Matthew Mirvish 3a861560cc bcache: fix variable length array abuse in btree_iter
btree_iter is used in two ways: either allocated on the stack with a
fixed size MAX_BSETS, or from a mempool with a dynamic size based on the
specific cache set. Previously, the struct had a fixed-length array of
size MAX_BSETS which was indexed out-of-bounds for the dynamically-sized
iterators, which causes UBSAN to complain.

This patch uses the same approach as in bcachefs's sort_iter and splits
the iterator into a btree_iter with a flexible array member and a
btree_iter_stack which embeds a btree_iter as well as a fixed-length
data array.

Cc: stable@vger.kernel.org
Closes: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/2039368
Signed-off-by: Matthew Mirvish <matthew@mm12.xyz>
Signed-off-by: Coly Li <colyli@suse.de>
Link: https://lore.kernel.org/r/20240509011117.2697-3-colyli@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-05-08 19:15:01 -06:00

1199 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* bcache sysfs interfaces
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcache.h"
#include "sysfs.h"
#include "btree.h"
#include "request.h"
#include "writeback.h"
#include "features.h"
#include <linux/blkdev.h>
#include <linux/sort.h>
#include <linux/sched/clock.h>
extern bool bcache_is_reboot;
/* Default is 0 ("writethrough") */
static const char * const bch_cache_modes[] = {
"writethrough",
"writeback",
"writearound",
"none",
NULL
};
static const char * const bch_reada_cache_policies[] = {
"all",
"meta-only",
NULL
};
/* Default is 0 ("auto") */
static const char * const bch_stop_on_failure_modes[] = {
"auto",
"always",
NULL
};
static const char * const cache_replacement_policies[] = {
"lru",
"fifo",
"random",
NULL
};
static const char * const error_actions[] = {
"unregister",
"panic",
NULL
};
write_attribute(attach);
write_attribute(detach);
write_attribute(unregister);
write_attribute(stop);
write_attribute(clear_stats);
write_attribute(trigger_gc);
write_attribute(prune_cache);
write_attribute(flash_vol_create);
read_attribute(bucket_size);
read_attribute(block_size);
read_attribute(nbuckets);
read_attribute(tree_depth);
read_attribute(root_usage_percent);
read_attribute(priority_stats);
read_attribute(btree_cache_size);
read_attribute(btree_cache_max_chain);
read_attribute(cache_available_percent);
read_attribute(written);
read_attribute(btree_written);
read_attribute(metadata_written);
read_attribute(active_journal_entries);
read_attribute(backing_dev_name);
read_attribute(backing_dev_uuid);
sysfs_time_stats_attribute(btree_gc, sec, ms);
sysfs_time_stats_attribute(btree_split, sec, us);
sysfs_time_stats_attribute(btree_sort, ms, us);
sysfs_time_stats_attribute(btree_read, ms, us);
read_attribute(btree_nodes);
read_attribute(btree_used_percent);
read_attribute(average_key_size);
read_attribute(dirty_data);
read_attribute(bset_tree_stats);
read_attribute(feature_compat);
read_attribute(feature_ro_compat);
read_attribute(feature_incompat);
read_attribute(state);
read_attribute(cache_read_races);
read_attribute(reclaim);
read_attribute(reclaimed_journal_buckets);
read_attribute(flush_write);
read_attribute(writeback_keys_done);
read_attribute(writeback_keys_failed);
read_attribute(io_errors);
read_attribute(congested);
read_attribute(cutoff_writeback);
read_attribute(cutoff_writeback_sync);
rw_attribute(congested_read_threshold_us);
rw_attribute(congested_write_threshold_us);
rw_attribute(sequential_cutoff);
rw_attribute(data_csum);
rw_attribute(cache_mode);
rw_attribute(readahead_cache_policy);
rw_attribute(stop_when_cache_set_failed);
rw_attribute(writeback_metadata);
rw_attribute(writeback_running);
rw_attribute(writeback_percent);
rw_attribute(writeback_delay);
rw_attribute(writeback_rate);
rw_attribute(writeback_consider_fragment);
rw_attribute(writeback_rate_update_seconds);
rw_attribute(writeback_rate_i_term_inverse);
rw_attribute(writeback_rate_p_term_inverse);
