Dan Carpenter ed54c0e33c [media] dib8000: fix small memory leak on error
kfree(state) if fe allocation fails.

Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-03-21 20:32:39 -03:00

2558 lines
82 KiB
C

/*
* Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
*
* Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include "dvb_math.h"
#include "dvb_frontend.h"
#include "dib8000.h"
#define LAYER_ALL -1
#define LAYER_A 1
#define LAYER_B 2
#define LAYER_C 3
#define FE_CALLBACK_TIME_NEVER 0xffffffff
#define MAX_NUMBER_OF_FRONTENDS 6
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB8000: "); printk(args); printk("\n"); } } while (0)
#define FE_STATUS_TUNE_FAILED 0
struct i2c_device {
struct i2c_adapter *adap;
u8 addr;
};
struct dib8000_state {
struct dib8000_config cfg;
struct i2c_device i2c;
struct dibx000_i2c_master i2c_master;
u16 wbd_ref;
u8 current_band;
u32 current_bandwidth;
struct dibx000_agc_config *current_agc;
u32 timf;
u32 timf_default;
u8 div_force_off:1;
u8 div_state:1;
u16 div_sync_wait;
u8 agc_state;
u8 differential_constellation;
u8 diversity_onoff;
s16 ber_monitored_layer;
u16 gpio_dir;
u16 gpio_val;
u16 revision;
u8 isdbt_cfg_loaded;
enum frontend_tune_state tune_state;
u32 status;
struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
};
enum dib8000_power_mode {
DIB8000M_POWER_ALL = 0,
DIB8000M_POWER_INTERFACE_ONLY,
};
static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
{
u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
{.addr = i2c->addr >> 1,.flags = 0,.buf = wb,.len = 2},
{.addr = i2c->addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
};
if (i2c_transfer(i2c->adap, msg, 2) != 2)
dprintk("i2c read error on %d", reg);
return (rb[0] << 8) | rb[1];
}
static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
{
return dib8000_i2c_read16(&state->i2c, reg);
}
static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
{
u16 rw[2];
rw[0] = dib8000_read_word(state, reg + 0);
rw[1] = dib8000_read_word(state, reg + 1);
return ((rw[0] << 16) | (rw[1]));
}
static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
{
u8 b[4] = {
(reg >> 8) & 0xff, reg & 0xff,
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg = {
.addr = i2c->addr >> 1,.flags = 0,.buf = b,.len = 4
};
return i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
{
return dib8000_i2c_write16(&state->i2c, reg, val);
}
static const s16 coeff_2k_sb_1seg_dqpsk[8] = {
(769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
(920 << 5) | 0x09
};
static const s16 coeff_2k_sb_1seg[8] = {
(692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
};
static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
(832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
(-931 << 5) | 0x0f
};
static const s16 coeff_2k_sb_3seg_0dqpsk[8] = {
(622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
(982 << 5) | 0x0c
};
static const s16 coeff_2k_sb_3seg_1dqpsk[8] = {
(699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
(-720 << 5) | 0x0d
};
static const s16 coeff_2k_sb_3seg[8] = {
(664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
(-610 << 5) | 0x0a
};
static const s16 coeff_4k_sb_1seg_dqpsk[8] = {
(-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
(-922 << 5) | 0x0d
};
static const s16 coeff_4k_sb_1seg[8] = {
(638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
(-655 << 5) | 0x0a
};
static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
(-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
(-958 << 5) | 0x13
};
static const s16 coeff_4k_sb_3seg_0dqpsk[8] = {
(-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
(-568 << 5) | 0x0f
};
static const s16 coeff_4k_sb_3seg_1dqpsk[8] = {
(-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
(-848 << 5) | 0x13
};
static const s16 coeff_4k_sb_3seg[8] = {
(612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
(-869 << 5) | 0x13
};
static const s16 coeff_8k_sb_1seg_dqpsk[8] = {
(-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
(-598 << 5) | 0x10
};
static const s16 coeff_8k_sb_1seg[8] = {
(673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
(585 << 5) | 0x0f
};
static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
(863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
(0 << 5) | 0x14
};
static const s16 coeff_8k_sb_3seg_0dqpsk[8] = {
(-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
(-877 << 5) | 0x15
};
static const s16 coeff_8k_sb_3seg_1dqpsk[8] = {
(-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
(-921 << 5) | 0x14
};
static const s16 coeff_8k_sb_3seg[8] = {
(514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
(690 << 5) | 0x14
};
static const s16 ana_fe_coeff_3seg[24] = {
81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
};
static const s16 ana_fe_coeff_1seg[24] = {
249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
};
static const s16 ana_fe_coeff_13seg[24] = {
396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
};
static u16 fft_to_mode(struct dib8000_state *state)
{
u16 mode;
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
mode = 1;
break;
case TRANSMISSION_MODE_4K:
mode = 2;
break;
default:
case TRANSMISSION_MODE_AUTO:
case TRANSMISSION_MODE_8K:
mode = 3;
break;
}
return mode;
}
static void dib8000_set_acquisition_mode(struct dib8000_state *state)
{
u16 nud = dib8000_read_word(state, 298);
nud |= (1 << 3) | (1 << 0);
dprintk("acquisition mode activated");
dib8000_write_word(state, 298, nud);
}
static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */
outreg = 0;
fifo_threshold = 1792;
smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
dprintk("-I- Setting output mode for demod %p to %d",
&state->fe[0], mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
break;
case OUTMODE_DIVERSITY:
if (state->cfg.hostbus_diversity) {
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
sram &= 0xfdff;
} else
sram |= 0x0c00;
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
smo_mode |= (3 << 1);
fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6);
break;
case OUTMODE_HIGH_Z: // disable
outreg = 0;
break;
case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6);
dib8000_set_acquisition_mode(state);
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p",
&state->fe[0]);
return -EINVAL;
}
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
dib8000_write_word(state, 299, smo_mode);
dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */
dib8000_write_word(state, 1286, outreg);
dib8000_write_word(state, 1291, sram);
return 0;
}
static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 sync_wait = dib8000_read_word(state, 273) & 0xfff0;
if (!state->differential_constellation) {
dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1
dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
} else {
dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0
dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0
}
state->diversity_onoff = onoff;
switch (onoff) {
case 0: /* only use the internal way - not the diversity input */
dib8000_write_word(state, 270, 1);
dib8000_write_word(state, 271, 0);
break;
case 1: /* both ways */
dib8000_write_word(state, 270, 6);
dib8000_write_word(state, 271, 6);
break;
case 2: /* only the diversity input */
dib8000_write_word(state, 270, 0);
dib8000_write_word(state, 271, 1);
break;
}
return 0;
}
static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
{
/* by default everything is going to be powered off */
u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3,
reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
/* now, depending on the requested mode, we power on */
switch (mode) {
