/down requires
|
||
* to mute outputs to avoid pops.
|
||
* Control VAG power on ADC/DAC power path.
|
||
*/
|
||
static int adc_updown_depop(struct snd_soc_dapm_widget *w,
|
||
struct snd_kcontrol *kcontrol, int event)
|
||
{
|
||
struct snd_soc_component *component =
|
||
snd_soc_dapm_to_component(w->dapm);
|
||
|
||
return vag_and_mute_control(component, event, ADC_POWER_EVENT);
|
||
}
|
||
|
||
static int dac_updown_depop(struct snd_soc_dapm_widget *w,
|
||
struct snd_kcontrol *kcontrol, int event)
|
||
{
|
||
struct snd_soc_component *component =
|
||
snd_soc_dapm_to_component(w->dapm);
|
||
|
||
return vag_and_mute_control(component, event, DAC_POWER_EVENT);
|
||
}
|
||
|
||
/* input sources for ADC */
|
||
static const char *adc_mux_text[] = {
|
||
"MIC_IN", "LINE_IN"
|
||
};
|
||
|
||
static SOC_ENUM_SINGLE_DECL(adc_enum,
|
||
SGTL5000_CHIP_ANA_CTRL, 2,
|
||
adc_mux_text);
|
||
|
||
static const struct snd_kcontrol_new adc_mux =
|
||
SOC_DAPM_ENUM("Capture Mux", adc_enum);
|
||
|
||
/* input sources for headphone */
|
||
static const char *hp_mux_text[] = {
|
||
"DAC", "LINE_IN"
|
||
};
|
||
|
||
static SOC_ENUM_SINGLE_DECL(hp_enum,
|
||
SGTL5000_CHIP_ANA_CTRL, 6,
|
||
hp_mux_text);
|
||
|
||
static const struct snd_kcontrol_new hp_mux =
|
||
SOC_DAPM_ENUM("Headphone Mux", hp_enum);
|
||
|
||
/* input sources for DAC */
|
||
static const char *dac_mux_text[] = {
|
||
"ADC", "I2S", "Rsvrd", "DAP"
|
||
};
|
||
|
||
static SOC_ENUM_SINGLE_DECL(dac_enum,
|
||
SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
|
||
dac_mux_text);
|
||
|
||
static const struct snd_kcontrol_new dac_mux =
|
||
SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
|
||
|
||
/* input sources for DAP */
|
||
static const char *dap_mux_text[] = {
|
||
"ADC", "I2S"
|
||
};
|
||
|
||
static SOC_ENUM_SINGLE_DECL(dap_enum,
|
||
SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
|
||
dap_mux_text);
|
||
|
||
static const struct snd_kcontrol_new dap_mux =
|
||
SOC_DAPM_ENUM("DAP Mux", dap_enum);
|
||
|
||
/* input sources for DAP mix */
|
||
static const char *dapmix_mux_text[] = {
|
||
"ADC", "I2S"
|
||
};
|
||
|
||
static SOC_ENUM_SINGLE_DECL(dapmix_enum,
|
||
SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
|
||
dapmix_mux_text);
|
||
|
||
static const struct snd_kcontrol_new dapmix_mux =
|
||
SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
|
||
|
||
|
||
static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
|
||
SND_SOC_DAPM_INPUT("LINE_IN"),
|
||
SND_SOC_DAPM_INPUT("MIC_IN"),
|
||
|
||
SND_SOC_DAPM_OUTPUT("HP_OUT"),
|
||
SND_SOC_DAPM_OUTPUT("LINE_OUT"),
|
||
|
||
SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
|
||
mic_bias_event,
|
||
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
|
||
|
||
SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
|
||
headphone_pga_event,
|
||
SND_SOC_DAPM_PRE_POST_PMU |
|
||
SND_SOC_DAPM_PRE_POST_PMD),
|
||
SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
|
||
|
||
SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
|
||
SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
|
||
SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
|
||
SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
|
||
SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
|
||
SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
|
||
|
||
|
||
/* aif for i2s input */
|
||
SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
|
||
0, SGTL5000_CHIP_DIG_POWER,
|
||
0, 0),
|
||
|
||
/* aif for i2s output */
|
||
SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
|
||
0, SGTL5000_CHIP_DIG_POWER,
|
||
1, 0),
|
||
|
||
SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
|
||
adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
|
||
SND_SOC_DAPM_PRE_POST_PMD),
|
||
SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
|
||
dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
|
||
SND_SOC_DAPM_PRE_POST_PMD),
|
||
};
|
||
|
||
/* routes for sgtl5000 */
|
||
static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
|
||
{"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */
|
||
{"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */
|
||
|
||
{"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */
|
||
{"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */
|
||
|
||
{"DAP Mux", "ADC", "ADC"}, /* adc --> DAP mux */
|
||
{"DAP Mux", NULL, "AIFIN"}, /* i2s --> DAP mux */
|
||
{"DAP", NULL, "DAP Mux"}, /* DAP mux --> dap */
|
||
|
||
{"DAP MIX Mux", "ADC", "ADC"}, /* adc --> DAP MIX mux */
|
||
{"DAP MIX Mux", NULL, "AIFIN"}, /* i2s --> DAP MIX mux */
|
||
{"DAP", NULL, "DAP MIX Mux"}, /* DAP MIX mux --> dap */
|
||
|
||
{"Digital Input Mux", "ADC", "ADC"}, /* adc --> audio mux */
|
||
{"Digital Input Mux", NULL, "AIFIN"}, /* i2s --> audio mux */
|
||
{"Digital Input Mux", NULL, "DAP"}, /* dap --> audio mux */
|
||
{"DAC", NULL, "Digital Input Mux"}, /* audio mux --> dac */
