61307b7be4
documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB nvA4E0DcPrUAFy144FNM0NTCb7u9vAw= =V3R/ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ...
1886 lines
48 KiB
C
1886 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Firmware Assisted dump: A robust mechanism to get reliable kernel crash
|
|
* dump with assistance from firmware. This approach does not use kexec,
|
|
* instead firmware assists in booting the kdump kernel while preserving
|
|
* memory contents. The most of the code implementation has been adapted
|
|
* from phyp assisted dump implementation written by Linas Vepstas and
|
|
* Manish Ahuja
|
|
*
|
|
* Copyright 2011 IBM Corporation
|
|
* Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#undef DEBUG
|
|
#define pr_fmt(fmt) "fadump: " fmt
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/fadump.h>
|
|
#include <asm/fadump-internal.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/interrupt.h>
|
|
|
|
/*
|
|
* The CPU who acquired the lock to trigger the fadump crash should
|
|
* wait for other CPUs to enter.
|
|
*
|
|
* The timeout is in milliseconds.
|
|
*/
|
|
#define CRASH_TIMEOUT 500
|
|
|
|
static struct fw_dump fw_dump;
|
|
|
|
static void __init fadump_reserve_crash_area(u64 base);
|
|
|
|
#ifndef CONFIG_PRESERVE_FA_DUMP
|
|
|
|
static struct kobject *fadump_kobj;
|
|
|
|
static atomic_t cpus_in_fadump;
|
|
static DEFINE_MUTEX(fadump_mutex);
|
|
|
|
#define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
|
|
#define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
|
|
sizeof(struct fadump_memory_range))
|
|
static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
|
|
static struct fadump_mrange_info
|
|
reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
|
|
|
|
static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
|
|
|
|
#ifdef CONFIG_CMA
|
|
static struct cma *fadump_cma;
|
|
|
|
/*
|
|
* fadump_cma_init() - Initialize CMA area from a fadump reserved memory
|
|
*
|
|
* This function initializes CMA area from fadump reserved memory.
|
|
* The total size of fadump reserved memory covers for boot memory size
|
|
* + cpu data size + hpte size and metadata.
|
|
* Initialize only the area equivalent to boot memory size for CMA use.
|
|
* The remaining portion of fadump reserved memory will be not given
|
|
* to CMA and pages for those will stay reserved. boot memory size is
|
|
* aligned per CMA requirement to satisy cma_init_reserved_mem() call.
|
|
* But for some reason even if it fails we still have the memory reservation
|
|
* with us and we can still continue doing fadump.
|
|
*/
|
|
static int __init fadump_cma_init(void)
|
|
{
|
|
unsigned long long base, size;
|
|
int rc;
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
/*
|
|
* Do not use CMA if user has provided fadump=nocma kernel parameter.
|
|
* Return 1 to continue with fadump old behaviour.
|
|
*/
|
|
if (fw_dump.nocma)
|
|
return 1;
|
|
|
|
base = fw_dump.reserve_dump_area_start;
|
|
size = fw_dump.boot_memory_size;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
|
|
if (rc) {
|
|
pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
|
|
/*
|
|
* Though the CMA init has failed we still have memory
|
|
* reservation with us. The reserved memory will be
|
|
* blocked from production system usage. Hence return 1,
|
|
* so that we can continue with fadump.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If CMA activation fails, keep the pages reserved, instead of
|
|
* exposing them to buddy allocator. Same as 'fadump=nocma' case.
|
|
*/
|
|
cma_reserve_pages_on_error(fadump_cma);
|
|
|
|
/*
|
|
* So we now have successfully initialized cma area for fadump.
|
|
*/
|
|
pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
|
|
"bytes of memory reserved for firmware-assisted dump\n",
|
|
cma_get_size(fadump_cma),
|
|
(unsigned long)cma_get_base(fadump_cma) >> 20,
|
|
fw_dump.reserve_dump_area_size);
|
|
return 1;
|
|
}
|
|
#else
|
|
static int __init fadump_cma_init(void) { return 1; }
|
|
#endif /* CONFIG_CMA */
|
|
|
|
/*
|
|
* Additional parameters meant for capture kernel are placed in a dedicated area.
|
|
* If this is capture kernel boot, append these parameters to bootargs.