/* power up everything in the demod */
case DIB8000M_POWER_ALL:
reg_774 = 0x0000;
reg_775 = 0x0000;
reg_776 = 0x0000;
reg_900 &= 0xfffc;
reg_1280 &= 0x00ff;
break;
case DIB8000M_POWER_INTERFACE_ONLY:
reg_1280 &= 0x00ff;
break;
}
dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x", reg_774, reg_775, reg_776, reg_900, reg_1280);
dib8000_write_word(state, 774, reg_774);
dib8000_write_word(state, 775, reg_775);
dib8000_write_word(state, 776, reg_776);
dib8000_write_word(state, 900, reg_900);
dib8000_write_word(state, 1280, reg_1280);
}
static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
{
int ret = 0;
u16 reg_907 = dib8000_read_word(state, 907), reg_908 = dib8000_read_word(state, 908);
switch (no) {
case DIBX000_SLOW_ADC_ON:
reg_908 |= (1 << 1) | (1 << 0);
ret |= dib8000_write_word(state, 908, reg_908);
reg_908 &= ~(1 << 1);
break;
case DIBX000_SLOW_ADC_OFF:
reg_908 |= (1 << 1) | (1 << 0);
break;
case DIBX000_ADC_ON:
reg_907 &= 0x0fff;
reg_908 &= 0x0003;
break;
case DIBX000_ADC_OFF: // leave the VBG voltage on
reg_907 |= (1 << 14) | (1 << 13) | (1 << 12);
reg_908 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
break;
case DIBX000_VBG_ENABLE:
reg_907 &= ~(1 << 15);
break;
case DIBX000_VBG_DISABLE:
reg_907 |= (1 << 15);
break;
default:
break;
}
ret |= dib8000_write_word(state, 907, reg_907);
ret |= dib8000_write_word(state, 908, reg_908);
return ret;
}
static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw)
{
struct dib8000_state *state = fe->demodulator_priv;
u32 timf;
if (bw == 0)
bw = 6000;
if (state->timf == 0) {
dprintk("using default timf");
timf = state->timf_default;
} else {
dprintk("using updated timf");
timf = state->timf;
}
dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));
return 0;
}
static int dib8000_sad_calib(struct dib8000_state *state)
{
/* internal */
dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
dib8000_write_word(state, 924, 776); // 0.625*3.3 / 4096
/* do the calibration */
dib8000_write_word(state, 923, (1 << 0));
dib8000_write_word(state, 923, (0 << 0));
msleep(1);
return 0;
}
int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
{
struct dib8000_state *state = fe->demodulator_priv;
if (value > 4095)
value = 4095;
state->wbd_ref = value;
return dib8000_write_word(state, 106, value);
}
EXPORT_SYMBOL(dib8000_set_wbd_ref);
static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
{
dprintk("ifreq: %d %x, inversion: %d", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
dib8000_write_word(state, 23, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); /* P_sec_len */
dib8000_write_word(state, 24, (u16) ((bw->internal * 1000) & 0xffff));
dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));
dib8000_write_word(state, 922, bw->sad_cfg);
}
static void dib8000_reset_pll(struct dib8000_state *state)
{
const struct dibx000_bandwidth_config *pll = state->cfg.pll;
u16 clk_cfg1;
// clk_cfg0
dib8000_write_word(state, 901, (pll->pll_prediv << 8) | (pll->pll_ratio << 0));
// clk_cfg1
clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
(pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) |
(pll->pll_range << 1) | (pll->pll_reset << 0);
dib8000_write_word(state, 902, clk_cfg1);
clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
dib8000_write_word(state, 902, clk_cfg1);
dprintk("clk_cfg1: 0x%04x", clk_cfg1); /* 0x507 1 0 1 000 0 0 11 1 */
/* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
if (state->cfg.pll->ADClkSrc == 0)
dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) |
(pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
else if (state->cfg.refclksel != 0)
dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) |
(pll->ADClkSrc << 7) | (0 << 1));
else
dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
dib8000_reset_pll_common(state, pll);
}
static int dib8000_reset_gpio(struct dib8000_state *st)
{
/* reset the GPIOs */
dib8000_write_word(st, 1029, st->cfg.gpio_dir);
dib8000_write_word(st, 1030, st->cfg.gpio_val);
/* TODO 782 is P_gpio_od */
dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);
dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
return 0;
}
static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
{
st->cfg.gpio_dir = dib8000_read_word(st, 1029);
st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */
st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */
dib8000_write_word(st, 1029, st->cfg.gpio_dir);
st->cfg.gpio_val = dib8000_read_word(st, 1030);
st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */
st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */
dib8000_write_word(st, 1030, st->cfg.gpio_val);
dprintk("gpio dir: %x: gpio val: %x", st->cfg.gpio_dir, st->cfg.gpio_val);
return 0;
}
int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
{
struct dib8000_state *state = fe->demodulator_priv;
return dib8000_cfg_gpio(state, num, dir, val);
}
EXPORT_SYMBOL(dib8000_set_gpio);
static const u16 dib8000_defaults[] = {
/* auto search configuration - lock0 by default waiting
* for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
3, 7,
0x0004,
0x0400,
0x0814,
12, 11,
0x001b,
0x7740,
0x005b,
0x8d80,
0x01c9,
0xc380,
0x0000,
0x0080,
0x0000,
0x0090,
0x0001,
0xd4c0,
/*1, 32,
0x6680 // P_corm_thres Lock algorithms configuration */
11, 80, /* set ADC level to -16 */
(1 << 13) - 825 - 117,
(1 << 13) - 837 - 117,
(1 << 13) - 811 - 117,
(1 << 13) - 766 - 117,
(1 << 13) - 737 - 117,
(1 << 13) - 693 - 117,
(1 << 13) - 648 - 117,
(1 << 13) - 619 - 117,
(1 << 13) - 575 - 117,
(1 << 13) - 531 - 117,
(1 << 13) - 501 - 117,
4, 108,
0,
0,
0,
0,
1, 175,
0x0410,
1, 179,
8192, // P_fft_nb_to_cut
6, 181,
0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
0x2800,
0x2800,
0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
0x2800,
0x2800,
2, 193,
0x0666, // P_pha3_thres
0x0000, // P_cti_use_cpe, P_cti_use_prog
2, 205,
0x200f, // P_cspu_regul, P_cspu_win_cut
0x000f, // P_des_shift_work
5, 215,
0x023d, // P_adp_regul_cnt
0x00a4, // P_adp_noise_cnt
0x00a4, // P_adp_regul_ext
0x7ff0, // P_adp_noise_ext
0x3ccc, // P_adp_fil
1, 230,
0x0000, // P_2d_byp_ti_num
1, 263,
0x800, //P_equal_thres_wgn
1, 268,
(2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
1, 270,
0x0001, // P_div_lock0_wait
1, 285,
0x0020, //p_fec_
1, 299,
0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
1, 338,
(1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
(1 << 10) |
(0 << 9) | /* P_ctrl_pre_freq_inh=0 */
(3 << 5) | /* P_ctrl_pre_freq_step=3 */
(1 << 0), /* P_pre_freq_win_len=1 */
1, 903,
(0 << 4) | 2, // P_divclksel=0 P_divbitsel=2 (was clk=3,bit=1 for MPW)
0,
};
static u16 dib8000_identify(struct i2c_device *client)
{
u16 value;
//because of glitches sometimes
value = dib8000_i2c_read16(client, 896);
if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
dprintk("wrong Vendor ID (read=0x%x)", value);
return 0;
}
value = dib8000_i2c_read16(client, 897);
if (value != 0x8000 && value != 0x8001 && value != 0x8002) {
dprintk("wrong Device ID (%x)", value);
return 0;
}
switch (value) {
case 0x8000:
dprintk("found DiB8000A");
break;
case 0x8001:
dprintk("found DiB8000B");
break;
case 0x8002:
dprintk("found DiB8000C");
break;
}
return value;
}
static int dib8000_reset(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
dib8000_write_word(state, 1287, 0x0003); /* sram lead in, rdy */
if ((state->revision = dib8000_identify(&state->i2c)) == 0)
return -EINVAL;
if (state->revision == 0x8000)
dprintk("error : dib8000 MA not supported");
dibx000_reset_i2c_master(&state->i2c_master);
dib8000_set_power_mode(state, DIB8000M_POWER_ALL);
/* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