rw_attribute(writeback_rate_fp_term_low);
rw_attribute(writeback_rate_fp_term_mid);
rw_attribute(writeback_rate_fp_term_high);
rw_attribute(writeback_rate_minimum);
read_attribute(writeback_rate_debug);
read_attribute(stripe_size);
read_attribute(partial_stripes_expensive);
rw_attribute(synchronous);
rw_attribute(journal_delay_ms);
rw_attribute(io_disable);
rw_attribute(discard);
rw_attribute(running);
rw_attribute(label);
rw_attribute(errors);
rw_attribute(io_error_limit);
rw_attribute(io_error_halflife);
rw_attribute(verify);
rw_attribute(bypass_torture_test);
rw_attribute(key_merging_disabled);
rw_attribute(gc_always_rewrite);
rw_attribute(expensive_debug_checks);
rw_attribute(cache_replacement_policy);
rw_attribute(btree_shrinker_disabled);
rw_attribute(copy_gc_enabled);
rw_attribute(idle_max_writeback_rate);
rw_attribute(gc_after_writeback);
rw_attribute(size);
static ssize_t bch_snprint_string_list(char *buf,
size_t size,
const char * const list[],
size_t selected)
{
char *out = buf;
size_t i;
for (i = 0; list[i]; i++)
out += scnprintf(out, buf + size - out,
i == selected ? "[%s] " : "%s ", list[i]);
out[-1] = '\n';
return out - buf;
}
SHOW(__bch_cached_dev)
{
struct cached_dev *dc = container_of(kobj, struct cached_dev,
disk.kobj);
char const *states[] = { "no cache", "clean", "dirty", "inconsistent" };
int wb = dc->writeback_running;
#define var(stat) (dc->stat)
if (attr == &sysfs_cache_mode)
return bch_snprint_string_list(buf, PAGE_SIZE,
bch_cache_modes,
BDEV_CACHE_MODE(&dc->sb));
if (attr == &sysfs_readahead_cache_policy)
return bch_snprint_string_list(buf, PAGE_SIZE,
bch_reada_cache_policies,
dc->cache_readahead_policy);
if (attr == &sysfs_stop_when_cache_set_failed)
return bch_snprint_string_list(buf, PAGE_SIZE,
bch_stop_on_failure_modes,
dc->stop_when_cache_set_failed);
sysfs_printf(data_csum, "%i", dc->disk.data_csum);
var_printf(verify, "%i");
var_printf(bypass_torture_test, "%i");
var_printf(writeback_metadata, "%i");
var_printf(writeback_running, "%i");
var_printf(writeback_consider_fragment, "%i");
var_print(writeback_delay);
var_print(writeback_percent);
sysfs_hprint(writeback_rate,
wb ? atomic_long_read(&dc->writeback_rate.rate) << 9 : 0);
sysfs_printf(io_errors, "%i", atomic_read(&dc->io_errors));
sysfs_printf(io_error_limit, "%i", dc->error_limit);
sysfs_printf(io_disable, "%i", dc->io_disable);
var_print(writeback_rate_update_seconds);
var_print(writeback_rate_i_term_inverse);
var_print(writeback_rate_p_term_inverse);
var_print(writeback_rate_fp_term_low);
var_print(writeback_rate_fp_term_mid);
var_print(writeback_rate_fp_term_high);
var_print(writeback_rate_minimum);
if (attr == &sysfs_writeback_rate_debug) {
char rate[20];
char dirty[20];
char target[20];
char proportional[20];
char integral[20];
char change[20];
s64 next_io;
/*
* Except for dirty and target, other values should
* be 0 if writeback is not running.
*/
bch_hprint(rate,
wb ? atomic_long_read(&dc->writeback_rate.rate) << 9
: 0);
bch_hprint(dirty, bcache_dev_sectors_dirty(&dc->disk) << 9);
bch_hprint(target, dc->writeback_rate_target << 9);
bch_hprint(proportional,
wb ? dc->writeback_rate_proportional << 9 : 0);
bch_hprint(integral,
wb ? dc->writeback_rate_integral_scaled << 9 : 0);
bch_hprint(change, wb ? dc->writeback_rate_change << 9 : 0);
next_io = wb ? div64_s64(dc->writeback_rate.next-local_clock(),
NSEC_PER_MSEC) : 0;
return sprintf(buf,
"rate:\t\t%s/sec\n"
"dirty:\t\t%s\n"
"target:\t\t%s\n"
"proportional:\t%s\n"
"integral:\t%s\n"
"change:\t\t%s/sec\n"
"next io:\t%llims\n",
rate, dirty, target, proportional,
integral, change, next_io);
}
sysfs_hprint(dirty_data,
bcache_dev_sectors_dirty(&dc->disk) << 9);
sysfs_hprint(stripe_size, ((uint64_t)dc->disk.stripe_size) << 9);
var_printf(partial_stripes_expensive, "%u");
var_hprint(sequential_cutoff);
sysfs_print(running, atomic_read(&dc->running));
sysfs_print(state, states[BDEV_STATE(&dc->sb)]);
if (attr == &sysfs_label) {
memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