|
|
*/
|
|
void __init fadump_append_bootargs(void)
|
|
{
|
|
char *append_args;
|
|
size_t len;
|
|
|
|
if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
|
|
return;
|
|
|
|
if (fw_dump.param_area >= fw_dump.boot_mem_top) {
|
|
if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
|
|
pr_warn("WARNING: Can't use additional parameters area!\n");
|
|
fw_dump.param_area = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
append_args = (char *)fw_dump.param_area;
|
|
len = strlen(boot_command_line);
|
|
|
|
/*
|
|
* Too late to fail even if cmdline size exceeds. Truncate additional parameters
|
|
* to cmdline size and proceed anyway.
|
|
*/
|
|
if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
|
|
pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
|
|
|
|
pr_debug("Cmdline: %s\n", boot_command_line);
|
|
snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
|
|
pr_info("Updated cmdline: %s\n", boot_command_line);
|
|
}
|
|
|
|
/* Scan the Firmware Assisted dump configuration details. */
|
|
int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
if (depth == 0) {
|
|
early_init_dt_scan_reserved_ranges(node);
|
|
return 0;
|
|
}
|
|
|
|
if (depth != 1)
|
|
return 0;
|
|
|
|
if (strcmp(uname, "rtas") == 0) {
|
|
rtas_fadump_dt_scan(&fw_dump, node);
|
|
return 1;
|
|
}
|
|
|
|
if (strcmp(uname, "ibm,opal") == 0) {
|
|
opal_fadump_dt_scan(&fw_dump, node);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If fadump is registered, check if the memory provided
|
|
* falls within boot memory area and reserved memory area.
|
|
*/
|
|
int is_fadump_memory_area(u64 addr, unsigned long size)
|
|
{
|
|
u64 d_start, d_end;
|
|
|
|
if (!fw_dump.dump_registered)
|
|
return 0;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
d_start = fw_dump.reserve_dump_area_start;
|
|
d_end = d_start + fw_dump.reserve_dump_area_size;
|
|
if (((addr + size) > d_start) && (addr <= d_end))
|
|
return 1;
|
|
|
|
return (addr <= fw_dump.boot_mem_top);
|
|
}
|
|
|
|
int should_fadump_crash(void)
|
|
{
|
|
if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int is_fadump_active(void)
|
|
{
|
|
return fw_dump.dump_active;
|
|
}
|
|
|
|
/*
|
|
* Returns true, if there are no holes in memory area between d_start to d_end,
|
|
* false otherwise.
|
|
*/
|
|
static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
|
|
{
|
|
phys_addr_t reg_start, reg_end;
|
|
bool ret = false;
|
|
u64 i, start, end;
|
|
|
|
for_each_mem_range(i, ®_start, ®_end) {
|
|
start = max_t(u64, d_start, reg_start);
|
|
end = min_t(u64, d_end, reg_end);
|
|
if (d_start < end) {
|
|
/* Memory hole from d_start to start */
|
|
if (start > d_start)
|
|
break;
|
|
|
|
if (end == d_end) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
|
|
d_start = end + 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns true, if there are no holes in reserved memory area,
|
|
* false otherwise.
|
|
*/
|
|
bool is_fadump_reserved_mem_contiguous(void)
|
|
{
|
|
u64 d_start, d_end;
|
|
|
|
d_start = fw_dump.reserve_dump_area_start;
|
|
d_end = d_start + fw_dump.reserve_dump_area_size;
|
|
return is_fadump_mem_area_contiguous(d_start, d_end);
|
|
}
|
|
|
|
/* Print firmware assisted dump configurations for debugging purpose. */
|
|
static void __init fadump_show_config(void)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("Support for firmware-assisted dump (fadump): %s\n",
|
|
(fw_dump.fadump_supported ? "present" : "no support"));
|
|
|
|
if (!fw_dump.fadump_supported)
|
|
return;
|
|
|
|
pr_debug("Fadump enabled : %s\n",
|
|
(fw_dump.fadump_enabled ? "yes" : "no"));
|
|
pr_debug("Dump Active : %s\n",
|
|
(fw_dump.dump_active ? "yes" : "no"));
|
|
pr_debug("Dump section sizes:\n");
|
|
pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
|
|
pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
|
|
pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
|
|
pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
|
|
pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
|
|
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
|
|
pr_debug("[%03d] base = %llx, size = %llx\n", i,
|
|
fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
|
|
*
|
|
* Function to find the largest memory size we need to reserve during early
|
|
* boot process. This will be the size of the memory that is required for a
|
|
* kernel to boot successfully.
|
|
*
|
|
* This function has been taken from phyp-assisted dump feature implementation.