dib8000_set_adc_state(state, DIBX000_VBG_ENABLE);
/* restart all parts */
dib8000_write_word(state, 770, 0xffff);
dib8000_write_word(state, 771, 0xffff);
dib8000_write_word(state, 772, 0xfffc);
dib8000_write_word(state, 898, 0x000c); // sad
dib8000_write_word(state, 1280, 0x004d);
dib8000_write_word(state, 1281, 0x000c);
dib8000_write_word(state, 770, 0x0000);
dib8000_write_word(state, 771, 0x0000);
dib8000_write_word(state, 772, 0x0000);
dib8000_write_word(state, 898, 0x0004); // sad
dib8000_write_word(state, 1280, 0x0000);
dib8000_write_word(state, 1281, 0x0000);
/* drives */
if (state->cfg.drives)
dib8000_write_word(state, 906, state->cfg.drives);
else {
dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.");
dib8000_write_word(state, 906, 0x2d98); // min drive SDRAM - not optimal - adjust
}
dib8000_reset_pll(state);
if (dib8000_reset_gpio(state) != 0)
dprintk("GPIO reset was not successful.");
if (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0)
dprintk("OUTPUT_MODE could not be resetted.");
state->current_agc = NULL;
// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
/* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
if (state->cfg.pll->ifreq == 0)
dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
else
dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
{
u16 l = 0, r;
const u16 *n;
n = dib8000_defaults;
l = *n++;
while (l) {
r = *n++;
do {
dib8000_write_word(state, r, *n++);
r++;
} while (--l);
l = *n++;
}
}
state->isdbt_cfg_loaded = 0;
//div_cfg override for special configs
if (state->cfg.div_cfg != 0)
dib8000_write_word(state, 903, state->cfg.div_cfg);
/* unforce divstr regardless whether i2c enumeration was done or not */
dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));
dib8000_set_bandwidth(fe, 6000);
dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib8000_sad_calib(state);
dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
dib8000_set_power_mode(state, DIB8000M_POWER_INTERFACE_ONLY);
return 0;
}
static void dib8000_restart_agc(struct dib8000_state *state)
{
// P_restart_iqc & P_restart_agc
dib8000_write_word(state, 770, 0x0a00);
dib8000_write_word(state, 770, 0x0000);
}
static int dib8000_update_lna(struct dib8000_state *state)
{
u16 dyn_gain;
if (state->cfg.update_lna) {
// read dyn_gain here (because it is demod-dependent and not tuner)
dyn_gain = dib8000_read_word(state, 390);
if (state->cfg.update_lna(state->fe[0], dyn_gain)) {
dib8000_restart_agc(state);
return 1;
}
}
return 0;
}
static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
{
struct dibx000_agc_config *agc = NULL;
int i;
if (state->current_band == band && state->current_agc != NULL)
return 0;
state->current_band = band;
for (i = 0; i < state->cfg.agc_config_count; i++)
if (state->cfg.agc[i].band_caps & band) {
agc = &state->cfg.agc[i];
break;
}
if (agc == NULL) {
dprintk("no valid AGC configuration found for band 0x%02x", band);
return -EINVAL;
}
state->current_agc = agc;
/* AGC */
dib8000_write_word(state, 76, agc->setup);
dib8000_write_word(state, 77, agc->inv_gain);
dib8000_write_word(state, 78, agc->time_stabiliz);
dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration
dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);
dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
/* AGC continued */
if (state->wbd_ref != 0)
dib8000_write_word(state, 106, state->wbd_ref);
else // use default
dib8000_write_word(state, 106, agc->wbd_ref);
dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
dib8000_write_word(state, 108, agc->agc1_max);
dib8000_write_word(state, 109, agc->agc1_min);
dib8000_write_word(state, 110, agc->agc2_max);
dib8000_write_word(state, 111, agc->agc2_min);
dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
dib8000_write_word(state, 75, agc->agc1_pt3);
dib8000_write_word(state, 923, (dib8000_read_word(state, 923) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); /*LB : 929 -> 923 */
return 0;
}
void dib8000_pwm_agc_reset(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
dib8000_set_adc_state(state, DIBX000_ADC_ON);
dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000)));
}
EXPORT_SYMBOL(dib8000_pwm_agc_reset);
static int dib8000_agc_soft_split(struct dib8000_state *state)
{
u16 agc, split_offset;
if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
return FE_CALLBACK_TIME_NEVER;
// n_agc_global
agc = dib8000_read_word(state, 390);
if (agc > state->current_agc->split.min_thres)
split_offset = state->current_agc->split.min;
else if (agc < state->current_agc->split.max_thres)
split_offset = state->current_agc->split.max;
else
split_offset = state->current_agc->split.max *
(agc - state->current_agc->split.min_thres) /
(state->current_agc->split.max_thres - state->current_agc->split.min_thres);
dprintk("AGC split_offset: %d", split_offset);
// P_agc_force_split and P_agc_split_offset
dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
return 5000;
}
static int dib8000_agc_startup(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
enum frontend_tune_state *tune_state = &state->tune_state;
int ret = 0;
switch (*tune_state) {
case CT_AGC_START:
// set power-up level: interf+analog+AGC
dib8000_set_adc_state(state, DIBX000_ADC_ON);
if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
*tune_state = CT_AGC_STOP;
state->status = FE_STATUS_TUNE_FAILED;
break;
}
ret = 70;
*tune_state = CT_AGC_STEP_0;
break;
case CT_AGC_STEP_0:
//AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(fe, 1);
dib8000_restart_agc(state);
// wait AGC rough lock time
ret = 50;
*tune_state = CT_AGC_STEP_1;
break;
case CT_AGC_STEP_1:
// wait AGC accurate lock time
ret = 70;
if (dib8000_update_lna(state))
// wait only AGC rough lock time
ret = 50;
else
*tune_state = CT_AGC_STEP_2;
break;
case CT_AGC_STEP_2:
dib8000_agc_soft_split(state);
if (state->cfg.agc_control)
state->cfg.agc_control(fe, 0);
*tune_state = CT_AGC_STOP;
break;
default:
ret = dib8000_agc_soft_split(state);
break;
}
return ret;
}
static const s32 lut_1000ln_mant[] =
{
908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
};
s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode)
{
struct dib8000_state *state = fe->demodulator_priv;
u32 ix = 0, tmp_val = 0, exp = 0, mant = 0;
s32 val;
val = dib8000_read32(state, 384);
if (mode) {
tmp_val = val;
while (tmp_val >>= 1)
exp++;
mant = (val * 1000 / (1<<exp));
ix = (u8)((mant-1000)/100); /* index of the LUT */
val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908);
val = (val*256)/1000;
}
return val;
}
EXPORT_SYMBOL(dib8000_get_adc_power);
static void dib8000_update_timf(struct dib8000_state *state)
{
u32 timf = state->timf = dib8000_read32(state, 435);
dib8000_write_word(state, 29, (u16) (timf >> 16));
dib8000_write_word(state, 30, (u16) (timf & 0xffff));
dprintk("Updated timing frequency: %d (default: %d)", state->timf, state->timf_default);
}
static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
{
u16 mode, max_constellation, seg_diff_mask = 0, nbseg_diff = 0;
u8 guard, crate, constellation, timeI;
u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
u16 i, coeff[4], P_cfr_left_edge = 0, P_cfr_right_edge = 0, seg_mask13 = 0x1fff; // All 13 segments enabled
const s16 *ncoeff = NULL, *ana_fe;
u16 tmcc_pow = 0;
u16 coff_pow = 0x2800;
u16 init_prbs = 0xfff;
u16 ana_gain = 0;
u16 adc_target_16dB[11] = {
(1 << 13) - 825 - 117,
(1 << 13) - 837 - 117,
(1 << 13) - 811 - 117,
(1 << 13) - 766 - 117,
(1 << 13) - 737 - 117,
(1 << 13) - 693 - 117,
(1 << 13) - 648 - 117,
(1 << 13) - 619 - 117,
(1 << 13) - 575 - 117,
(1 << 13) - 531 - 117,
(1 << 13) - 501 - 117
};
if (state->ber_monitored_layer != LAYER_ALL)
dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & 0x60) | state->ber_monitored_layer);
else
dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
i = dib8000_read_word(state, 26) & 1; // P_dds_invspec
dib8000_write_word(state, 26, state->fe[0]->dtv_property_cache.inversion^i);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) {
//compute new dds_freq for the seg and adjust prbs
int seg_offset =
state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx -
(state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) -
(state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2);
int clk = state->cfg.pll->internal;
u32 segtodds = ((u32) (430 << 23) / clk) << 3; // segtodds = SegBW / Fclk * pow(2,26)
int dds_offset = seg_offset * segtodds;
int new_dds, sub_channel;
if ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
dds_offset -= (int)(segtodds / 2);
if (state->cfg.pll->ifreq == 0) {
if ((state->fe[0]->dtv_property_cache.inversion ^ i) == 0) {
dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
new_dds = dds_offset;
} else
new_dds = dds_offset;
// We shift tuning frequency if the wanted segment is :
// - the segment of center frequency with an odd total number of segments
// - the segment to the left of center frequency with an even total number of segments
// - the segment to the right of center frequency with an even total number of segments
if ((state->fe[0]->dtv_property_cache.delivery_system == SYS_ISDBT)
&& (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1)
&& (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2)
&& (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx ==
((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
|| (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
&& (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx == (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2)))
|| (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
&& (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx ==
((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
)) {
new_dds -= ((u32) (850 << 22) / clk) << 4; // new_dds = 850 (freq shift in KHz) / Fclk * pow(2,26)
}
} else {
if ((state->fe[0]->dtv_property_cache.inversion ^ i) == 0)
new_dds = state->cfg.pll->ifreq - dds_offset;
else
new_dds = state->cfg.pll->ifreq + dds_offset;
}
dib8000_write_word(state, 27, (u16) ((new_dds >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (new_dds & 0xffff));
if (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2)
sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset) + 1) % 41) / 3;
else
sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset)) % 41) / 3;
sub_channel -= 6;
if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K
|| state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_4K) {
dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); //adp_pass =1
dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); //pha3_force_pha_shift = 1
} else {
dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); //adp_pass =0
dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); //pha3_force_pha_shift = 0
}
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
switch (sub_channel) {
case -6:
init_prbs = 0x0;
break; // 41, 0, 1
case -5:
init_prbs = 0x423;
break; // 02~04
case -4:
init_prbs = 0x9;
break; // 05~07
case -3:
init_prbs = 0x5C7;
break; // 08~10
case -2:
init_prbs = 0x7A6;
break; // 11~13
case -1:
init_prbs = 0x3D8;
break; // 14~16
case 0:
init_prbs = 0x527;
break; // 17~19
case 1:
init_prbs = 0x7FF;
break; // 20~22
case 2:
init_prbs = 0x79B;
break; // 23~25
case 3:
init_prbs = 0x3D6;
break; // 26~28
case 4:
init_prbs = 0x3A2;
break; // 29~31
case 5:
init_prbs = 0x53B;
break; // 32~34
case 6:
init_prbs = 0x2F4;
break; // 35~37
default:
case 7:
init_prbs = 0x213;
break; // 38~40
}
break;
case TRANSMISSION_MODE_4K:
switch (sub_channel) {
case -6:
init_prbs = 0x0;
break; // 41, 0, 1
case -5:
init_prbs = 0x208;
break; // 02~04
case -4:
init_prbs = 0xC3;
break; // 05~07
case -3:
init_prbs = 0x7B9;
break; // 08~10
case -2:
init_prbs = 0x423;
break; // 11~13
case -1:
init_prbs = 0x5C7;
break; // 14~16
case 0:
init_prbs = 0x3D8;
break; // 17~19
case 1:
init_prbs = 0x7FF;
break; // 20~22
case 2:
init_prbs = 0x3D6;
break; // 23~25
case 3:
init_prbs = 0x53B;
break; // 26~28
case 4:
init_prbs = 0x213;
break; // 29~31
case 5:
init_prbs = 0x29;
break; // 32~34
case 6:
init_prbs = 0xD0;
break; // 35~37
default:
case 7:
init_prbs = 0x48E;
break; // 38~40
}
break;
default:
case TRANSMISSION_MODE_8K:
switch (sub_channel) {
case -6:
init_prbs = 0x0;
break; // 41, 0, 1
case -5:
init_prbs = 0x740;
break; // 02~04
case -4:
init_prbs = 0x069;
break; // 05~07
case -3:
init_prbs = 0x7DD;
break; // 08~10
case -2:
init_prbs = 0x208;
break; // 11~13
case -1:
init_prbs = 0x7B9;
break; // 14~16
case 0:
init_prbs = 0x5C7;
break; // 17~19
case 1:
init_prbs = 0x7FF;
break; // 20~22
case 2:
init_prbs = 0x53B;
break; // 23~25
case 3:
init_prbs = 0x29;
break; // 26~28
case 4:
init_prbs = 0x48E;
break; // 29~31
case 5:
init_prbs = 0x4C4;
break; // 32~34
case 6:
init_prbs = 0x367;
break; // 33~37
default:
case 7:
init_prbs = 0x684;
break; // 38~40
}
break;
}
} else {
dib8000_write_word(state, 27, (u16) ((state->cfg.pll->ifreq >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (state->cfg.pll->ifreq & 0xffff));
dib8000_write_word(state, 26, (u16) ((state->cfg.pll->ifreq >> 25) & 0x0003));
}
/*P_mode == ?? */
dib8000_write_word(state, 10, (seq << 4));
// dib8000_write_word(state, 287, (dib8000_read_word(state, 287) & 0xe000) | 0x1000);
switch (state->fe[0]->dtv_property_cache.guard_interval) {
case GUARD_INTERVAL_1_32:
guard = 0;
break;
case GUARD_INTERVAL_1_16:
guard = 1;
break;
case GUARD_INTERVAL_1_8:
guard = 2;
break;
case GUARD_INTERVAL_1_4:
default:
guard = 3;
break;
}
dib8000_write_word(state, 1, (init_prbs << 2) | (guard & 0x3)); // ADDR 1
max_constellation = DQPSK;
for (i = 0; i < 3; i++) {
switch (state->fe[0]->dtv_property_cache.layer[i].modulation) {
case DQPSK:
constellation = 0;
break;
case QPSK:
constellation = 1;
break;
case QAM_16:
constellation = 2;
break;
case QAM_64:
default:
constellation = 3;
break;
}
switch (state->fe[0]->dtv_property_cache.layer[i].fec) {
case FEC_1_2:
crate = 1;
break;
case FEC_2_3:
crate = 2;
break;
case FEC_3_4:
crate = 3;
break;
case FEC_5_6:
crate = 5;
break;
case FEC_7_8:
default:
crate = 7;
break;
}
if ((state->fe[0]->dtv_property_cache.layer[i].interleaving > 0) &&
((state->fe[0]->dtv_property_cache.layer[i].interleaving <= 3) ||
(state->fe[0]->dtv_property_cache.layer[i].interleaving == 4 && state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1))
)
timeI = state->fe[0]->dtv_property_cache.layer[i].interleaving;
else
timeI = 0;
dib8000_write_word(state, 2 + i, (constellation << 10) | ((state->fe[0]->dtv_property_cache.layer[i].segment_count & 0xf) << 6) |
(crate << 3) | timeI);
if (state->fe[0]->dtv_property_cache.layer[i].segment_count > 0) {
switch (max_constellation) {
case DQPSK:
case QPSK:
if (state->fe[0]->dtv_property_cache.layer[i].modulation == QAM_16 ||
state->fe[0]->dtv_property_cache.layer[i].modulation == QAM_64)
max_constellation = state->fe[0]->dtv_property_cache.layer[i].modulation;
break;
case QAM_16:
if (state->fe[0]->dtv_property_cache.layer[i].modulation == QAM_64)
max_constellation = state->fe[0]->dtv_property_cache.layer[i].modulation;
break;
}
}
}
mode = fft_to_mode(state);
//dib8000_write_word(state, 5, 13); /*p_last_seg = 13*/
dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) |
((state->fe[0]->dtv_property_cache.isdbt_partial_reception & 1) << 5) | ((state->fe[0]->dtv_property_cache.
