9d67028090
Some processors, like embedded, that already have a PID register that is managed by the system. This patch separates the ACOP and PID processing into separate files so that the ACOP code can be shared. Signed-off-by: Jimi Xenidis <jimix@pobox.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
161 lines
4.8 KiB
C
161 lines
4.8 KiB
C
/*
|
|
* ICSWX and ACOP Management
|
|
*
|
|
* Copyright (C) 2011 Anton Blanchard, IBM Corp. <anton@samba.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include "icswx.h"
|
|
|
|
/*
|
|
* The processor and its L2 cache cause the icswx instruction to
|
|
* generate a COP_REQ transaction on PowerBus. The transaction has no
|
|
* address, and the processor does not perform an MMU access to
|
|
* authenticate the transaction. The command portion of the PowerBus
|
|
* COP_REQ transaction includes the LPAR_ID (LPID) and the coprocessor
|
|
* Process ID (PID), which the coprocessor compares to the authorized
|
|
* LPID and PID held in the coprocessor, to determine if the process
|
|
* is authorized to generate the transaction. The data of the COP_REQ
|
|
* transaction is 128-byte or less in size and is placed in cacheable
|
|
* memory on a 128-byte cache line boundary.
|
|
*
|
|
* The task to use a coprocessor should use use_cop() to mark the use
|
|
* of the Coprocessor Type (CT) and context switching. On a server
|
|
* class processor, the PID register is used only for coprocessor
|
|
* management + * and so a coprocessor PID is allocated before
|
|
* executing icswx + * instruction. Drop_cop() is used to free the
|
|
* coprocessor PID.
|
|
*
|
|
* Example:
|
|
* Host Fabric Interface (HFI) is a PowerPC network coprocessor.
|
|
* Each HFI have multiple windows. Each HFI window serves as a
|
|
* network device sending to and receiving from HFI network.
|
|
* HFI immediate send function uses icswx instruction. The immediate
|
|
* send function allows small (single cache-line) packets be sent
|
|
* without using the regular HFI send FIFO and doorbell, which are
|
|
* much slower than immediate send.
|
|
*
|
|
* For each task intending to use HFI immediate send, the HFI driver
|
|
* calls use_cop() to obtain a coprocessor PID for the task.
|
|
* The HFI driver then allocate a free HFI window and save the
|
|
* coprocessor PID to the HFI window to allow the task to use the
|
|
* HFI window.
|
|
*
|
|
* The HFI driver repeatedly creates immediate send packets and
|
|
* issues icswx instruction to send data through the HFI window.
|
|
* The HFI compares the coprocessor PID in the CPU PID register
|
|
* to the PID held in the HFI window to determine if the transaction
|
|
* is allowed.
|
|
*
|
|
* When the task to release the HFI window, the HFI driver calls
|
|
* drop_cop() to release the coprocessor PID.
|
|
*/
|
|
|
|
void switch_cop(struct mm_struct *next)
|
|
{
|
|
#ifdef CONFIG_ICSWX_PID
|
|
mtspr(SPRN_PID, next->context.cop_pid);
|
|
#endif
|
|
mtspr(SPRN_ACOP, next->context.acop);
|
|
}
|
|
|
|
/**
|
|
* Start using a coprocessor.
|
|
* @acop: mask of coprocessor to be used.
|
|
* @mm: The mm the coprocessor to associate with. Most likely current mm.
|
|
*
|
|
* Return a positive PID if successful. Negative errno otherwise.
|
|
* The returned PID will be fed to the coprocessor to determine if an
|
|
* icswx transaction is authenticated.
|
|
*/
|
|
int use_cop(unsigned long acop, struct mm_struct *mm)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ICSWX))
|
|
return -ENODEV;
|
|
|
|
if (!mm || !acop)
|
|
return -EINVAL;
|
|
|
|
/* The page_table_lock ensures mm_users won't change under us */
|
|
spin_lock(&mm->page_table_lock);
|
|
spin_lock(mm->context.cop_lockp);
|
|
|
|
ret = get_cop_pid(mm);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* update acop */
|
|
mm->context.acop |= acop;
|
|
|
|
sync_cop(mm);
|
|
|
|
/*
|
|
* If this is a threaded process then there might be other threads
|
|
* running. We need to send an IPI to force them to pick up any
|
|
* change in PID and ACOP.
|
|
*/
|
|
if (atomic_read(&mm->mm_users) > 1)
|
|
smp_call_function(sync_cop, mm, 1);
|
|
|
|
out:
|
|
spin_unlock(mm->context.cop_lockp);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(use_cop);
|
|
|
|
/**
|
|
* Stop using a coprocessor.
|
|
* @acop: mask of coprocessor to be stopped.
|
|
* @mm: The mm the coprocessor associated with.
|
|
*/
|
|
void drop_cop(unsigned long acop, struct mm_struct *mm)
|
|
{
|
|
int free_pid;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ICSWX))
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(!mm))
|
|
return;
|
|
|
|
/* The page_table_lock ensures mm_users won't change under us */
|
|
spin_lock(&mm->page_table_lock);
|
|
spin_lock(mm->context.cop_lockp);
|
|
|
|
mm->context.acop &= ~acop;
|
|
|
|
free_pid = disable_cop_pid(mm);
|
|
sync_cop(mm);
|
|
|
|
/*
|
|
* If this is a threaded process then there might be other threads
|
|
* running. We need to send an IPI to force them to pick up any
|
|
* change in PID and ACOP.
|
|
*/
|
|
if (atomic_read(&mm->mm_users) > 1)
|
|
smp_call_function(sync_cop, mm, 1);
|
|
|
|
if (free_pid != COP_PID_NONE)
|
|
free_cop_pid(free_pid);
|
|
|
|
spin_unlock(mm->context.cop_lockp);
|
|
spin_unlock(&mm->page_table_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(drop_cop);
|