|
|
*
|
|
* returns larger of 256MB or 5% rounded down to multiples of 256MB.
|
|
*
|
|
* TODO: Come up with better approach to find out more accurate memory size
|
|
* that is required for a kernel to boot successfully.
|
|
*
|
|
*/
|
|
static __init u64 fadump_calculate_reserve_size(void)
|
|
{
|
|
u64 base, size, bootmem_min;
|
|
int ret;
|
|
|
|
if (fw_dump.reserve_bootvar)
|
|
pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
|
|
|
|
/*
|
|
* Check if the size is specified through crashkernel= cmdline
|
|
* option. If yes, then use that but ignore base as fadump reserves
|
|
* memory at a predefined offset.
|
|
*/
|
|
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
|
|
&size, &base, NULL, NULL);
|
|
if (ret == 0 && size > 0) {
|
|
unsigned long max_size;
|
|
|
|
if (fw_dump.reserve_bootvar)
|
|
pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
|
|
|
|
fw_dump.reserve_bootvar = (unsigned long)size;
|
|
|
|
/*
|
|
* Adjust if the boot memory size specified is above
|
|
* the upper limit.
|
|
*/
|
|
max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
|
|
if (fw_dump.reserve_bootvar > max_size) {
|
|
fw_dump.reserve_bootvar = max_size;
|
|
pr_info("Adjusted boot memory size to %luMB\n",
|
|
(fw_dump.reserve_bootvar >> 20));
|
|
}
|
|
|
|
return fw_dump.reserve_bootvar;
|
|
} else if (fw_dump.reserve_bootvar) {
|
|
/*
|
|
* 'fadump_reserve_mem=' is being used to reserve memory
|
|
* for firmware-assisted dump.
|
|
*/
|
|
return fw_dump.reserve_bootvar;
|
|
}
|
|
|
|
/* divide by 20 to get 5% of value */
|
|
size = memblock_phys_mem_size() / 20;
|
|
|
|
/* round it down in multiples of 256 */
|
|
size = size & ~0x0FFFFFFFUL;
|
|
|
|
/* Truncate to memory_limit. We don't want to over reserve the memory.*/
|
|
if (memory_limit && size > memory_limit)
|
|
size = memory_limit;
|
|
|
|
bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
|
|
return (size > bootmem_min ? size : bootmem_min);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total memory size required to be reserved for
|
|
* firmware-assisted dump registration.
|
|
*/
|
|
static unsigned long __init get_fadump_area_size(void)
|
|
{
|
|
unsigned long size = 0;
|
|
|
|
size += fw_dump.cpu_state_data_size;
|
|
size += fw_dump.hpte_region_size;
|
|
/*
|
|
* Account for pagesize alignment of boot memory area destination address.
|
|
* This faciliates in mmap reading of first kernel's memory.
|
|
*/
|
|
size = PAGE_ALIGN(size);
|
|
size += fw_dump.boot_memory_size;
|
|
size += sizeof(struct fadump_crash_info_header);
|
|
|
|
/* This is to hold kernel metadata on platforms that support it */
|
|
size += (fw_dump.ops->fadump_get_metadata_size ?
|
|
fw_dump.ops->fadump_get_metadata_size() : 0);
|
|
return size;
|
|
}
|
|
|
|
static int __init add_boot_mem_region(unsigned long rstart,
|
|
unsigned long rsize)
|
|
{
|
|
int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
|
|
int i = fw_dump.boot_mem_regs_cnt++;
|
|
|
|
if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
|
|
fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
|
|
return 0;
|
|
}
|
|
|
|
pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
|
|
i, rstart, (rstart + rsize));
|
|
fw_dump.boot_mem_addr[i] = rstart;
|
|
fw_dump.boot_mem_sz[i] = rsize;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Firmware usually has a hard limit on the data it can copy per region.
|
|
* Honour that by splitting a memory range into multiple regions.