|
||
|
||
{"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */
|
||
{"LO", NULL, "DAC"}, /* dac --> line_out */
|
||
|
||
{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
|
||
{"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */
|
||
|
||
{"LINE_OUT", NULL, "LO"},
|
||
{"HP_OUT", NULL, "HP"},
|
||
};
|
||
|
||
/* custom function to fetch info of PCM playback volume */
|
||
static int dac_info_volsw(struct snd_kcontrol *kcontrol,
|
||
struct snd_ctl_elem_info *uinfo)
|
||
{
|
||
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
|
||
uinfo->count = 2;
|
||
uinfo->value.integer.min = 0;
|
||
uinfo->value.integer.max = 0xfc - 0x3c;
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* custom function to get of PCM playback volume
|
||
*
|
||
* dac volume register
|
||
* 15-------------8-7--------------0
|
||
* | R channel vol | L channel vol |
|
||
* -------------------------------
|
||
*
|
||
* PCM volume with 0.5017 dB steps from 0 to -90 dB
|
||
*
|
||
* register values map to dB
|
||
* 0x3B and less = Reserved
|
||
* 0x3C = 0 dB
|
||
* 0x3D = -0.5 dB
|
||
* 0xF0 = -90 dB
|
||
* 0xFC and greater = Muted
|
||
*
|
||
* register value map to userspace value
|
||
*
|
||
* register value 0x3c(0dB) 0xf0(-90dB)0xfc
|
||
* ------------------------------
|
||
* userspace value 0xc0 0
|
||
*/
|
||
static int dac_get_volsw(struct snd_kcontrol *kcontrol,
|
||
struct snd_ctl_elem_value *ucontrol)
|
||
{
|
||
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
|
||
int reg;
|
||
int l;
|
||
int r;
|
||
|
||
reg = snd_soc_component_read32(component, SGTL5000_CHIP_DAC_VOL);
|
||
|
||
/* get left channel volume */
|
||
l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
|
||
|
||
/* get right channel volume */
|
||
r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
|
||
|
||
/* make sure value fall in (0x3c,0xfc) */
|
||
l = clamp(l, 0x3c, 0xfc);
|
||
r = clamp(r, 0x3c, 0xfc);
|
||
|
||
/* invert it and map to userspace value */
|
||
l = 0xfc - l;
|
||
r = 0xfc - r;
|
||
|
||
ucontrol->value.integer.value[0] = l;
|
||
ucontrol->value.integer.value[1] = r;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* custom function to put of PCM playback volume
|
||
*
|
||
* dac volume register
|
||
* 15-------------8-7--------------0
|
||
* | R channel vol | L channel vol |
|
||
* -------------------------------
|
||
*
|
||
* PCM volume with 0.5017 dB steps from 0 to -90 dB
|
||
*
|
||
* register values map to dB
|
||
* 0x3B and less = Reserved
|
||
* 0x3C = 0 dB
|
||
* 0x3D = -0.5 dB
|
||
* 0xF0 = -90 dB
|
||
* 0xFC and greater = Muted
|
||
*
|
||
* userspace value map to register value
|
||
*
|
||
* userspace value 0xc0 0
|
||
* ------------------------------
|
||
* register value 0x3c(0dB) 0xf0(-90dB)0xfc
|
||
*/
|
||
static int dac_put_volsw(struct snd_kcontrol *kcontrol,
|
||
struct snd_ctl_elem_value *ucontrol)
|
||
{
|
||
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
|
||
int reg;
|
||
int l;
|
||
int r;
|
||
|
||
l = ucontrol->value.integer.value[0];
|
||
r = ucontrol->value.integer.value[1];
|
||
|
||
/* make sure userspace volume fall in (0, 0xfc-0x3c) */
|
||
l = clamp(l, 0, 0xfc - 0x3c);
|
||
r = clamp(r, 0, 0xfc - 0x3c);
|
||
|
||
/* invert it, get the value can be set to register */
|
||
l = 0xfc - l;
|
||
r = 0xfc - r;
|
||
|
||
/* shift to get the register value */
|
||
reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
|
||
r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
|
||
|
||
snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* custom function to get AVC threshold
|
||
*
|
||
* The threshold dB is calculated by rearranging the calculation from the
|
||
* avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
|
||
* dB = ( fls(register_value) - 14.347 ) * 6.02
|
||
*
|
||
* As this calculation is expensive and the threshold dB values may not exceed
|
||
* 0 to 96 we use pre-calculated values.
|
||
*/
|
||
static int avc_get_threshold(struct snd_kcontrol *kcontrol,
|
||
struct snd_ctl_elem_value *ucontrol)
|
||
{
|
||
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
|
||
int db, i;
|
||
u16 reg = snd_soc_component_read32(component, SGTL5000_DAP_AVC_THRESHOLD);
|
||
|
||
/* register value 0 => -96dB */
|
||
if (!reg) {
|
||
ucontrol->value.integer.value[0] = 96;
|
||
ucontrol->value.integer.value[1] = 96;
|
||
return 0;
|
||
}
|
||
|
||
/* get dB from register value (rounded down) */
|
||
for (i = 0; avc_thr_db2reg[i] > reg; i++)
|
||
;
|
||
db = i;
|
||
|
||
ucontrol->value.integer.value[0] = db;
|
||
ucontrol->value.integer.value[1] = db;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* custom function to put AVC threshold
|
||
*
|
||
* The register value is calculated by following formula:
|
||
* register_value = 10^(dB/20) * 0.636 * 2^15
|
||
* As this calculation is expensive and the threshold dB values may not exceed
|
||
* 0 to 96 we use pre-calculated values.