isdbt_sb_mode & 1) << 4));
dprintk("mode = %d ; guard = %d", mode, state->fe[0]->dtv_property_cache.guard_interval);
/* signal optimization parameter */
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception) {
seg_diff_mask = (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) << permu_seg[0];
for (i = 1; i < 3; i++)
nbseg_diff +=
(state->fe[0]->dtv_property_cache.layer[i].modulation == DQPSK) * state->fe[0]->dtv_property_cache.layer[i].segment_count;
for (i = 0; i < nbseg_diff; i++)
seg_diff_mask |= 1 << permu_seg[i + 1];
} else {
for (i = 0; i < 3; i++)
nbseg_diff +=
(state->fe[0]->dtv_property_cache.layer[i].modulation == DQPSK) * state->fe[0]->dtv_property_cache.layer[i].segment_count;
for (i = 0; i < nbseg_diff; i++)
seg_diff_mask |= 1 << permu_seg[i];
}
dprintk("nbseg_diff = %X (%d)", seg_diff_mask, seg_diff_mask);
state->differential_constellation = (seg_diff_mask != 0);
dib8000_set_diversity_in(state->fe[0], state->diversity_onoff);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1)
seg_mask13 = 0x00E0;
else // 1-segment
seg_mask13 = 0x0040;
} else
seg_mask13 = 0x1fff;
// WRITE: Mode & Diff mask
dib8000_write_word(state, 0, (mode << 13) | seg_diff_mask);
if ((seg_diff_mask) || (state->fe[0]->dtv_property_cache.isdbt_sb_mode))
dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
else
dib8000_write_word(state, 268, (2 << 9) | 39); //init value
// ---- SMALL ----
// P_small_seg_diff
dib8000_write_word(state, 352, seg_diff_mask); // ADDR 352
dib8000_write_word(state, 353, seg_mask13); // ADDR 353
/* // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */
// ---- SMALL ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_2k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_2k_sb_1seg;
} else { // 3-segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK)
ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
else // QPSK or QAM on external segments
ncoeff = coeff_2k_sb_3seg_0dqpsk;
} else { // QPSK or QAM on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK)
ncoeff = coeff_2k_sb_3seg_1dqpsk;
else // QPSK or QAM on external segments
ncoeff = coeff_2k_sb_3seg;
}
}
break;
case TRANSMISSION_MODE_4K:
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_4k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_4k_sb_1seg;
} else { // 3-segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
} else { // QPSK or QAM on external segments
ncoeff = coeff_4k_sb_3seg_0dqpsk;
}
} else { // QPSK or QAM on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_4k_sb_3seg_1dqpsk;
} else // QPSK or QAM on external segments
ncoeff = coeff_4k_sb_3seg;
}
}
break;
case TRANSMISSION_MODE_AUTO:
case TRANSMISSION_MODE_8K:
default:
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_8k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_8k_sb_1seg;
} else { // 3-segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
} else { // QPSK or QAM on external segments
ncoeff = coeff_8k_sb_3seg_0dqpsk;
}
} else { // QPSK or QAM on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_8k_sb_3seg_1dqpsk;
} else // QPSK or QAM on external segments
ncoeff = coeff_8k_sb_3seg;
}
}
break;
}
for (i = 0; i < 8; i++)
dib8000_write_word(state, 343 + i, ncoeff[i]);
}
// P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5
dib8000_write_word(state, 351,
(state->fe[0]->dtv_property_cache.isdbt_sb_mode << 9) | (state->fe[0]->dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5);
// ---- COFF ----
// Carloff, the most robust
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
// P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64
// P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1
dib8000_write_word(state, 187,
(4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~state->fe[0]->dtv_property_cache.isdbt_partial_reception & 1) << 2)
| 0x3);
/* // P_small_coef_ext_enable = 1 */
/* dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
// P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1)
if (mode == 3)
dib8000_write_word(state, 180, 0x1fcf | ((mode - 1) << 14));
else
dib8000_write_word(state, 180, 0x0fcf | ((mode - 1) << 14));
// P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1,
// P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4
dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
// P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
// P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
// P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
dib8000_write_word(state, 181, 300);
dib8000_write_word(state, 182, 150);
dib8000_write_word(state, 183, 80);
dib8000_write_word(state, 184, 300);
dib8000_write_word(state, 185, 150);
dib8000_write_word(state, 186, 80);
} else { // Sound Broadcasting mode 3 seg
// P_coff_one_seg_sym= 1, P_coff_one_seg_width= 1, P_coff_winlen=63, P_coff_thres_lock=15
/* if (mode == 3) */
/* dib8000_write_word(state, 180, 0x2fca | ((0) << 14)); */
/* else */
/* dib8000_write_word(state, 180, 0x2fca | ((1) << 14)); */
dib8000_write_word(state, 180, 0x1fcf | (1 << 14));
// P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1,
// P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4
dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
// P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
//P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
// P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
dib8000_write_word(state, 181, 350);
dib8000_write_word(state, 182, 300);
dib8000_write_word(state, 183, 250);
dib8000_write_word(state, 184, 350);
dib8000_write_word(state, 185, 300);
dib8000_write_word(state, 186, 250);
}
} else if (state->isdbt_cfg_loaded == 0) { // if not Sound Broadcasting mode : put default values for 13 segments
dib8000_write_word(state, 180, (16 << 6) | 9);
dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
coff_pow = 0x2800;
for (i = 0; i < 6; i++)
dib8000_write_word(state, 181 + i, coff_pow);
// P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1,
// P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1
dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
// P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6
dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
// P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1
dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
}
// ---- FFT ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 && state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
dib8000_write_word(state, 178, 64); // P_fft_powrange=64
else
dib8000_write_word(state, 178, 32); // P_fft_powrange=32
/* make the cpil_coff_lock more robust but slower p_coff_winlen
* 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
*/
/* if ( ( nbseg_diff>0)&&(nbseg_diff<13))
dib8000_write_word(state, 187, (dib8000_read_word(state, 187) & 0xfffb) | (1 << 3)); */
dib8000_write_word(state, 189, ~seg_mask13 | seg_diff_mask); /* P_lmod4_seg_inh */
dib8000_write_word(state, 192, ~seg_mask13 | seg_diff_mask); /* P_pha3_seg_inh */
dib8000_write_word(state, 225, ~seg_mask13 | seg_diff_mask); /* P_tac_seg_inh */
if ((!state->fe[0]->dtv_property_cache.isdbt_sb_mode) && (state->cfg.pll->ifreq == 0))
dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */
else
dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask); /* P_equal_noise_seg_inh */
dib8000_write_word(state, 287, ~seg_mask13 | 0x1000); /* P_tmcc_seg_inh */
//dib8000_write_word(state, 288, ~seg_mask13 | seg_diff_mask); /* P_tmcc_seg_eq_inh */
if (!autosearching)
dib8000_write_word(state, 288, (~seg_mask13 | seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */
else
dib8000_write_word(state, 288, 0x1fff); //disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels.
dprintk("287 = %X (%d)", ~seg_mask13 | 0x1000, ~seg_mask13 | 0x1000);
dib8000_write_word(state, 211, seg_mask13 & (~seg_diff_mask)); /* P_des_seg_enabled */
/* offset loop parameters */
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
/* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x40);
else // Sound Broadcasting mode 3 seg
/* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
dib8000_write_word(state, 32, ((10 - mode) << 12) | (6 << 8) | 0x60);
} else
// TODO in 13 seg, timf_alpha can always be the same or not ?
/* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
dib8000_write_word(state, 32, ((9 - mode) << 12) | (6 << 8) | 0x80);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
/* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (11-P_mode) */
dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (10 - mode));
else // Sound Broadcasting mode 3 seg
/* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (9 - mode));
} else
/* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (8 - mode));
/* P_dvsy_sync_wait - reuse mode */
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_8K:
mode = 256;
break;
case TRANSMISSION_MODE_4K:
mode = 128;
break;
default:
case TRANSMISSION_MODE_2K:
mode = 64;
break;
}
if (state->cfg.diversity_delay == 0)
mode = (mode * (1 << (guard)) * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
else
mode = (mode * (1 << (guard)) * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for DVSY-fifo
mode <<= 4;
dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | mode);
/* channel estimation fine configuration */
switch (max_constellation) {
case QAM_64:
ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
coeff[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
coeff[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
coeff[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
//if (!state->cfg.hostbus_diversity) //if diversity, we should prehaps use the configuration of the max_constallation -1
break;
case QAM_16:
ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
coeff[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
coeff[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
coeff[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
//if (!((state->cfg.hostbus_diversity) && (max_constellation == QAM_16)))
break;
default:
ana_gain = 0; // 0 : goes along with ADC target at -22dB to keep good mobile performance and lock at sensitivity level
coeff[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
coeff[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
coeff[2] = 0x0333; /* P_adp_regul_ext 0.1 */
coeff[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
break;
}
for (mode = 0; mode < 4; mode++)
dib8000_write_word(state, 215 + mode, coeff[mode]);
// update ana_gain depending on max constellation
dib8000_write_word(state, 116, ana_gain);
// update ADC target depending on ana_gain
if (ana_gain) { // set -16dB ADC target for ana_gain=-1
for (i = 0; i < 10; i++)
dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
} else { // set -22dB ADC target for ana_gain=0
for (i = 0; i < 10; i++)
dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
}
// ---- ANA_FE ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1)
ana_fe = ana_fe_coeff_3seg;
else // 1-segment
ana_fe = ana_fe_coeff_1seg;
} else
ana_fe = ana_fe_coeff_13seg;
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 || state->isdbt_cfg_loaded == 0)
for (mode = 0; mode < 24; mode++)
dib8000_write_word(state, 117 + mode, ana_fe[mode]);
// ---- CHAN_BLK ----
for (i = 0; i < 13; i++) {
if ((((~seg_diff_mask) >> i) & 1) == 1) {
P_cfr_left_edge += (1 << i) * ((i == 0) || ((((seg_mask13 & (~seg_diff_mask)) >> (i - 1)) & 1) == 0));
P_cfr_right_edge += (1 << i) * ((i == 12) || ((((seg_mask13 & (~seg_diff_mask)) >> (i + 1)) & 1) == 0));
}
}
dib8000_write_word(state, 222, P_cfr_left_edge); // P_cfr_left_edge
dib8000_write_word(state, 223, P_cfr_right_edge); // P_cfr_right_edge
// "P_cspu_left_edge" not used => do not care
// "P_cspu_right_edge" not used => do not care
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
dib8000_write_word(state, 228, 1); // P_2d_mode_byp=1
dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); // P_cspu_win_cut = 0
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0
&& state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K) {
//dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0
dib8000_write_word(state, 265, 15); // P_equal_noise_sel = 15
}
} else if (state->isdbt_cfg_loaded == 0) {
dib8000_write_word(state, 228, 0); // default value
dib8000_write_word(state, 265, 31); // default value
dib8000_write_word(state, 205, 0x200f); // init value
}
// ---- TMCC ----
for (i = 0; i < 3; i++)
tmcc_pow +=
(((state->fe[0]->dtv_property_cache.layer[i].modulation == DQPSK) * 4 + 1) * state->fe[0]->dtv_property_cache.layer[i].segment_count);
// Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9);
// Threshold is set at 1/4 of max power.