buf[SB_LABEL_SIZE + 1] = '\0';
strcat(buf, "\n");
return strlen(buf);
}
if (attr == &sysfs_backing_dev_name) {
snprintf(buf, BDEVNAME_SIZE + 1, "%pg", dc->bdev);
strcat(buf, "\n");
return strlen(buf);
}
if (attr == &sysfs_backing_dev_uuid) {
/* convert binary uuid into 36-byte string plus '\0' */
snprintf(buf, 36+1, "%pU", dc->sb.uuid);
strcat(buf, "\n");
return strlen(buf);
}
#undef var
return 0;
}
SHOW_LOCKED(bch_cached_dev)
STORE(__cached_dev)
{
struct cached_dev *dc = container_of(kobj, struct cached_dev,
disk.kobj);
ssize_t v;
struct cache_set *c;
struct kobj_uevent_env *env;
/* no user space access if system is rebooting */
if (bcache_is_reboot)
return -EBUSY;
#define d_strtoul(var) sysfs_strtoul(var, dc->var)
#define d_strtoul_nonzero(var) sysfs_strtoul_clamp(var, dc->var, 1, INT_MAX)
#define d_strtoi_h(var) sysfs_hatoi(var, dc->var)
sysfs_strtoul(data_csum, dc->disk.data_csum);
d_strtoul(verify);
sysfs_strtoul_bool(bypass_torture_test, dc->bypass_torture_test);
sysfs_strtoul_bool(writeback_metadata, dc->writeback_metadata);
sysfs_strtoul_bool(writeback_running, dc->writeback_running);
sysfs_strtoul_bool(writeback_consider_fragment, dc->writeback_consider_fragment);
sysfs_strtoul_clamp(writeback_delay, dc->writeback_delay, 0, UINT_MAX);
sysfs_strtoul_clamp(writeback_percent, dc->writeback_percent,
0, bch_cutoff_writeback);
if (attr == &sysfs_writeback_rate) {
ssize_t ret;
long int v = atomic_long_read(&dc->writeback_rate.rate);
ret = strtoul_safe_clamp(buf, v, 1, INT_MAX);
if (!ret) {
atomic_long_set(&dc->writeback_rate.rate, v);
ret = size;
}
return ret;
}
sysfs_strtoul_clamp(writeback_rate_update_seconds,
dc->writeback_rate_update_seconds,
1, WRITEBACK_RATE_UPDATE_SECS_MAX);
sysfs_strtoul_clamp(writeback_rate_i_term_inverse,
dc->writeback_rate_i_term_inverse,
1, UINT_MAX);
sysfs_strtoul_clamp(writeback_rate_p_term_inverse,
dc->writeback_rate_p_term_inverse,
1, UINT_MAX);
sysfs_strtoul_clamp(writeback_rate_fp_term_low,
dc->writeback_rate_fp_term_low,
1, dc->writeback_rate_fp_term_mid - 1);
sysfs_strtoul_clamp(writeback_rate_fp_term_mid,
dc->writeback_rate_fp_term_mid,
dc->writeback_rate_fp_term_low + 1,
dc->writeback_rate_fp_term_high - 1);
sysfs_strtoul_clamp(writeback_rate_fp_term_high,
dc->writeback_rate_fp_term_high,
dc->writeback_rate_fp_term_mid + 1, UINT_MAX);
sysfs_strtoul_clamp(writeback_rate_minimum,
dc->writeback_rate_minimum,
1, UINT_MAX);
sysfs_strtoul_clamp(io_error_limit, dc->error_limit, 0, INT_MAX);
if (attr == &sysfs_io_disable) {
int v = strtoul_or_return(buf);
dc->io_disable = v ? 1 : 0;
}
sysfs_strtoul_clamp(sequential_cutoff,
dc->sequential_cutoff,
0, UINT_MAX);
if (attr == &sysfs_clear_stats)
bch_cache_accounting_clear(&dc->accounting);
if (attr == &sysfs_running &&
strtoul_or_return(buf)) {
v = bch_cached_dev_run(dc);
if (v)
return v;
}
if (attr == &sysfs_cache_mode) {
v = __sysfs_match_string(bch_cache_modes, -1, buf);
if (v < 0)
return v;
if ((unsigned int) v != BDEV_CACHE_MODE(&dc->sb)) {
SET_BDEV_CACHE_MODE(&dc->sb, v);
bch_write_bdev_super(dc, NULL);
}
}
if (attr == &sysfs_readahead_cache_policy) {
v = __sysfs_match_string(bch_reada_cache_policies, -1, buf);
if (v < 0)
return v;
if ((unsigned int) v != dc->cache_readahead_policy)
dc->cache_readahead_policy = v;
}
if (attr == &sysfs_stop_when_cache_set_failed) {
v = __sysfs_match_string(bch_stop_on_failure_modes, -1, buf);
if (v < 0)
return v;
dc->stop_when_cache_set_failed = v;
}
if (attr == &sysfs_label) {
if (size > SB_LABEL_SIZE)
return -EINVAL;
memcpy(dc->sb.label, buf, size);
if (size < SB_LABEL_SIZE)
dc->sb.label[size] = '\0';
if (size && dc->sb.label[size - 1] == '\n')
dc->sb.label[size - 1] = '\0';
bch_write_bdev_super(dc, NULL);
if (dc->disk.c) {
memcpy(dc->disk.c->uuids[dc->disk.id].label,
buf, SB_LABEL_SIZE);
bch_uuid_write(dc->disk.c);
}
env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
if (!env)
return -ENOMEM;
add_uevent_var(env, "DRIVER=bcache");