|
||
*/
|
||
static int avc_put_threshold(struct snd_kcontrol *kcontrol,
|
||
struct snd_ctl_elem_value *ucontrol)
|
||
{
|
||
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
|
||
int db;
|
||
u16 reg;
|
||
|
||
db = (int)ucontrol->value.integer.value[0];
|
||
if (db < 0 || db > 96)
|
||
return -EINVAL;
|
||
reg = avc_thr_db2reg[db];
|
||
snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
|
||
|
||
/* tlv for mic gain, 0db 20db 30db 40db */
|
||
static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
|
||
0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
|
||
1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
|
||
);
|
||
|
||
/* tlv for DAP channels, 0% - 100% - 200% */
|
||
static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
|
||
|
||
/* tlv for bass bands, -11.75db to 12.0db, step .25db */
|
||
static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
|
||
|
||
/* tlv for hp volume, -51.5db to 12.0db, step .5db */
|
||
static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
|
||
|
||
/* tlv for lineout volume, 31 steps of .5db each */
|
||
static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
|
||
|
||
/* tlv for dap avc max gain, 0db, 6db, 12db */
|
||
static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
|
||
|
||
/* tlv for dap avc threshold, */
|
||
static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
|
||
|
||
static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
|
||
/* SOC_DOUBLE_S8_TLV with invert */
|
||
{
|
||
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
|
||
.name = "PCM Playback Volume",
|
||
.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
|
||
SNDRV_CTL_ELEM_ACCESS_READWRITE,
|
||
.info = dac_info_volsw,
|
||
.get = dac_get_volsw,
|
||
.put = dac_put_volsw,
|
||
},
|
||
|
||
SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
|
||
SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
|
||
SGTL5000_CHIP_ANA_ADC_CTRL,
|
||
8, 1, 0, capture_6db_attenuate),
|
||
SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
|
||
SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
|
||
|
||
SOC_DOUBLE_TLV("Headphone Playback Volume",
|
||
SGTL5000_CHIP_ANA_HP_CTRL,
|
||
0, 8,
|
||
0x7f, 1,
|
||
headphone_volume),
|
||
SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
|
||
4, 1, 1),
|
||
SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
|
||
5, 1, 0),
|
||
|
||
SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
|
||
0, 3, 0, mic_gain_tlv),
|
||
|
||
SOC_DOUBLE_TLV("Lineout Playback Volume",
|
||
SGTL5000_CHIP_LINE_OUT_VOL,
|
||
SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
|
||
SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
|
||
0x1f, 1,
|
||
lineout_volume),
|
||
SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
|
||
|
||
SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
|
||
0, 0xffff, 0, dap_volume),
|
||
|
||
SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
|
||
0, 0xffff, 0, dap_volume),
|
||
/* Automatic Volume Control (DAP AVC) */
|
||
SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
|
||
SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
|
||
SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
|
||
avc_max_gain),
|
||
SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
|
||
SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
|
||
0, 96, 0, avc_get_threshold, avc_put_threshold,
|
||
avc_threshold),
|
||
|
||
SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
|
||
0, 0x5F, 0, bass_band),
|
||
|
||
SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
|
||
0, 0x5F, 0, bass_band),
|
||
|
||
SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
|
||
0, 0x5F, 0, bass_band),
|
||
|
||
SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
|
||
0, 0x5F, 0, bass_band),
|
||
|
||
SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
|
||
0, 0x5F, 0, bass_band),
|
||
};
|
||
|
||
/* mute the codec used by alsa core */
|
||
static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
|
||
{
|
||
struct snd_soc_component *component = codec_dai->component;
|
||
u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
|
||
|
||
/*
|
||
* During 'digital mute' do not mute DAC
|
||
* because LINE_IN would be muted aswell. We want to mute
|
||
* only I2S block - this can be done by powering it off
|
||
*/
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
|
||
i2s_pwr, mute ? 0 : i2s_pwr);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* set codec format */
|
||
static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
|
||
{
|
||
struct snd_soc_component *component = codec_dai->component;
|
||
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
|
||
u16 i2sctl = 0;
|
||
|
||
sgtl5000->master = 0;
|
||
/*
|
||
* i2s clock and frame master setting.
|
||
* ONLY support:
|
||
* - clock and frame slave,
|
||
* - clock and frame master
|
||
*/
|
||
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
|
||
case SND_SOC_DAIFMT_CBS_CFS:
|
||
break;
|
||
case SND_SOC_DAIFMT_CBM_CFM:
|
||
i2sctl |= SGTL5000_I2S_MASTER;
|
||
sgtl5000->master = 1;
|
||
break;
|
||
default:
|
||
return -EINVAL;
|
||
}
|
||
|
||
/* setting i2s data format */
|
||
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
|
||
case SND_SOC_DAIFMT_DSP_A:
|
||
i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
|
||
break;
|
||
case SND_SOC_DAIFMT_DSP_B:
|
||
i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
|
||
i2sctl |= SGTL5000_I2S_LRALIGN;
|
||
break;
|
||
case SND_SOC_DAIFMT_I2S:
|
||
i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
|
||
break;
|
||
case SND_SOC_DAIFMT_RIGHT_J:
|
||
i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
|
||
i2sctl |= SGTL5000_I2S_LRPOL;
|
||
break;
|
||
case SND_SOC_DAIFMT_LEFT_J:
|
||
i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
|
||
i2sctl |= SGTL5000_I2S_LRALIGN;
|
||
break;
|
||
default:
|
||
return -EINVAL;
|
||
}
|
||
|
||
sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
|
||
|
||
/* Clock inversion */
|
||
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
|
||
case SND_SOC_DAIFMT_NB_NF:
|
||
break;
|
||
case SND_SOC_DAIFMT_IB_NF:
|
||
i2sctl |= SGTL5000_I2S_SCLK_INV;
|
||
break;
|
||
default:
|
||
return -EINVAL;
|
||
}
|
||
|
||
snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* set codec sysclk */
|
||
static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
|
||
int clk_id, unsigned int freq, int dir)
|
||
{
|
||
struct snd_soc_component *component = codec_dai->component;
|
||
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
|
||
|
||
switch (clk_id) {
|
||
case SGTL5000_SYSCLK:
|
||
sgtl5000->sysclk = freq;
|
||
break;
|
||
default:
|
||
return -EINVAL;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* set clock according to i2s frame clock,
|
||
* sgtl5000 provides 2 clock sources:
|
||
* 1. sys_mclk: sample freq can only be configured to
|
||
* 1/256, 1/384, 1/512 of sys_mclk.
|
||
* 2. pll: can derive any audio clocks.
|
||
*
|
||
* clock setting rules:
|
||
* 1. in slave mode, only sys_mclk can be used
|
||
* 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
|
||
* and above.
|
||
* 3. usage of sys_mclk is preferred over pll to save power.
|
||
*/
|
||
static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
|
||
{
|
||
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
|
||
int clk_ctl = 0;
|
||
int sys_fs; /* sample freq */
|
||
|
||
/*
|
||
* sample freq should be divided by frame clock,
|
||
* if frame clock is lower than 44.1 kHz, sample freq should be set to
|
||
* 32 kHz or 44.1 kHz.