tmcc_pow *= (1 << (9 - 2));
dib8000_write_word(state, 290, tmcc_pow); // P_tmcc_dec_thres_2k
dib8000_write_word(state, 291, tmcc_pow); // P_tmcc_dec_thres_4k
dib8000_write_word(state, 292, tmcc_pow); // P_tmcc_dec_thres_8k
//dib8000_write_word(state, 287, (1 << 13) | 0x1000 );
// ---- PHA3 ----
if (state->isdbt_cfg_loaded == 0)
dib8000_write_word(state, 250, 3285); /*p_2d_hspeed_thr0 */
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1)
state->isdbt_cfg_loaded = 0;
else
state->isdbt_cfg_loaded = 1;
}
static int dib8000_autosearch_start(struct dvb_frontend *fe)
{
u8 factor;
u32 value;
struct dib8000_state *state = fe->demodulator_priv;
int slist = 0;
state->fe[0]->dtv_property_cache.inversion = 0;
if (!state->fe[0]->dtv_property_cache.isdbt_sb_mode)
state->fe[0]->dtv_property_cache.layer[0].segment_count = 13;
state->fe[0]->dtv_property_cache.layer[0].modulation = QAM_64;
state->fe[0]->dtv_property_cache.layer[0].fec = FEC_2_3;
state->fe[0]->dtv_property_cache.layer[0].interleaving = 0;
//choose the right list, in sb, always do everything
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) {
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
slist = 7;
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
} else {
if (state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) {
if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
slist = 7;
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1 to have autosearch start ok with mode2
} else
slist = 3;
} else {
if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
slist = 2;
dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
} else
slist = 0;
}
if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO)
state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
if (state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO)
state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
dprintk("using list for autosearch : %d", slist);
dib8000_set_channel(state, (unsigned char)slist, 1);
//dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
factor = 1;
//set lock_mask values
dib8000_write_word(state, 6, 0x4);
dib8000_write_word(state, 7, 0x8);
dib8000_write_word(state, 8, 0x1000);
//set lock_mask wait time values
value = 50 * state->cfg.pll->internal * factor;
dib8000_write_word(state, 11, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
dib8000_write_word(state, 12, (u16) (value & 0xffff)); // lock0 wait time
value = 100 * state->cfg.pll->internal * factor;
dib8000_write_word(state, 13, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
dib8000_write_word(state, 14, (u16) (value & 0xffff)); // lock1 wait time
value = 1000 * state->cfg.pll->internal * factor;
dib8000_write_word(state, 15, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
dib8000_write_word(state, 16, (u16) (value & 0xffff)); // lock2 wait time
value = dib8000_read_word(state, 0);
dib8000_write_word(state, 0, (u16) ((1 << 15) | value));
dib8000_read_word(state, 1284); // reset the INT. n_irq_pending
dib8000_write_word(state, 0, (u16) value);
}
return 0;
}
static int dib8000_autosearch_irq(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 irq_pending = dib8000_read_word(state, 1284);
if (irq_pending & 0x1) { // failed
dprintk("dib8000_autosearch_irq failed");
return 1;
}
if (irq_pending & 0x2) { // succeeded
dprintk("dib8000_autosearch_irq succeeded");
return 2;
}
return 0; // still pending
}
static int dib8000_tune(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
int ret = 0;
u16 value, mode = fft_to_mode(state);
// we are already tuned - just resuming from suspend
if (state == NULL)
return -EINVAL;
dib8000_set_bandwidth(fe, state->fe[0]->dtv_property_cache.bandwidth_hz / 1000);
dib8000_set_channel(state, 0, 0);
// restart demod
ret |= dib8000_write_word(state, 770, 0x4000);
ret |= dib8000_write_word(state, 770, 0x0000);
msleep(45);
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3 */
/* ret |= dib8000_write_word(state, 29, (0 << 9) | (4 << 5) | (0 << 4) | (3 << 0) ); workaround inh_isi stays at 1 */
// never achieved a lock before - wait for timfreq to update
if (state->timf == 0) {
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
msleep(300);
else // Sound Broadcasting mode 3 seg
msleep(500);
} else // 13 seg
msleep(200);
}
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
/* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40 alpha to check on board */
dib8000_write_word(state, 32, ((13 - mode) << 12) | (6 << 8) | 0x40);
//dib8000_write_word(state, 32, (8 << 12) | (6 << 8) | 0x80);
/* P_ctrl_sfreq_step= (12-P_mode) P_ctrl_sfreq_inh =0 P_ctrl_pha_off_max */
ret |= dib8000_write_word(state, 37, (12 - mode) | ((5 + mode) << 5));
} else { // Sound Broadcasting mode 3 seg
/* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 alpha to check on board */
dib8000_write_word(state, 32, ((12 - mode) << 12) | (6 << 8) | 0x60);
ret |= dib8000_write_word(state, 37, (11 - mode) | ((5 + mode) << 5));
}
} else { // 13 seg
/* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 alpha to check on board */
dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x80);
ret |= dib8000_write_word(state, 37, (10 - mode) | ((5 + mode) << 5));
}
// we achieved a coff_cpil_lock - it's time to update the timf
if ((dib8000_read_word(state, 568) >> 11) & 0x1)
dib8000_update_timf(state);
//now that tune is finished, lock0 should lock on fec_mpeg to output this lock on MP_LOCK. It's changed in autosearch start
dib8000_write_word(state, 6, 0x200);
if (state->revision == 0x8002) {
value = dib8000_read_word(state, 903);
dib8000_write_word(state, 903, value & ~(1 << 3));
msleep(1);
dib8000_write_word(state, 903, value | (1 << 3));
}
return ret;
}
static int dib8000_wakeup(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
int ret;
dib8000_set_power_mode(state, DIB8000M_POWER_ALL);
dib8000_set_adc_state(state, DIBX000_ADC_ON);
if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
dprintk("could not start Slow ADC");
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]);
if (ret < 0)
return ret;
}
return 0;
}
static int dib8000_sleep(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
int ret;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
if (ret < 0)
return ret;
}
dib8000_set_output_mode(fe, OUTMODE_HIGH_Z);
dib8000_set_power_mode(state, DIB8000M_POWER_INTERFACE_ONLY);
return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF);
}
enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
return state->tune_state;
}
EXPORT_SYMBOL(dib8000_get_tune_state);
int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
{
struct dib8000_state *state = fe->demodulator_priv;
state->tune_state = tune_state;
return 0;
}
EXPORT_SYMBOL(dib8000_set_tune_state);
static int dib8000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 i, val = 0;
fe_status_t stat;
u8 index_frontend, sub_index_frontend;
fe->dtv_property_cache.bandwidth_hz = 6000000;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
if (stat&FE_HAS_SYNC) {
dprintk("TMCC lock on the slave%i", index_frontend);
/* synchronize the cache with the other frontends */
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], fep);
for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
if (sub_index_frontend != index_frontend) {
state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
for (i = 0; i < 3; i++) {
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
}
}
}
return 0;
}
}
fe->dtv_property_cache.isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;
val = dib8000_read_word(state, 570);
fe->dtv_property_cache.inversion = (val & 0x40) >> 6;
switch ((val & 0x30) >> 4) {
case 1:
fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K;
break;
case 3:
default:
fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
break;
}
switch (val & 0x3) {
case 0:
fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32;
dprintk("dib8000_get_frontend GI = 1/32 ");
break;
case 1:
fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16;
dprintk("dib8000_get_frontend GI = 1/16 ");