add_uevent_var(env, "CACHED_UUID=%pU", dc->sb.uuid);
add_uevent_var(env, "CACHED_LABEL=%s", buf);
kobject_uevent_env(&disk_to_dev(dc->disk.disk)->kobj,
KOBJ_CHANGE,
env->envp);
kfree(env);
}
if (attr == &sysfs_attach) {
uint8_t set_uuid[16];
if (bch_parse_uuid(buf, set_uuid) < 16)
return -EINVAL;
v = -ENOENT;
list_for_each_entry(c, &bch_cache_sets, list) {
v = bch_cached_dev_attach(dc, c, set_uuid);
if (!v)
return size;
}
if (v == -ENOENT)
pr_err("Can't attach %s: cache set not found\n", buf);
return v;
}
if (attr == &sysfs_detach && dc->disk.c)
bch_cached_dev_detach(dc);
if (attr == &sysfs_stop)
bcache_device_stop(&dc->disk);
return size;
}
STORE(bch_cached_dev)
{
struct cached_dev *dc = container_of(kobj, struct cached_dev,
disk.kobj);
/* no user space access if system is rebooting */
if (bcache_is_reboot)
return -EBUSY;
mutex_lock(&bch_register_lock);
size = __cached_dev_store(kobj, attr, buf, size);
if (attr == &sysfs_writeback_running) {
/* dc->writeback_running changed in __cached_dev_store() */
if (IS_ERR_OR_NULL(dc->writeback_thread)) {
/*
* reject setting it to 1 via sysfs if writeback
* kthread is not created yet.
*/
if (dc->writeback_running) {
dc->writeback_running = false;
pr_err("%s: failed to run non-existent writeback thread\n",
dc->disk.disk->disk_name);
}
} else
/*
* writeback kthread will check if dc->writeback_running
* is true or false.
*/
bch_writeback_queue(dc);
}
/*
* Only set BCACHE_DEV_WB_RUNNING when cached device attached to
* a cache set, otherwise it doesn't make sense.
*/
if (attr == &sysfs_writeback_percent)
if ((dc->disk.c != NULL) &&
(!test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)))
schedule_delayed_work(&dc->writeback_rate_update,
dc->writeback_rate_update_seconds * HZ);
mutex_unlock(&bch_register_lock);
return size;
}
static struct attribute *bch_cached_dev_attrs[] = {
&sysfs_attach,
&sysfs_detach,
&sysfs_stop,
#if 0
&sysfs_data_csum,
#endif
&sysfs_cache_mode,
&sysfs_readahead_cache_policy,
&sysfs_stop_when_cache_set_failed,
&sysfs_writeback_metadata,
&sysfs_writeback_running,
&sysfs_writeback_delay,
&sysfs_writeback_percent,
&sysfs_writeback_rate,
&sysfs_writeback_consider_fragment,
&sysfs_writeback_rate_update_seconds,
&sysfs_writeback_rate_i_term_inverse,
&sysfs_writeback_rate_p_term_inverse,
&sysfs_writeback_rate_fp_term_low,
&sysfs_writeback_rate_fp_term_mid,
&sysfs_writeback_rate_fp_term_high,
&sysfs_writeback_rate_minimum,
&sysfs_writeback_rate_debug,
&sysfs_io_errors,
&sysfs_io_error_limit,
&sysfs_io_disable,
&sysfs_dirty_data,
&sysfs_stripe_size,
&sysfs_partial_stripes_expensive,
&sysfs_sequential_cutoff,
&sysfs_clear_stats,
&sysfs_running,
&sysfs_state,
&sysfs_label,
#ifdef CONFIG_BCACHE_DEBUG
&sysfs_verify,
&sysfs_bypass_torture_test,
#endif
&sysfs_backing_dev_name,
&sysfs_backing_dev_uuid,
NULL
};
ATTRIBUTE_GROUPS(bch_cached_dev);
KTYPE(bch_cached_dev);
SHOW(bch_flash_dev)
{
struct bcache_device *d = container_of(kobj, struct bcache_device,
kobj);
struct uuid_entry *u = &d->c->uuids[d->id];
sysfs_printf(data_csum, "%i", d->data_csum);
sysfs_hprint(size, u->sectors << 9);
if (attr == &sysfs_label) {
memcpy(buf, u->label, SB_LABEL_SIZE);
buf[SB_LABEL_SIZE + 1] = '\0';
strcat(buf, "\n");
return strlen(buf);
}
return 0;
}
STORE(__bch_flash_dev)
{
struct bcache_device *d = container_of(kobj, struct bcache_device,
kobj);
struct uuid_entry *u = &d->c->uuids[d->id];
/* no user space access if system is rebooting */
if (bcache_is_reboot)
return -EBUSY;
sysfs_strtoul(data_csum, d->data_csum);
if (attr == &sysfs_size) {
uint64_t v;
strtoi_h_or_return(buf, v);
u->sectors = v >> 9;
bch_uuid_write(d->c);
set_capacity(d->disk, u->sectors);
}
if (attr == &sysfs_label) {
memcpy(u->label, buf, SB_LABEL_SIZE);
bch_uuid_write(d->c);
}
if (attr == &sysfs_unregister) {
set_bit(BCACHE_DEV_DETACHING, &d->flags);
bcache_device_stop(d);
}
return size;
}
STORE_LOCKED(bch_flash_dev)
static struct attribute *bch_flash_dev_attrs[] = {
&sysfs_unregister,
#if 0