|
||
*/
|
||
switch (frame_rate) {
|
||
case 8000:
|
||
case 16000:
|
||
sys_fs = 32000;
|
||
break;
|
||
case 11025:
|
||
case 22050:
|
||
sys_fs = 44100;
|
||
break;
|
||
default:
|
||
sys_fs = frame_rate;
|
||
break;
|
||
}
|
||
|
||
/* set divided factor of frame clock */
|
||
switch (sys_fs / frame_rate) {
|
||
case 4:
|
||
clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
|
||
break;
|
||
case 2:
|
||
clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
|
||
break;
|
||
case 1:
|
||
clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
|
||
break;
|
||
default:
|
||
return -EINVAL;
|
||
}
|
||
|
||
/* set the sys_fs according to frame rate */
|
||
switch (sys_fs) {
|
||
case 32000:
|
||
clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
|
||
break;
|
||
case 44100:
|
||
clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
|
||
break;
|
||
case 48000:
|
||
clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
|
||
break;
|
||
case 96000:
|
||
clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
|
||
break;
|
||
default:
|
||
dev_err(component->dev, "frame rate %d not supported\n",
|
||
frame_rate);
|
||
return -EINVAL;
|
||
}
|
||
|
||
/*
|
||
* calculate the divider of mclk/sample_freq,
|
||
* factor of freq = 96 kHz can only be 256, since mclk is in the range
|
||
* of 8 MHz - 27 MHz
|
||
*/
|
||
switch (sgtl5000->sysclk / frame_rate) {
|
||
case 256:
|
||
clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
|
||
SGTL5000_MCLK_FREQ_SHIFT;
|
||
break;
|
||
case 384:
|
||
clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
|
||
SGTL5000_MCLK_FREQ_SHIFT;
|
||
break;
|
||
case 512:
|
||
clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
|
||
SGTL5000_MCLK_FREQ_SHIFT;
|
||
break;
|
||
default:
|
||
/* if mclk does not satisfy the divider, use pll */
|
||
if (sgtl5000->master) {
|
||
clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
|
||
SGTL5000_MCLK_FREQ_SHIFT;
|
||
} else {
|
||
dev_err(component->dev,
|
||
"PLL not supported in slave mode\n");
|
||
dev_err(component->dev, "%d ratio is not supported. "
|
||
"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
|
||
sgtl5000->sysclk / frame_rate);
|
||
return -EINVAL;
|
||
}
|
||
}
|
||
|
||
/* if using pll, please check manual 6.4.2 for detail */
|
||
if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
|
||
u64 out, t;
|
||
int div2;
|
||
int pll_ctl;
|
||
unsigned int in, int_div, frac_div;
|
||
|
||
if (sgtl5000->sysclk > 17000000) {
|
||
div2 = 1;
|
||
in = sgtl5000->sysclk / 2;
|
||
} else {
|
||
div2 = 0;
|
||
in = sgtl5000->sysclk;
|
||
}
|
||
if (sys_fs == 44100)
|
||
out = 180633600;
|
||
else
|
||
out = 196608000;
|
||
t = do_div(out, in);
|
||
int_div = out;
|
||
t *= 2048;
|
||
do_div(t, in);
|
||
frac_div = t;
|
||
pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
|
||
frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
|
||
|
||
snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
|
||
if (div2)
|
||
snd_soc_component_update_bits(component,
|
||
SGTL5000_CHIP_CLK_TOP_CTRL,
|
||
SGTL5000_INPUT_FREQ_DIV2,
|
||
SGTL5000_INPUT_FREQ_DIV2);
|
||
else
|
||
snd_soc_component_update_bits(component,
|
||
SGTL5000_CHIP_CLK_TOP_CTRL,
|
||
SGTL5000_INPUT_FREQ_DIV2,
|
||
0);
|
||
|
||
/* power up pll */
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
|
||
SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
|
||
SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
|
||
|
||
/* if using pll, clk_ctrl must be set after pll power up */
|
||
snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
|
||
} else {
|
||
/* otherwise, clk_ctrl must be set before pll power down */
|
||
snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
|
||
|
||
/* power down pll */
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
|
||
SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
|
||
0);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Set PCM DAI bit size and sample rate.
|
||
* input: params_rate, params_fmt
|
||
*/
|
||
static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
|
||
struct snd_pcm_hw_params *params,
|
||
struct snd_soc_dai *dai)
|
||
{
|
||
struct snd_soc_component *component = dai->component;
|
||
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
|
||
int channels = params_channels(params);
|
||
int i2s_ctl = 0;
|
||
int stereo;
|
||
int ret;
|
||
|
||
/* sysclk should already set */
|
||
if (!sgtl5000->sysclk) {
|
||
dev_err(component->dev, "%s: set sysclk first!\n", __func__);
|
||
return -EFAULT;
|
||
}
|
||
|
||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||
stereo = SGTL5000_DAC_STEREO;
|
||
else
|
||
stereo = SGTL5000_ADC_STEREO;
|
||
|
||
/* set mono to save power */
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
|
||
channels == 1 ? 0 : stereo);
|
||
|
||
/* set codec clock base on lrclk */
|
||
ret = sgtl5000_set_clock(component, params_rate(params));
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* set i2s data format */
|
||
switch (params_width(params)) {
|
||
case 16:
|
||
if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
|
||
return -EINVAL;
|
||
i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
|
||
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
|
||
SGTL5000_I2S_SCLKFREQ_SHIFT;
|
||
break;
|
||
case 20:
|
||