break;
case 2:
dprintk("dib8000_get_frontend GI = 1/8 ");
fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
dprintk("dib8000_get_frontend GI = 1/4 ");
fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4;
break;
}
val = dib8000_read_word(state, 505);
fe->dtv_property_cache.isdbt_partial_reception = val & 1;
dprintk("dib8000_get_frontend : partial_reception = %d ", fe->dtv_property_cache.isdbt_partial_reception);
for (i = 0; i < 3; i++) {
val = dib8000_read_word(state, 493 + i);
fe->dtv_property_cache.layer[i].segment_count = val & 0x0F;
dprintk("dib8000_get_frontend : Layer %d segments = %d ", i, fe->dtv_property_cache.layer[i].segment_count);
val = dib8000_read_word(state, 499 + i);
fe->dtv_property_cache.layer[i].interleaving = val & 0x3;
dprintk("dib8000_get_frontend : Layer %d time_intlv = %d ", i, fe->dtv_property_cache.layer[i].interleaving);
val = dib8000_read_word(state, 481 + i);
switch (val & 0x7) {
case 1:
fe->dtv_property_cache.layer[i].fec = FEC_1_2;
dprintk("dib8000_get_frontend : Layer %d Code Rate = 1/2 ", i);
break;
case 2:
fe->dtv_property_cache.layer[i].fec = FEC_2_3;
dprintk("dib8000_get_frontend : Layer %d Code Rate = 2/3 ", i);
break;
case 3:
fe->dtv_property_cache.layer[i].fec = FEC_3_4;
dprintk("dib8000_get_frontend : Layer %d Code Rate = 3/4 ", i);
break;
case 5:
fe->dtv_property_cache.layer[i].fec = FEC_5_6;
dprintk("dib8000_get_frontend : Layer %d Code Rate = 5/6 ", i);
break;
default:
fe->dtv_property_cache.layer[i].fec = FEC_7_8;
dprintk("dib8000_get_frontend : Layer %d Code Rate = 7/8 ", i);
break;
}
val = dib8000_read_word(state, 487 + i);
switch (val & 0x3) {
case 0:
dprintk("dib8000_get_frontend : Layer %d DQPSK ", i);
fe->dtv_property_cache.layer[i].modulation = DQPSK;
break;
case 1:
fe->dtv_property_cache.layer[i].modulation = QPSK;
dprintk("dib8000_get_frontend : Layer %d QPSK ", i);
break;
case 2:
fe->dtv_property_cache.layer[i].modulation = QAM_16;
dprintk("dib8000_get_frontend : Layer %d QAM16 ", i);
break;
case 3:
default:
dprintk("dib8000_get_frontend : Layer %d QAM64 ", i);
fe->dtv_property_cache.layer[i].modulation = QAM_64;
break;
}
}
/* synchronize the cache with the other frontends */
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = fe->dtv_property_cache.isdbt_sb_mode;
state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion;
state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode;
state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval;
state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = fe->dtv_property_cache.isdbt_partial_reception;
for (i = 0; i < 3; i++) {
state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = fe->dtv_property_cache.layer[i].segment_count;
state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = fe->dtv_property_cache.layer[i].interleaving;
state->fe[index_frontend]->dtv_property_cache.layer[i].fec = fe->dtv_property_cache.layer[i].fec;
state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = fe->dtv_property_cache.layer[i].modulation;
}
}
return 0;
}
static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 nbr_pending, exit_condition, index_frontend;
s8 index_frontend_success = -1;
int time, ret;
int time_slave = FE_CALLBACK_TIME_NEVER;
if (state->fe[0]->dtv_property_cache.frequency == 0) {
dprintk("dib8000: must at least specify frequency ");
return 0;
}
if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) {
dprintk("dib8000: no bandwidth specified, set to default ");
state->fe[0]->dtv_property_cache.bandwidth_hz = 6000000;
}
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
/* synchronization of the cache */
state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT;
memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
dib8000_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z);
if (state->fe[index_frontend]->ops.tuner_ops.set_params)
state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend], fep);
dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START);
}
/* start up the AGC */
do {
time = dib8000_agc_startup(state->fe[0]);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
time_slave = dib8000_agc_startup(state->fe[index_frontend]);
if (time == FE_CALLBACK_TIME_NEVER)
time = time_slave;
else if ((time_slave != FE_CALLBACK_TIME_NEVER) && (time_slave > time))
time = time_slave;
}
if (time != FE_CALLBACK_TIME_NEVER)
msleep(time / 10);
else
break;
exit_condition = 1;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) {
exit_condition = 0;
break;
}
}
} while (exit_condition == 0);
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
if ((state->fe[0]->dtv_property_cache.delivery_system != SYS_ISDBT) ||
(state->fe[0]->dtv_property_cache.inversion == INVERSION_AUTO) ||
(state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) ||
(state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) ||
(((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 0)) != 0) &&
(state->fe[0]->dtv_property_cache.layer[0].segment_count != 0xff) &&
(state->fe[0]->dtv_property_cache.layer[0].segment_count != 0) &&
((state->fe[0]->dtv_property_cache.layer[0].modulation == QAM_AUTO) ||
(state->fe[0]->dtv_property_cache.layer[0].fec == FEC_AUTO))) ||
(((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 1)) != 0) &&
(state->fe[0]->dtv_property_cache.layer[1].segment_count != 0xff) &&
(state->fe[0]->dtv_property_cache.layer[1].segment_count != 0) &&
((state->fe[0]->dtv_property_cache.layer[1].modulation == QAM_AUTO) ||
(state->fe[0]->dtv_property_cache.layer[1].fec == FEC_AUTO))) ||
(((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 2)) != 0) &&
(state->fe[0]->dtv_property_cache.layer[2].segment_count != 0xff) &&
(state->fe[0]->dtv_property_cache.layer[2].segment_count != 0) &&
((state->fe[0]->dtv_property_cache.layer[2].modulation == QAM_AUTO) ||
(state->fe[0]->dtv_property_cache.layer[2].fec == FEC_AUTO))) ||
(((state->fe[0]->dtv_property_cache.layer[0].segment_count == 0) ||
((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (1 << 0)) == 0)) &&
((state->fe[0]->dtv_property_cache.layer[1].segment_count == 0) ||
((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (2 << 0)) == 0)) &&
((state->fe[0]->dtv_property_cache.layer[2].segment_count == 0) || ((state->fe[0]->dtv_property_cache.isdbt_layer_enabled & (3 << 0)) == 0)))) {
int i = 80000;
u8 found = 0;
u8 tune_failed = 0;
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib8000_set_bandwidth(state->fe[index_frontend], fe->dtv_property_cache.bandwidth_hz / 1000);
dib8000_autosearch_start(state->fe[index_frontend]);
}
do {
msleep(20);
nbr_pending = 0;
exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (((tune_failed >> index_frontend) & 0x1) == 0) {
found = dib8000_autosearch_irq(state->fe[index_frontend]);
switch (found) {
case 0: /* tune pending */
nbr_pending++;
break;
case 2:
dprintk("autosearch succeed on the frontend%i", index_frontend);
exit_condition = 2;
index_frontend_success = index_frontend;
break;
default:
dprintk("unhandled autosearch result");
case 1:
dprintk("autosearch failed for the frontend%i", index_frontend);
break;
}
}
}
/* if all tune are done and no success, exit: tune failed */
if ((nbr_pending == 0) && (exit_condition == 0))
exit_condition = 1;
} while ((exit_condition == 0) && i--);
if (exit_condition == 1) { /* tune failed */
dprintk("tune failed");
return 0;
}
dprintk("tune success on frontend%i", index_frontend_success);
dib8000_get_frontend(fe, fep);
}
for (index_frontend = 0, ret = 0; (ret >= 0) && (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
ret = dib8000_tune(state->fe[index_frontend]);
/* set output mode and diversity input */
dib8000_set_output_mode(state->fe[0], state->cfg.output_mode);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib8000_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
dib8000_set_diversity_in(state->fe[index_frontend-1], 1);
}
/* turn off the diversity of the last chip */
dib8000_set_diversity_in(state->fe[index_frontend-1], 0);
return ret;
}