|
|
*/
|
|
static int __init add_boot_mem_regions(unsigned long mstart,
|
|
unsigned long msize)
|
|
{
|
|
unsigned long rstart, rsize, max_size;
|
|
int ret = 1;
|
|
|
|
rstart = mstart;
|
|
max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
|
|
while (msize) {
|
|
if (msize > max_size)
|
|
rsize = max_size;
|
|
else
|
|
rsize = msize;
|
|
|
|
ret = add_boot_mem_region(rstart, rsize);
|
|
if (!ret)
|
|
break;
|
|
|
|
msize -= rsize;
|
|
rstart += rsize;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init fadump_get_boot_mem_regions(void)
|
|
{
|
|
unsigned long size, cur_size, hole_size, last_end;
|
|
unsigned long mem_size = fw_dump.boot_memory_size;
|
|
phys_addr_t reg_start, reg_end;
|
|
int ret = 1;
|
|
u64 i;
|
|
|
|
fw_dump.boot_mem_regs_cnt = 0;
|
|
|
|
last_end = 0;
|
|
hole_size = 0;
|
|
cur_size = 0;
|
|
for_each_mem_range(i, ®_start, ®_end) {
|
|
size = reg_end - reg_start;
|
|
hole_size += (reg_start - last_end);
|
|
|
|
if ((cur_size + size) >= mem_size) {
|
|
size = (mem_size - cur_size);
|
|
ret = add_boot_mem_regions(reg_start, size);
|
|
break;
|
|
}
|
|
|
|
mem_size -= size;
|
|
cur_size += size;
|
|
ret = add_boot_mem_regions(reg_start, size);
|
|
if (!ret)
|
|
break;
|
|
|
|
last_end = reg_end;
|
|
}
|
|
fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns true, if the given range overlaps with reserved memory ranges
|
|
* starting at idx. Also, updates idx to index of overlapping memory range
|
|
* with the given memory range.
|
|
* False, otherwise.
|
|
*/
|
|
static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
|
|
{
|
|
bool ret = false;
|
|
int i;
|
|
|
|
for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
|
|
u64 rbase = reserved_mrange_info.mem_ranges[i].base;
|
|
u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
|
|
|
|
if (end <= rbase)
|
|
break;
|
|
|
|
if ((end > rbase) && (base < rend)) {
|
|
*idx = i;
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Locate a suitable memory area to reserve memory for FADump. While at it,
|
|
* lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
|
|
*/
|
|
static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
|
|
{
|
|
struct fadump_memory_range *mrngs;
|
|
phys_addr_t mstart, mend;
|
|
int idx = 0;
|
|
u64 i, ret = 0;
|
|
|
|
mrngs = reserved_mrange_info.mem_ranges;
|
|
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
|
|
&mstart, &mend, NULL) {
|
|
pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
|
|
i, mstart, mend, base);
|
|
|
|
if (mstart > base)
|
|
base = PAGE_ALIGN(mstart);
|
|
|
|
while ((mend > base) && ((mend - base) >= size)) {
|
|
if (!overlaps_reserved_ranges(base, base+size, &idx)) {
|
|
ret = base;
|
|
goto out;
|
|
}
|
|
|
|
base = mrngs[idx].base + mrngs[idx].size;
|
|
base = PAGE_ALIGN(base);
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int __init fadump_reserve_mem(void)
|
|
{
|
|
u64 base, size, mem_boundary, bootmem_min;
|
|
int ret = 1;
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
if (!fw_dump.fadump_supported) {
|
|
pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
|
|
goto error_out;
|
|
}
|
|
|
|
/*
|
|
* Initialize boot memory size
|
|
* If dump is active then we have already calculated the size during
|
|
* first kernel.
|
|
*/
|
|
if (!fw_dump.dump_active) {
|
|
fw_dump.boot_memory_size =
|
|
PAGE_ALIGN(fadump_calculate_reserve_size());
|
|
#ifdef CONFIG_CMA
|
|
if (!fw_dump.nocma) {
|
|
fw_dump.boot_memory_size =
|
|
ALIGN(fw_dump.boot_memory_size,
|
|
CMA_MIN_ALIGNMENT_BYTES);
|
|
}
|
|
#endif
|
|
|
|
bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
|
|
if (fw_dump.boot_memory_size < bootmem_min) {
|
|
pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
|
|
fw_dump.boot_memory_size, bootmem_min);
|
|
goto error_out;
|
|
}
|
|
|
|
if (!fadump_get_boot_mem_regions()) {
|
|
pr_err("Too many holes in boot memory area to enable fadump\n");
|
|
goto error_out;
|
|
}
|
|
}
|
|
|
|
if (memory_limit)
|
|
mem_boundary = memory_limit;
|
|
else
|
|
mem_boundary = memblock_end_of_DRAM();
|
|
|
|
base = fw_dump.boot_mem_top;
|
|
size = get_fadump_area_size();
|
|
fw_dump.reserve_dump_area_size = size;
|
|
if (fw_dump.dump_active) {
|
|
pr_info("Firmware-assisted dump is active.\n");
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* FADump capture kernel doesn't care much about hugepages.