i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
|
||
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
|
||
SGTL5000_I2S_SCLKFREQ_SHIFT;
|
||
break;
|
||
case 24:
|
||
i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
|
||
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
|
||
SGTL5000_I2S_SCLKFREQ_SHIFT;
|
||
break;
|
||
case 32:
|
||
if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
|
||
return -EINVAL;
|
||
i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
|
||
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
|
||
SGTL5000_I2S_SCLKFREQ_SHIFT;
|
||
break;
|
||
default:
|
||
return -EINVAL;
|
||
}
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
|
||
SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
|
||
i2s_ctl);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* set dac bias
|
||
* common state changes:
|
||
* startup:
|
||
* off --> standby --> prepare --> on
|
||
* standby --> prepare --> on
|
||
*
|
||
* stop:
|
||
* on --> prepare --> standby
|
||
*/
|
||
static int sgtl5000_set_bias_level(struct snd_soc_component *component,
|
||
enum snd_soc_bias_level level)
|
||
{
|
||
struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
|
||
int ret;
|
||
|
||
switch (level) {
|
||
case SND_SOC_BIAS_ON:
|
||
case SND_SOC_BIAS_PREPARE:
|
||
case SND_SOC_BIAS_STANDBY:
|
||
regcache_cache_only(sgtl->regmap, false);
|
||
ret = regcache_sync(sgtl->regmap);
|
||
if (ret) {
|
||
regcache_cache_only(sgtl->regmap, true);
|
||
return ret;
|
||
}
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
|
||
SGTL5000_REFTOP_POWERUP,
|
||
SGTL5000_REFTOP_POWERUP);
|
||
break;
|
||
case SND_SOC_BIAS_OFF:
|
||
regcache_cache_only(sgtl->regmap, true);
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
|
||
SGTL5000_REFTOP_POWERUP, 0);
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
|
||
SNDRV_PCM_FMTBIT_S20_3LE |\
|
||
SNDRV_PCM_FMTBIT_S24_LE |\
|
||
SNDRV_PCM_FMTBIT_S32_LE)
|
||
|
||
static const struct snd_soc_dai_ops sgtl5000_ops = {
|
||
.hw_params = sgtl5000_pcm_hw_params,
|
||
.digital_mute = sgtl5000_digital_mute,
|
||
.set_fmt = sgtl5000_set_dai_fmt,
|
||
.set_sysclk = sgtl5000_set_dai_sysclk,
|
||
};
|
||
|
||
static struct snd_soc_dai_driver sgtl5000_dai = {
|
||
.name = "sgtl5000",
|
||
.playback = {
|
||
.stream_name = "Playback",
|
||
.channels_min = 1,
|
||
.channels_max = 2,
|
||
/*
|
||
* only support 8~48K + 96K,
|
||
* TODO modify hw_param to support more
|
||
*/
|
||
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
|
||
.formats = SGTL5000_FORMATS,
|
||
},
|
||
.capture = {
|
||
.stream_name = "Capture",
|
||
.channels_min = 1,
|
||
.channels_max = 2,
|
||
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
|
||
.formats = SGTL5000_FORMATS,
|
||
},
|
||
.ops = &sgtl5000_ops,
|
||
.symmetric_rates = 1,
|
||
};
|
||
|
||
static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
|
||
{
|
||
switch (reg) {
|
||
case SGTL5000_CHIP_ID:
|
||
case SGTL5000_CHIP_ADCDAC_CTRL:
|
||
case SGTL5000_CHIP_ANA_STATUS:
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool sgtl5000_readable(struct device *dev, unsigned int reg)
|
||
{
|
||
switch (reg) {
|
||
case SGTL5000_CHIP_ID:
|
||
case SGTL5000_CHIP_DIG_POWER:
|
||
case SGTL5000_CHIP_CLK_CTRL:
|
||
case SGTL5000_CHIP_I2S_CTRL:
|
||
case SGTL5000_CHIP_SSS_CTRL:
|
||
case SGTL5000_CHIP_ADCDAC_CTRL:
|
||
case SGTL5000_CHIP_DAC_VOL:
|
||
case SGTL5000_CHIP_PAD_STRENGTH:
|
||
case SGTL5000_CHIP_ANA_ADC_CTRL:
|
||
case SGTL5000_CHIP_ANA_HP_CTRL:
|
||
case SGTL5000_CHIP_ANA_CTRL:
|
||
case SGTL5000_CHIP_LINREG_CTRL:
|
||
case SGTL5000_CHIP_REF_CTRL:
|
||
case SGTL5000_CHIP_MIC_CTRL:
|
||
case SGTL5000_CHIP_LINE_OUT_CTRL:
|
||
case SGTL5000_CHIP_LINE_OUT_VOL:
|
||
case SGTL5000_CHIP_ANA_POWER:
|
||
case SGTL5000_CHIP_PLL_CTRL:
|
||
case SGTL5000_CHIP_CLK_TOP_CTRL:
|
||
case SGTL5000_CHIP_ANA_STATUS:
|
||
case SGTL5000_CHIP_SHORT_CTRL:
|
||
case SGTL5000_CHIP_ANA_TEST2:
|
||
case SGTL5000_DAP_CTRL:
|
||
case SGTL5000_DAP_PEQ:
|
||
case SGTL5000_DAP_BASS_ENHANCE:
|
||
case SGTL5000_DAP_BASS_ENHANCE_CTRL:
|
||
case SGTL5000_DAP_AUDIO_EQ:
|
||
case SGTL5000_DAP_SURROUND:
|
||
case SGTL5000_DAP_FLT_COEF_ACCESS:
|
||
case SGTL5000_DAP_COEF_WR_B0_MSB:
|
||
case SGTL5000_DAP_COEF_WR_B0_LSB:
|
||
case SGTL5000_DAP_EQ_BASS_BAND0:
|
||
case SGTL5000_DAP_EQ_BASS_BAND1:
|
||
case SGTL5000_DAP_EQ_BASS_BAND2:
|
||
case SGTL5000_DAP_EQ_BASS_BAND3:
|
||
case SGTL5000_DAP_EQ_BASS_BAND4:
|
||
case SGTL5000_DAP_MAIN_CHAN:
|
||
case SGTL5000_DAP_MIX_CHAN:
|
||
case SGTL5000_DAP_AVC_CTRL:
|
||
case SGTL5000_DAP_AVC_THRESHOLD:
|
||
case SGTL5000_DAP_AVC_ATTACK:
|
||
case SGTL5000_DAP_AVC_DECAY:
|
||
case SGTL5000_DAP_COEF_WR_B1_MSB:
|
||
case SGTL5000_DAP_COEF_WR_B1_LSB:
|
||
case SGTL5000_DAP_COEF_WR_B2_MSB:
|
||
case SGTL5000_DAP_COEF_WR_B2_LSB:
|
||
case SGTL5000_DAP_COEF_WR_A1_MSB:
|
||
case SGTL5000_DAP_COEF_WR_A1_LSB:
|
||
case SGTL5000_DAP_COEF_WR_A2_MSB:
|
||
case SGTL5000_DAP_COEF_WR_A2_LSB:
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
|
||
* to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
|
||
* The calculatation was done for all possible register values which
|
||
* is the array index and the following formula: 10^((idx−15)/40) * 100
|
||
*/
|
||
static const u8 vol_quot_table[] = {
|
||
42, 45, 47, 50, 53, 56, 60, 63,
|
||