static u16 dib8000_read_lock(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
return dib8000_read_word(state, 568);
}
static int dib8000_read_status(struct dvb_frontend *fe, fe_status_t * stat)
{
struct dib8000_state *state = fe->demodulator_priv;
u16 lock_slave = 0, lock = dib8000_read_word(state, 568);
u8 index_frontend;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
lock_slave |= dib8000_read_lock(state->fe[index_frontend]);
*stat = 0;
if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1))
*stat |= FE_HAS_SIGNAL;
if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */
*stat |= FE_HAS_CARRIER;
if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
*stat |= FE_HAS_SYNC;
if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */
*stat |= FE_HAS_LOCK;
if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) {
lock = dib8000_read_word(state, 554); /* Viterbi Layer A */
if (lock & 0x01)
*stat |= FE_HAS_VITERBI;
lock = dib8000_read_word(state, 555); /* Viterbi Layer B */
if (lock & 0x01)
*stat |= FE_HAS_VITERBI;
lock = dib8000_read_word(state, 556); /* Viterbi Layer C */
if (lock & 0x01)
*stat |= FE_HAS_VITERBI;
}
return 0;
}
static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct dib8000_state *state = fe->demodulator_priv;
*ber = (dib8000_read_word(state, 560) << 16) | dib8000_read_word(state, 561); // 13 segments
return 0;
}
static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{
struct dib8000_state *state = fe->demodulator_priv;
*unc = dib8000_read_word(state, 565); // packet error on 13 seg
return 0;
}
static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
u16 val;
*strength = 0;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
if (val > 65535 - *strength)
*strength = 65535;
else
*strength += val;
}
val = 65535 - dib8000_read_word(state, 390);
if (val > 65535 - *strength)
*strength = 65535;
else
*strength += val;
return 0;
}
static u32 dib8000_get_snr(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u32 n, s, exp;
u16 val;
val = dib8000_read_word(state, 542);
n = (val >> 6) & 0xff;
exp = (val & 0x3f);
if ((exp & 0x20) != 0)
exp -= 0x40;
n <<= exp+16;
val = dib8000_read_word(state, 543);
s = (val >> 6) & 0xff;
exp = (val & 0x3f);
if ((exp & 0x20) != 0)
exp -= 0x40;
s <<= exp+16;
if (n > 0) {
u32 t = (s/n) << 16;
return t + ((s << 16) - n*t) / n;
}
return 0xffffffff;
}
static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend;
u32 snr_master;
snr_master = dib8000_get_snr(fe);
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
snr_master += dib8000_get_snr(state->fe[index_frontend]);
if (snr_master != 0) {
snr_master = 10*intlog10(snr_master>>16);
*snr = snr_master / ((1 << 24) / 10);
}
else
*snr = 0;
return 0;
}
int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend = 1;
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
index_frontend++;
if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
dprintk("set slave fe %p to index %i", fe_slave, index_frontend);
state->fe[index_frontend] = fe_slave;
return 0;
}
dprintk("too many slave frontend");
return -ENOMEM;
}
EXPORT_SYMBOL(dib8000_set_slave_frontend);
int dib8000_remove_slave_frontend(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
u8 index_frontend = 1;
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
index_frontend++;
if (index_frontend != 1) {
dprintk("remove slave fe %p (index %i)", state->fe[index_frontend-1], index_frontend-1);
state->fe[index_frontend] = NULL;
return 0;
}
dprintk("no frontend to be removed");
return -ENODEV;
}
EXPORT_SYMBOL(dib8000_remove_slave_frontend);
struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
struct dib8000_state *state = fe->demodulator_priv;
if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
return NULL;
return state->fe[slave_index];
}
EXPORT_SYMBOL(dib8000_get_slave_frontend);
int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, u8 default_addr, u8 first_addr)
{
int k = 0;
u8 new_addr = 0;
struct i2c_device client = {.adap = host };
for (k = no_of_demods - 1; k >= 0; k--) {
/* designated i2c address */
new_addr = first_addr + (k << 1);
client.addr = new_addr;
dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
if (dib8000_identify(&client) == 0) {
dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
client.addr = default_addr;
if (dib8000_identify(&client) == 0) {
dprintk("#%d: not identified", k);
return -EINVAL;
}
}
/* start diversity to pull_down div_str - just for i2c-enumeration */
dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));
/* set new i2c address and force divstart */
dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
client.addr = new_addr;
dib8000_identify(&client);
dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
}
for (k = 0; k < no_of_demods; k++) {
new_addr = first_addr | (k << 1);
client.addr = new_addr;
// unforce divstr
dib8000_i2c_write16(&client, 1285, new_addr << 2);
/* deactivate div - it was just for i2c-enumeration */
dib8000_i2c_write16(&client, 1286, 0);
}
return 0;
}
EXPORT_SYMBOL(dib8000_i2c_enumeration);
static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
tune->step_size = 0;
tune->max_drift = 0;
return 0;
}
static void dib8000_release(struct dvb_frontend *fe)
{
struct dib8000_state *st = fe->demodulator_priv;
u8 index_frontend;
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
dvb_frontend_detach(st->fe[index_frontend]);
dibx000_exit_i2c_master(&st->i2c_master);
kfree(st->fe[0]);
kfree(st);
}
struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
{
struct dib8000_state *st = fe->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib8000_get_i2c_master);
int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
struct dib8000_state *st = fe->demodulator_priv;
u16 val = dib8000_read_word(st, 299) & 0xffef;
val |= (onoff & 0x1) << 4;
dprintk("pid filter enabled %d", onoff);
return dib8000_write_word(st, 299, val);
}
EXPORT_SYMBOL(dib8000_pid_filter_ctrl);
int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
struct dib8000_state *st = fe->demodulator_priv;
dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff);
return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0);
}
EXPORT_SYMBOL(dib8000_pid_filter);
static const struct dvb_frontend_ops dib8000_ops = {
.info = {
.name = "DiBcom 8000 ISDB-T",
.type = FE_OFDM,
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
},
.release = dib8000_release,
.init = dib8000_wakeup,
.sleep = dib8000_sleep,
.set_frontend = dib8000_set_frontend,
.get_tune_settings = dib8000_fe_get_tune_settings,
.get_frontend = dib8000_get_frontend,
.read_status = dib8000_read_status,
.read_ber = dib8000_read_ber,
.read_signal_strength = dib8000_read_signal_strength,
.read_snr = dib8000_read_snr,
.read_ucblocks = dib8000_read_unc_blocks,
};
struct dvb_frontend *dib8000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
{
struct dvb_frontend *fe;
struct dib8000_state *state;
dprintk("dib8000_attach");
state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
if (state == NULL)
return NULL;
fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
if (fe == NULL)
goto error;
memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
state->i2c.adap = i2c_adap;
state->i2c.addr = i2c_addr;
state->gpio_val = cfg->gpio_val;
state->gpio_dir = cfg->gpio_dir;
/* Ensure the output mode remains at the previous default if it's
* not specifically set by the caller.
*/
if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
state->cfg.output_mode = OUTMODE_MPEG2_FIFO;
state->fe[0] = fe;
fe->demodulator_priv = state;
memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));
state->timf_default = cfg->pll->timf;
if (dib8000_identify(&state->i2c) == 0)
goto error;
dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);
dib8000_reset(fe);
dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
return fe;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(dib8000_attach);
MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@dibcom.fr, " "Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
MODULE_LICENSE("GPL");