|
|
* In fact, handling hugepages in capture kernel is asking for
|
|
* trouble. So, disable HugeTLB support when fadump is active.
|
|
*/
|
|
hugetlb_disabled = true;
|
|
#endif
|
|
/*
|
|
* If last boot has crashed then reserve all the memory
|
|
* above boot memory size so that we don't touch it until
|
|
* dump is written to disk by userspace tool. This memory
|
|
* can be released for general use by invalidating fadump.
|
|
*/
|
|
fadump_reserve_crash_area(base);
|
|
|
|
pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
|
|
pr_debug("Reserve dump area start address: 0x%lx\n",
|
|
fw_dump.reserve_dump_area_start);
|
|
} else {
|
|
/*
|
|
* Reserve memory at an offset closer to bottom of the RAM to
|
|
* minimize the impact of memory hot-remove operation.
|
|
*/
|
|
base = fadump_locate_reserve_mem(base, size);
|
|
|
|
if (!base || (base + size > mem_boundary)) {
|
|
pr_err("Failed to find memory chunk for reservation!\n");
|
|
goto error_out;
|
|
}
|
|
fw_dump.reserve_dump_area_start = base;
|
|
|
|
/*
|
|
* Calculate the kernel metadata address and register it with
|
|
* f/w if the platform supports.
|
|
*/
|
|
if (fw_dump.ops->fadump_setup_metadata &&
|
|
(fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
|
|
goto error_out;
|
|
|
|
if (memblock_reserve(base, size)) {
|
|
pr_err("Failed to reserve memory!\n");
|
|
goto error_out;
|
|
}
|
|
|
|
pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
|
|
(size >> 20), base, (memblock_phys_mem_size() >> 20));
|
|
|
|
ret = fadump_cma_init();
|
|
}
|
|
|
|
return ret;
|
|
error_out:
|
|
fw_dump.fadump_enabled = 0;
|
|
fw_dump.reserve_dump_area_size = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Look for fadump= cmdline option. */
|
|
static int __init early_fadump_param(char *p)
|
|
{
|
|
if (!p)
|
|
return 1;
|
|
|
|
if (strncmp(p, "on", 2) == 0)
|
|
fw_dump.fadump_enabled = 1;
|
|
else if (strncmp(p, "off", 3) == 0)
|
|
fw_dump.fadump_enabled = 0;
|
|
else if (strncmp(p, "nocma", 5) == 0) {
|
|
fw_dump.fadump_enabled = 1;
|
|
fw_dump.nocma = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("fadump", early_fadump_param);
|
|
|
|
/*
|
|
* Look for fadump_reserve_mem= cmdline option
|
|
* TODO: Remove references to 'fadump_reserve_mem=' parameter,
|
|
* the sooner 'crashkernel=' parameter is accustomed to.
|
|
*/
|
|
static int __init early_fadump_reserve_mem(char *p)
|
|
{
|
|
if (p)
|
|
fw_dump.reserve_bootvar = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("fadump_reserve_mem", early_fadump_reserve_mem);
|
|
|
|
void crash_fadump(struct pt_regs *regs, const char *str)
|
|
{
|
|
unsigned int msecs;
|
|
struct fadump_crash_info_header *fdh = NULL;
|
|
int old_cpu, this_cpu;
|
|
/* Do not include first CPU */
|
|
unsigned int ncpus = num_online_cpus() - 1;
|
|
|
|
if (!should_fadump_crash())
|
|
return;
|
|
|
|
/*
|
|
* old_cpu == -1 means this is the first CPU which has come here,
|
|
* go ahead and trigger fadump.
|
|
*
|
|
* old_cpu != -1 means some other CPU has already on its way
|
|
* to trigger fadump, just keep looping here.
|
|
*/
|
|
this_cpu = smp_processor_id();
|
|
old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
|
|
|
|
if (old_cpu != -1) {
|
|
atomic_inc(&cpus_in_fadump);
|
|
|
|
/*
|
|
* We can't loop here indefinitely. Wait as long as fadump
|
|
* is in force. If we race with fadump un-registration this
|
|
* loop will break and then we go down to normal panic path
|
|
* and reboot. If fadump is in force the first crashing
|
|
* cpu will definitely trigger fadump.