67, 71, 75, 79, 84, 89, 94, 100,
|
||
106, 112, 119, 126, 133, 141, 150, 158,
|
||
168, 178, 188, 200, 211, 224, 237, 251
|
||
};
|
||
|
||
/*
|
||
* sgtl5000 has 3 internal power supplies:
|
||
* 1. VAG, normally set to vdda/2
|
||
* 2. charge pump, set to different value
|
||
* according to voltage of vdda and vddio
|
||
* 3. line out VAG, normally set to vddio/2
|
||
*
|
||
* and should be set according to:
|
||
* 1. vddd provided by external or not
|
||
* 2. vdda and vddio voltage value. > 3.1v or not
|
||
*/
|
||
static int sgtl5000_set_power_regs(struct snd_soc_component *component)
|
||
{
|
||
int vddd;
|
||
int vdda;
|
||
int vddio;
|
||
u16 ana_pwr;
|
||
u16 lreg_ctrl;
|
||
int vag;
|
||
int lo_vag;
|
||
int vol_quot;
|
||
int lo_vol;
|
||
size_t i;
|
||
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
|
||
|
||
vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
|
||
vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
|
||
vddd = (sgtl5000->num_supplies > VDDD)
|
||
? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
|
||
: LDO_VOLTAGE;
|
||
|
||
vdda = vdda / 1000;
|
||
vddio = vddio / 1000;
|
||
vddd = vddd / 1000;
|
||
|
||
if (vdda <= 0 || vddio <= 0 || vddd < 0) {
|
||
dev_err(component->dev, "regulator voltage not set correctly\n");
|
||
|
||
return -EINVAL;
|
||
}
|
||
|
||
/* according to datasheet, maximum voltage of supplies */
|
||
if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
|
||
dev_err(component->dev,
|
||
"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
|
||
vdda, vddio, vddd);
|
||
|
||
return -EINVAL;
|
||
}
|
||
|
||
/* reset value */
|
||
ana_pwr = snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER);
|
||
ana_pwr |= SGTL5000_DAC_STEREO |
|
||
SGTL5000_ADC_STEREO |
|
||
SGTL5000_REFTOP_POWERUP;
|
||
lreg_ctrl = snd_soc_component_read32(component, SGTL5000_CHIP_LINREG_CTRL);
|
||
|
||
if (vddio < 3100 && vdda < 3100) {
|
||
/* enable internal oscillator used for charge pump */
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
|
||
SGTL5000_INT_OSC_EN,
|
||
SGTL5000_INT_OSC_EN);
|
||
/* Enable VDDC charge pump */
|
||
ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
|
||
} else {
|
||
ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
|
||
/*
|
||
* if vddio == vdda the source of charge pump should be
|
||
* assigned manually to VDDIO
|
||
*/
|
||
if (vddio == vdda) {
|
||
lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
|
||
lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
|
||
SGTL5000_VDDC_MAN_ASSN_SHIFT;
|
||
}
|
||
}
|
||
|
||
snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
|
||
|
||
snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
|
||
|
||
/*
|
||
* set ADC/DAC VAG to vdda / 2,
|
||
* should stay in range (0.8v, 1.575v)
|
||
*/
|
||
vag = vdda / 2;
|
||
if (vag <= SGTL5000_ANA_GND_BASE)
|
||
vag = 0;
|
||
else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
|
||
(SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
|
||
vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
|
||
else
|
||
vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
|
||
SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
|
||
|
||
/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
|
||
lo_vag = vddio / 2;
|
||
if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
|
||
lo_vag = 0;
|
||
else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
|
||
SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
|
||
lo_vag = SGTL5000_LINE_OUT_GND_MAX;
|
||
else
|
||
lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
|
||
SGTL5000_LINE_OUT_GND_STP;
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
|
||
SGTL5000_LINE_OUT_CURRENT_MASK |
|
||
SGTL5000_LINE_OUT_GND_MASK,
|
||
lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
|
||
SGTL5000_LINE_OUT_CURRENT_360u <<
|
||
SGTL5000_LINE_OUT_CURRENT_SHIFT);
|
||
|
||
/*
|
||
* Set lineout output level in range (0..31)
|
||
* the same value is used for right and left channel
|
||
*
|
||
* Searching for a suitable index solving this formula:
|
||
* idx = 40 * log10(vag_val / lo_cagcntrl) + 15
|
||
*/
|
||
vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
|
||
lo_vol = 0;
|
||
for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
|
||
if (vol_quot >= vol_quot_table[i])
|
||
lo_vol = i;
|
||
else
|
||
break;
|
||
}
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
|
||
SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
|
||
SGTL5000_LINE_OUT_VOL_LEFT_MASK,
|
||
lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
|
||
lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int sgtl5000_enable_regulators(struct i2c_client *client)
|
||
{
|
||
int ret;
|
||
int i;
|
||
int external_vddd = 0;
|
||
struct regulator *vddd;
|
||
struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
|
||
|
||
for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
|
||
sgtl5000->supplies[i].supply = supply_names[i];
|
||
|
||
vddd = regulator_get_optional(&client->dev, "VDDD");
|
||
if (IS_ERR(vddd)) {
|
||
/* See if it's just not registered yet */
|
||
if (PTR_ERR(vddd) == -EPROBE_DEFER)
|
||
return -EPROBE_DEFER;
|
||
} else {
|
||
external_vddd = 1;
|
||
regulator_put(vddd);
|
||
}
|
||
|
||
sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
|
||
- 1 + external_vddd;
|
||
ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
|
||
sgtl5000->supplies);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ret = regulator_bulk_enable(sgtl5000->num_supplies,
|
||
sgtl5000->supplies);
|
||
if (!ret)
|
||
usleep_range(10, 20);
|
||
else
|
||
regulator_bulk_free(sgtl5000->num_supplies,
|
||
sgtl5000->supplies);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int sgtl5000_probe(struct snd_soc_component *component)
|
||
{
|
||
int ret;
|
||
u16 reg;
|
||
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
|
||
unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
|
||
|
||
/* power up sgtl5000 */
|
||
ret = sgtl5000_set_power_regs(component);
|
||
if (ret)
|
||
goto err;
|
||
|
||
/* enable small pop, introduce 400ms delay in turning off */
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
|
||
SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
|
||
|
||
/* disable short cut detector */
|
||
snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
|
||
|
||
snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
|
||
SGTL5000_ADC_EN | SGTL5000_DAC_EN);
|
||
|
||
/* enable dac volume ramp by default */
|
||
snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
|
||
SGTL5000_DAC_VOL_RAMP_EN |
|
||
SGTL5000_DAC_MUTE_RIGHT |
|
||
SGTL5000_DAC_MUTE_LEFT);
|
||
|
||
reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
|
||
(sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
|
||
0x1f);
|
||
snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
|
||
zcd_mask, zcd_mask);
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
|
||
SGTL5000_BIAS_R_MASK,
|
||
sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
|
||
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
|
||
SGTL5000_BIAS_VOLT_MASK,
|
||
sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
|
||
/*
|
||
* enable DAP Graphic EQ
|
||
* TODO:
|
||
* Add control for changing between PEQ/Tone Control/GEQ
|
||
*/
|
||
snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
|
||
|
||
/* Unmute DAC after start */
|
||
snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
|
||
SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
|
||
|
||
return 0;
|
||
|
||
err:
|
||
return ret;
|
||
}
|
||
|
||
static const struct snd_soc_component_driver sgtl5000_driver = {
|
||
.probe = sgtl5000_probe,
|
||
.set_bias_level = sgtl5000_set_bias_level,
|
||
.controls = sgtl5000_snd_controls,
|
||
.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
|
||
.dapm_widgets = sgtl5000_dapm_widgets,
|
||
.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
|
||
.dapm_routes = sgtl5000_dapm_routes,
|
||
.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
|
||
.suspend_bias_off = 1,
|
||
.idle_bias_on = 1,
|
||
.use_pmdown_time = 1,
|
||
.endianness = 1,
|
||
.non_legacy_dai_naming = 1,
|
||
};
|
||
|
||
static const struct regmap_config sgtl5000_regmap = {
|
||
.reg_bits = 16,
|
||
.val_bits = 16,
|
||
.reg_stride = 2,
|
||
|
||
.max_register = SGTL5000_MAX_REG_OFFSET,
|
||
.volatile_reg = sgtl5000_volatile,
|
||
.readable_reg = sgtl5000_readable,
|
||
|
||
.cache_type = REGCACHE_RBTREE,
|
||
.reg_defaults = sgtl5000_reg_defaults,
|
||
.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
|
||
};
|
||
|
||
/*
|
||
* Write all the default values from sgtl5000_reg_defaults[] array into the
|
||
* sgtl5000 registers, to make sure we always start with the sane registers
|
||
* values as stated in the datasheet.
|
||
*
|
||
* Since sgtl5000 does not have a reset line, nor a reset command in software,
|
||
* we follow this approach to guarantee we always start from the default values
|
||
* and avoid problems like, not being able to probe after an audio playback
|
||
* followed by a system reset or a 'reboot' command in Linux
|
||
*/
|
||
static void sgtl5000_fill_defaults(struct i2c_client *client)
|
||
{
|
||
struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
|
||
int i, ret, val, index;
|
||
|
||
for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
|
||
val = sgtl5000_reg_defaults[i].def;
|
||
index = sgtl5000_reg_defaults[i].reg;
|
||
ret = regmap_write(sgtl5000->regmap, index, val);
|
||
if (ret)
|
||
dev_err(&client->dev,
|
||
"%s: error %d setting reg 0x%02x to 0x%04x\n",
|
||
__func__, ret, index, val);
|
||
}
|
||
}
|
||
|
||
static int sgtl5000_i2c_probe(struct i2c_client *client,
|
||
const struct i2c_device_id *id)
|
||
{
|
||
struct sgtl5000_priv *sgtl5000;
|
||
int ret, reg, rev;
|
||
struct device_node *np = client->dev.of_node;
|
||
u32 value;
|
||
u16 ana_pwr;
|
||
|
||
sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
|
||
if (!sgtl5000)
|
||
return -ENOMEM;
|
||
|
||
i2c_set_clientdata(client, sgtl5000);
|
||
|
||
ret = sgtl5000_enable_regulators(client);
|
||
if (ret)
|
||
return ret;
|
||
|
||
sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
|
||
if (IS_ERR(sgtl5000->regmap)) {
|
||
ret = PTR_ERR(sgtl5000->regmap);
|
||
dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
|
||
goto disable_regs;
|
||
}
|
||
|
||
sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
|
||
if (IS_ERR(sgtl5000->mclk)) {
|
||
ret = PTR_ERR(sgtl5000->mclk);
|
||
/* Defer the probe to see if the clk will be provided later */
|
||
if (ret == -ENOENT)
|
||
ret = -EPROBE_DEFER;
|
||
|
||
if (ret != -EPROBE_DEFER)
|
||