&sysfs_data_csum,
#endif
&sysfs_label,
&sysfs_size,
NULL
};
ATTRIBUTE_GROUPS(bch_flash_dev);
KTYPE(bch_flash_dev);
struct bset_stats_op {
struct btree_op op;
size_t nodes;
struct bset_stats stats;
};
static int bch_btree_bset_stats(struct btree_op *b_op, struct btree *b)
{
struct bset_stats_op *op = container_of(b_op, struct bset_stats_op, op);
op->nodes++;
bch_btree_keys_stats(&b->keys, &op->stats);
return MAP_CONTINUE;
}
static int bch_bset_print_stats(struct cache_set *c, char *buf)
{
struct bset_stats_op op;
int ret;
memset(&op, 0, sizeof(op));
bch_btree_op_init(&op.op, -1);
ret = bch_btree_map_nodes(&op.op, c, &ZERO_KEY, bch_btree_bset_stats);
if (ret < 0)
return ret;
return snprintf(buf, PAGE_SIZE,
"btree nodes: %zu\n"
"written sets: %zu\n"
"unwritten sets: %zu\n"
"written key bytes: %zu\n"
"unwritten key bytes: %zu\n"
"floats: %zu\n"
"failed: %zu\n",
op.nodes,
op.stats.sets_written, op.stats.sets_unwritten,
op.stats.bytes_written, op.stats.bytes_unwritten,
op.stats.floats, op.stats.failed);
}
static unsigned int bch_root_usage(struct cache_set *c)
{
unsigned int bytes = 0;
struct bkey *k;
struct btree *b;
struct btree_iter_stack iter;
goto lock_root;
do {
rw_unlock(false, b);
lock_root:
b = c->root;
rw_lock(false, b, b->level);
} while (b != c->root);
for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
bytes += bkey_bytes(k);
rw_unlock(false, b);
return (bytes * 100) / btree_bytes(c);
}
static size_t bch_cache_size(struct cache_set *c)
{
size_t ret = 0;
struct btree *b;
mutex_lock(&c->bucket_lock);
list_for_each_entry(b, &c->btree_cache, list)
ret += 1 << (b->keys.page_order + PAGE_SHIFT);
mutex_unlock(&c->bucket_lock);
return ret;
}
static unsigned int bch_cache_max_chain(struct cache_set *c)
{
unsigned int ret = 0;
struct hlist_head *h;
mutex_lock(&c->bucket_lock);
for (h = c->bucket_hash;
h < c->bucket_hash + (1 << BUCKET_HASH_BITS);
h++) {
ret = max(ret, hlist_count_nodes(h));
}
mutex_unlock(&c->bucket_lock);
return ret;
}
static unsigned int bch_btree_used(struct cache_set *c)
{
return div64_u64(c->gc_stats.key_bytes * 100,
(c->gc_stats.nodes ?: 1) * btree_bytes(c));
}
static unsigned int bch_average_key_size(struct cache_set *c)
{
return c->gc_stats.nkeys
? div64_u64(c->gc_stats.data, c->gc_stats.nkeys)
: 0;
}
SHOW(__bch_cache_set)
{
struct cache_set *c = container_of(kobj, struct cache_set, kobj);
sysfs_print(synchronous, CACHE_SYNC(&c->cache->sb));
sysfs_print(journal_delay_ms, c->journal_delay_ms);
sysfs_hprint(bucket_size, bucket_bytes(c->cache));
sysfs_hprint(block_size, block_bytes(c->cache));
sysfs_print(tree_depth, c->root->level);
sysfs_print(root_usage_percent, bch_root_usage(c));
sysfs_hprint(btree_cache_size, bch_cache_size(c));
sysfs_print(btree_cache_max_chain, bch_cache_max_chain(c));
sysfs_print(cache_available_percent, 100 - c->gc_stats.in_use);
sysfs_print_time_stats(&c->btree_gc_time, btree_gc, sec, ms);
sysfs_print_time_stats(&c->btree_split_time, btree_split, sec, us);
sysfs_print_time_stats(&c->sort.time, btree_sort, ms, us);
sysfs_print_time_stats(&c->btree_read_time, btree_read, ms, us);
sysfs_print(btree_used_percent, bch_btree_used(c));
sysfs_print(btree_nodes, c->gc_stats.nodes);
sysfs_hprint(average_key_size, bch_average_key_size(c));
sysfs_print(cache_read_races,
atomic_long_read(&c->cache_read_races));
sysfs_print(reclaim,
atomic_long_read(&c->reclaim));
sysfs_print(reclaimed_journal_buckets,
atomic_long_read(&c->reclaimed_journal_buckets));
sysfs_print(flush_write,
atomic_long_read(&c->flush_write));
sysfs_print(writeback_keys_done,
atomic_long_read(&c->writeback_keys_done));
sysfs_print(writeback_keys_failed,
atomic_long_read(&c->writeback_keys_failed));
if (attr == &sysfs_errors)
return bch_snprint_string_list(buf, PAGE_SIZE, error_actions,
c->on_error);
/* See count_io_errors for why 88 */
sysfs_print(io_error_halflife, c->error_decay * 88);
sysfs_print(io_error_limit, c->error_limit);
sysfs_hprint(congested,
((uint64_t) bch_get_congested(c)) << 9);