dev_err(&client->dev, "Failed to get mclock: %d\n",
|
||
ret);
|
||
goto disable_regs;
|
||
}
|
||
|
||
ret = clk_prepare_enable(sgtl5000->mclk);
|
||
if (ret) {
|
||
dev_err(&client->dev, "Error enabling clock %d\n", ret);
|
||
goto disable_regs;
|
||
}
|
||
|
||
/* Need 8 clocks before I2C accesses */
|
||
udelay(1);
|
||
|
||
/* read chip information */
|
||
ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®);
|
||
if (ret) {
|
||
dev_err(&client->dev, "Error reading chip id %d\n", ret);
|
||
goto disable_clk;
|
||
}
|
||
|
||
if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
|
||
SGTL5000_PARTID_PART_ID) {
|
||
dev_err(&client->dev,
|
||
"Device with ID register %x is not a sgtl5000\n", reg);
|
||
ret = -ENODEV;
|
||
goto disable_clk;
|
||
}
|
||
|
||
rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
|
||
dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
|
||
sgtl5000->revision = rev;
|
||
|
||
/* reconfigure the clocks in case we're using the PLL */
|
||
ret = regmap_write(sgtl5000->regmap,
|
||
SGTL5000_CHIP_CLK_CTRL,
|
||
SGTL5000_CHIP_CLK_CTRL_DEFAULT);
|
||
if (ret)
|
||
dev_err(&client->dev,
|
||
"Error %d initializing CHIP_CLK_CTRL\n", ret);
|
||
|
||
/* Follow section 2.2.1.1 of AN3663 */
|
||
ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
|
||
if (sgtl5000->num_supplies <= VDDD) {
|
||
/* internal VDDD at 1.2V */
|
||
ret = regmap_update_bits(sgtl5000->regmap,
|
||
SGTL5000_CHIP_LINREG_CTRL,
|
||
SGTL5000_LINREG_VDDD_MASK,
|
||
LINREG_VDDD);
|
||
if (ret)
|
||
dev_err(&client->dev,
|
||
"Error %d setting LINREG_VDDD\n", ret);
|
||
|
||
ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
|
||
dev_info(&client->dev,
|
||
"Using internal LDO instead of VDDD: check ER1 erratum\n");
|
||
} else {
|
||
/* using external LDO for VDDD
|
||
* Clear startup powerup and simple powerup
|
||
* bits to save power
|
||
*/
|
||
ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
|
||
| SGTL5000_LINREG_SIMPLE_POWERUP);
|
||
dev_dbg(&client->dev, "Using external VDDD\n");
|
||
}
|
||
ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
|
||
if (ret)
|
||
dev_err(&client->dev,
|
||
"Error %d setting CHIP_ANA_POWER to %04x\n",
|
||
ret, ana_pwr);
|
||
|
||
if (np) {
|
||
if (!of_property_read_u32(np,
|
||
"micbias-resistor-k-ohms", &value)) {
|
||
switch (value) {
|
||
case SGTL5000_MICBIAS_OFF:
|
||
sgtl5000->micbias_resistor = 0;
|
||
break;
|
||
case SGTL5000_MICBIAS_2K:
|
||
sgtl5000->micbias_resistor = 1;
|
||
break;
|
||
case SGTL5000_MICBIAS_4K:
|
||
sgtl5000->micbias_resistor = 2;
|
||
break;
|
||
case SGTL5000_MICBIAS_8K:
|
||
sgtl5000->micbias_resistor = 3;
|
||
break;
|
||
default:
|
||
sgtl5000->micbias_resistor = 2;
|
||
dev_err(&client->dev,
|
||
"Unsuitable MicBias resistor\n");
|
||
}
|
||
} else {
|
||
/* default is 4Kohms */
|
||
sgtl5000->micbias_resistor = 2;
|
||
}
|
||
if (!of_property_read_u32(np,
|
||
"micbias-voltage-m-volts", &value)) {
|
||
/* 1250mV => 0 */
|
||
/* steps of 250mV */
|
||
if ((value >= 1250) && (value <= 3000))
|
||
sgtl5000->micbias_voltage = (value / 250) - 5;
|
||
else {
|
||
sgtl5000->micbias_voltage = 0;
|
||
dev_err(&client->dev,
|
||
"Unsuitable MicBias voltage\n");
|
||
}
|
||
} else {
|
||
sgtl5000->micbias_voltage = 0;
|
||
}
|
||
}
|
||
|
||
sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
|
||
if (!of_property_read_u32(np, "lrclk-strength", &value)) {
|
||
if (value > I2S_LRCLK_STRENGTH_HIGH)
|
||
value = I2S_LRCLK_STRENGTH_LOW;
|
||
sgtl5000->lrclk_strength = value;
|
||
}
|
||
|
||
sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
|
||
if (!of_property_read_u32(np, "sclk-strength", &value)) {
|
||
if (value > I2S_SCLK_STRENGTH_HIGH)
|
||
value = I2S_SCLK_STRENGTH_LOW;
|
||
sgtl5000->sclk_strength = value;
|
||
}
|
||
|
||
/* Ensure sgtl5000 will start with sane register values */
|
||
sgtl5000_fill_defaults(client);
|
||
|
||
ret = devm_snd_soc_register_component(&client->dev,
|
||
&sgtl5000_driver, &sgtl5000_dai, 1);
|
||
if (ret)
|
||
goto disable_clk;
|
||
|
||
return 0;
|
||
|
||
disable_clk:
|
||
clk_disable_unprepare(sgtl5000->mclk);
|
||
|
||
disable_regs:
|
||
regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
|
||
regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int sgtl5000_i2c_remove(struct i2c_client *client)
|
||
{
|
||
struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
|
||
|
||
clk_disable_unprepare(sgtl5000->mclk);
|
||
regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
|
||
regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct i2c_device_id sgtl5000_id[] = {
|
||
{"sgtl5000", 0},
|
||
{},
|
||
};
|
||
|
||
MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
|
||
|
||
static const struct of_device_id sgtl5000_dt_ids[] = {
|
||
{ .compatible = "fsl,sgtl5000", },
|
||
{ /* sentinel */ }
|
||
};
|
||
MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
|
||
|
||
static struct i2c_driver sgtl5000_i2c_driver = {
|
||
.driver = {
|
||
.name = "sgtl5000",
|
||
.of_match_table = sgtl5000_dt_ids,
|
||
},
|
||
.probe = sgtl5000_i2c_probe,
|
||
.remove = sgtl5000_i2c_remove,
|
||
.id_table = sgtl5000_id,
|
||
};
|
||
|
||
module_i2c_driver(sgtl5000_i2c_driver);
|
||
|
||
MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
|
||
MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
|
||
MODULE_LICENSE("GPL");
|