sysfs_print(congested_read_threshold_us,
c->congested_read_threshold_us);
sysfs_print(congested_write_threshold_us,
c->congested_write_threshold_us);
sysfs_print(cutoff_writeback, bch_cutoff_writeback);
sysfs_print(cutoff_writeback_sync, bch_cutoff_writeback_sync);
sysfs_print(active_journal_entries, fifo_used(&c->journal.pin));
sysfs_printf(verify, "%i", c->verify);
sysfs_printf(key_merging_disabled, "%i", c->key_merging_disabled);
sysfs_printf(expensive_debug_checks,
"%i", c->expensive_debug_checks);
sysfs_printf(gc_always_rewrite, "%i", c->gc_always_rewrite);
sysfs_printf(btree_shrinker_disabled, "%i", c->shrinker_disabled);
sysfs_printf(copy_gc_enabled, "%i", c->copy_gc_enabled);
sysfs_printf(idle_max_writeback_rate, "%i",
c->idle_max_writeback_rate_enabled);
sysfs_printf(gc_after_writeback, "%i", c->gc_after_writeback);
sysfs_printf(io_disable, "%i",
test_bit(CACHE_SET_IO_DISABLE, &c->flags));
if (attr == &sysfs_bset_tree_stats)
return bch_bset_print_stats(c, buf);
if (attr == &sysfs_feature_compat)
return bch_print_cache_set_feature_compat(c, buf, PAGE_SIZE);
if (attr == &sysfs_feature_ro_compat)
return bch_print_cache_set_feature_ro_compat(c, buf, PAGE_SIZE);
if (attr == &sysfs_feature_incompat)
return bch_print_cache_set_feature_incompat(c, buf, PAGE_SIZE);
return 0;
}
SHOW_LOCKED(bch_cache_set)
STORE(__bch_cache_set)
{
struct cache_set *c = container_of(kobj, struct cache_set, kobj);
ssize_t v;
/* no user space access if system is rebooting */
if (bcache_is_reboot)
return -EBUSY;
if (attr == &sysfs_unregister)
bch_cache_set_unregister(c);
if (attr == &sysfs_stop)
bch_cache_set_stop(c);
if (attr == &sysfs_synchronous) {
bool sync = strtoul_or_return(buf);
if (sync != CACHE_SYNC(&c->cache->sb)) {
SET_CACHE_SYNC(&c->cache->sb, sync);
bcache_write_super(c);
}
}
if (attr == &sysfs_flash_vol_create) {
int r;
uint64_t v;
strtoi_h_or_return(buf, v);
r = bch_flash_dev_create(c, v);
if (r)
return r;
}
if (attr == &sysfs_clear_stats) {
atomic_long_set(&c->writeback_keys_done, 0);
atomic_long_set(&c->writeback_keys_failed, 0);
memset(&c->gc_stats, 0, sizeof(struct gc_stat));
bch_cache_accounting_clear(&c->accounting);
}
if (attr == &sysfs_trigger_gc)
force_wake_up_gc(c);
if (attr == &sysfs_prune_cache) {
struct shrink_control sc;
sc.gfp_mask = GFP_KERNEL;
sc.nr_to_scan = strtoul_or_return(buf);
if (c->shrink)
c->shrink->scan_objects(c->shrink, &sc);
}
sysfs_strtoul_clamp(congested_read_threshold_us,
c->congested_read_threshold_us,
0, UINT_MAX);
sysfs_strtoul_clamp(congested_write_threshold_us,
c->congested_write_threshold_us,
0, UINT_MAX);
if (attr == &sysfs_errors) {
v = __sysfs_match_string(error_actions, -1, buf);
if (v < 0)
return v;
c->on_error = v;
}
sysfs_strtoul_clamp(io_error_limit, c->error_limit, 0, UINT_MAX);
/* See count_io_errors() for why 88 */
if (attr == &sysfs_io_error_halflife) {
unsigned long v = 0;
ssize_t ret;
ret = strtoul_safe_clamp(buf, v, 0, UINT_MAX);
if (!ret) {
c->error_decay = v / 88;
return size;
}
return ret;
}
if (attr == &sysfs_io_disable) {
v = strtoul_or_return(buf);
if (v) {
if (test_and_set_bit(CACHE_SET_IO_DISABLE,
&c->flags))
pr_warn("CACHE_SET_IO_DISABLE already set\n");
} else {
if (!test_and_clear_bit(CACHE_SET_IO_DISABLE,
&c->flags))
pr_warn("CACHE_SET_IO_DISABLE already cleared\n");
}
}
sysfs_strtoul_clamp(journal_delay_ms,
c->journal_delay_ms,
0, USHRT_MAX);
sysfs_strtoul_bool(verify, c->verify);
sysfs_strtoul_bool(key_merging_disabled, c->key_merging_disabled);
sysfs_strtoul(expensive_debug_checks, c->expensive_debug_checks);
sysfs_strtoul_bool(gc_always_rewrite, c->gc_always_rewrite);
sysfs_strtoul_bool(btree_shrinker_disabled, c->shrinker_disabled);
sysfs_strtoul_bool(copy_gc_enabled, c->copy_gc_enabled);
sysfs_strtoul_bool(idle_max_writeback_rate,
c->idle_max_writeback_rate_enabled);
/*
* write gc_after_writeback here may overwrite an already set
* BCH_DO_AUTO_GC, it doesn't matter because this flag will be
* set in next chance.
*/
sysfs_strtoul_clamp(gc_after_writeback, c->gc_after_writeback, 0, 1);
return size;
}
STORE_LOCKED(bch_cache_set)
SHOW(bch_cache_set_internal)
{
struct cache_set *c = container_of(kobj, struct cache_set, internal);
return bch_cache_set_show(&c->kobj, attr, buf);
}
STORE(bch_cache_set_internal)
{
struct cache_set *c = container_of(kobj, struct cache_set, internal);
/* no user space access if system is rebooting */
if (bcache_is_reboot)
return -EBUSY;
return bch_cache_set_store(&c->kobj, attr, buf, size);
}
static void bch_cache_set_internal_release(struct kobject *k)
{
}
static struct attribute *bch_cache_set_attrs[] = {
&sysfs_unregister,
&sysfs_stop,
&sysfs_synchronous,
&sysfs_journal_delay_ms,
&sysfs_flash_vol_create,
&sysfs_bucket_size,
&sysfs_block_size,
&sysfs_tree_depth,
&sysfs_root_usage_percent,
&sysfs_btree_cache_size,
&sysfs_cache_available_percent,
&sysfs_average_key_size,
&sysfs_errors,
&sysfs_io_error_limit,
&sysfs_io_error_halflife,
&sysfs_congested,
&sysfs_congested_read_threshold_us,
&sysfs_congested_write_threshold_us,
&sysfs_clear_stats,
NULL
};
ATTRIBUTE_GROUPS(bch_cache_set);
KTYPE(bch_cache_set);
static struct attribute *bch_cache_set_internal_attrs[] = {
&sysfs_active_journal_entries,
sysfs_time_stats_attribute_list(btree_gc, sec, ms)
sysfs_time_stats_attribute_list(btree_split, sec, us)
sysfs_time_stats_attribute_list(btree_sort, ms, us)
sysfs_time_stats_attribute_list(btree_read, ms, us)
&sysfs_btree_nodes,
&sysfs_btree_used_percent,
&sysfs_btree_cache_max_chain,
&sysfs_bset_tree_stats,
&sysfs_cache_read_races,
&sysfs_reclaim,
&sysfs_reclaimed_journal_buckets,
&sysfs_flush_write,
&sysfs_writeback_keys_done,
&sysfs_writeback_keys_failed,
&sysfs_trigger_gc,
&sysfs_prune_cache,
#ifdef CONFIG_BCACHE_DEBUG
&sysfs_verify,
&sysfs_key_merging_disabled,
&sysfs_expensive_debug_checks,
#endif
&sysfs_gc_always_rewrite,
&sysfs_btree_shrinker_disabled,
&sysfs_copy_gc_enabled,
&sysfs_idle_max_writeback_rate,
&sysfs_gc_after_writeback,
&sysfs_io_disable,
&sysfs_cutoff_writeback,
&sysfs_cutoff_writeback_sync,
&sysfs_feature_compat,
&sysfs_feature_ro_compat,
&sysfs_feature_incompat,
NULL
};
ATTRIBUTE_GROUPS(bch_cache_set_internal);
KTYPE(bch_cache_set_internal);
static int __bch_cache_cmp(const void *l, const void *r)
{
cond_resched();
return *((uint16_t *)r) - *((uint16_t *)l);
}
SHOW(__bch_cache)
{
struct cache *ca = container_of(kobj, struct cache, kobj);
sysfs_hprint(bucket_size, bucket_bytes(ca));
sysfs_hprint(block_size, block_bytes(ca));
sysfs_print(nbuckets, ca->sb.nbuckets);
sysfs_print(discard, ca->discard);
sysfs_hprint(written, atomic_long_read(&ca->sectors_written) << 9);
sysfs_hprint(btree_written,
atomic_long_read(&ca->btree_sectors_written) << 9);
sysfs_hprint(metadata_written,
(atomic_long_read(&ca->meta_sectors_written) +
atomic_long_read(&ca->btree_sectors_written)) << 9);
sysfs_print(io_errors,
atomic_read(&ca->io_errors) >> IO_ERROR_SHIFT);
if (attr == &sysfs_cache_replacement_policy)
return bch_snprint_string_list(buf, PAGE_SIZE,
cache_replacement_policies,
CACHE_REPLACEMENT(&ca->sb));
if (attr == &sysfs_priority_stats) {
struct bucket *b;
size_t n = ca->sb.nbuckets, i;
size_t unused = 0, available = 0, dirty = 0, meta = 0;
uint64_t sum = 0;
/* Compute 31 quantiles */
uint16_t q[31], *p, *cached;
ssize_t ret;
cached = p = vmalloc(array_size(sizeof(uint16_t),
ca->sb.nbuckets));
if (!p)
return -ENOMEM;
mutex_lock(&ca->set->bucket_lock);
for_each_bucket(b, ca) {
if (!GC_SECTORS_USED(b))
unused++;
if (GC_MARK(b) == GC_MARK_RECLAIMABLE)
available++;
if (GC_MARK(b) == GC_MARK_DIRTY)
dirty++;
if (GC_MARK(b) == GC_MARK_METADATA)
meta++;
}
for (i = ca->sb.first_bucket; i < n; i++)
p[i] = ca->buckets[i].prio;
mutex_unlock(&ca->set->bucket_lock);
sort(p, n, sizeof(uint16_t), __bch_cache_cmp, NULL);
while (n &&
!cached[n - 1])
--n;
while (cached < p + n &&
*cached == BTREE_PRIO) {
cached++;
n--;
}
for (i = 0; i < n; i++)
sum += INITIAL_PRIO - cached[i];
if (n)
sum = div64_u64(sum, n);
for (i = 0; i < ARRAY_SIZE(q); i++)
q[i] = INITIAL_PRIO - cached[n * (i + 1) /
(ARRAY_SIZE(q) + 1)];
vfree(p);
ret = sysfs_emit(buf,
"Unused: %zu%%\n"
"Clean: %zu%%\n"
"Dirty: %zu%%\n"
"Metadata: %zu%%\n"
"Average: %llu\n"
"Sectors per Q: %zu\n"
"Quantiles: [",
unused * 100 / (size_t) ca->sb.nbuckets,
available * 100 / (size_t) ca->sb.nbuckets,
dirty * 100 / (size_t) ca->sb.nbuckets,
meta * 100 / (size_t) ca->sb.nbuckets, sum,
n * ca->sb.bucket_size / (ARRAY_SIZE(q) + 1));
for (i = 0; i < ARRAY_SIZE(q); i++)
ret += sysfs_emit_at(buf, ret, "%u ", q[i]);
ret--;
ret += sysfs_emit_at(buf, ret, "]\n");
return ret;
}
return 0;
}
SHOW_LOCKED(bch_cache)
STORE(__bch_cache)
{
struct cache *ca = container_of(kobj, struct cache, kobj);
ssize_t v;
/* no user space access if system is rebooting */
if (bcache_is_reboot)
return -EBUSY;
if (attr == &sysfs_discard) {
bool v = strtoul_or_return(buf);
if (bdev_max_discard_sectors(ca->bdev))
ca->discard = v;
if (v != CACHE_DISCARD(&ca->sb)) {
SET_CACHE_DISCARD(&ca->sb, v);
bcache_write_super(ca->set);
}
}
if (attr == &sysfs_cache_replacement_policy) {
v = __sysfs_match_string(cache_replacement_policies, -1, buf);
if (v < 0)
return v;
if ((unsigned int) v != CACHE_REPLACEMENT(&ca->sb)) {
mutex_lock(&ca->set->bucket_lock);
SET_CACHE_REPLACEMENT(&ca->sb, v);
mutex_unlock(&ca->set->bucket_lock);
bcache_write_super(ca->set);
}
}
if (attr == &sysfs_clear_stats) {
atomic_long_set(&ca->sectors_written, 0);
atomic_long_set(&ca->btree_sectors_written, 0);
atomic_long_set(&ca->meta_sectors_written, 0);
atomic_set(&ca->io_count, 0);
atomic_set(&ca->io_errors, 0);
}
return size;
}
STORE_LOCKED(bch_cache)
static struct attribute *bch_cache_attrs[] = {
&sysfs_bucket_size,
&sysfs_block_size,
&sysfs_nbuckets,
&sysfs_priority_stats,
&sysfs_discard,
&sysfs_written,
&sysfs_btree_written,
&sysfs_metadata_written,
&sysfs_io_errors,
&sysfs_clear_stats,
&sysfs_cache_replacement_policy,
NULL
};
ATTRIBUTE_GROUPS(bch_cache);
KTYPE(bch_cache);