|
|
*/
|
|
while (fw_dump.dump_registered)
|
|
cpu_relax();
|
|
return;
|
|
}
|
|
|
|
fdh = __va(fw_dump.fadumphdr_addr);
|
|
fdh->crashing_cpu = crashing_cpu;
|
|
crash_save_vmcoreinfo();
|
|
|
|
if (regs)
|
|
fdh->regs = *regs;
|
|
else
|
|
ppc_save_regs(&fdh->regs);
|
|
|
|
fdh->cpu_mask = *cpu_online_mask;
|
|
|
|
/*
|
|
* If we came in via system reset, wait a while for the secondary
|
|
* CPUs to enter.
|
|
*/
|
|
if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
|
|
msecs = CRASH_TIMEOUT;
|
|
while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
|
|
mdelay(1);
|
|
}
|
|
|
|
fw_dump.ops->fadump_trigger(fdh, str);
|
|
}
|
|
|
|
u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
|
|
{
|
|
struct elf_prstatus prstatus;
|
|
|
|
memset(&prstatus, 0, sizeof(prstatus));
|
|
/*
|
|
* FIXME: How do i get PID? Do I really need it?
|
|
* prstatus.pr_pid = ????
|
|
*/
|
|
elf_core_copy_regs(&prstatus.pr_reg, regs);
|
|
buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
|
|
&prstatus, sizeof(prstatus));
|
|
return buf;
|
|
}
|
|
|
|
void __init fadump_update_elfcore_header(char *bufp)
|
|
{
|
|
struct elf_phdr *phdr;
|
|
|
|
bufp += sizeof(struct elfhdr);
|
|
|
|
/* First note is a place holder for cpu notes info. */
|
|
phdr = (struct elf_phdr *)bufp;
|
|
|
|
if (phdr->p_type == PT_NOTE) {
|
|
phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
|
|
phdr->p_offset = phdr->p_paddr;
|
|
phdr->p_filesz = fw_dump.cpu_notes_buf_size;
|
|
phdr->p_memsz = fw_dump.cpu_notes_buf_size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void *__init fadump_alloc_buffer(unsigned long size)
|
|
{
|
|
unsigned long count, i;
|
|
struct page *page;
|
|
void *vaddr;
|
|
|
|
vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
|
|
if (!vaddr)
|
|
return NULL;
|
|
|
|
count = PAGE_ALIGN(size) / PAGE_SIZE;
|
|
page = virt_to_page(vaddr);
|
|
for (i = 0; i < count; i++)
|
|
mark_page_reserved(page + i);
|
|
return vaddr;
|
|
}
|
|
|
|
static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
|
|
{
|
|
free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
|
|
}
|
|
|
|
s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
|
|
{
|
|
/* Allocate buffer to hold cpu crash notes. */
|
|
fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
|
|
fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
|
|
fw_dump.cpu_notes_buf_vaddr =
|
|
(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
|
|
if (!fw_dump.cpu_notes_buf_vaddr) {
|
|
pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
|
|
fw_dump.cpu_notes_buf_size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
|
|
fw_dump.cpu_notes_buf_size,
|
|
fw_dump.cpu_notes_buf_vaddr);
|
|
return 0;
|
|
}
|
|
|
|
void fadump_free_cpu_notes_buf(void)
|
|
{
|
|
if (!fw_dump.cpu_notes_buf_vaddr)
|
|
return;
|
|
|
|
fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
|
|
fw_dump.cpu_notes_buf_size);
|
|
fw_dump.cpu_notes_buf_vaddr = 0;
|
|
fw_dump.cpu_notes_buf_size = 0;
|
|
}
|
|
|
|
static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
|
|
{
|
|
if (mrange_info->is_static) {
|
|
mrange_info->mem_range_cnt = 0;
|
|
return;
|
|
}
|
|
|
|
kfree(mrange_info->mem_ranges);
|
|
memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
|
|
(sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
|
|
}
|
|
|
|
/*
|
|
* Allocate or reallocate mem_ranges array in incremental units
|
|
* of PAGE_SIZE.
|
|
*/
|
|
static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
|
|
{
|
|
struct fadump_memory_range *new_array;
|
|
u64 new_size;
|
|
|
|
new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
|
|
pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
|
|
new_size, mrange_info->name);
|
|
|
|
new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
|
|
if (new_array == NULL) {
|
|
pr_err("Insufficient memory for setting up %s memory ranges\n",
|
|
mrange_info->name);
|
|
fadump_free_mem_ranges(mrange_info);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mrange_info->mem_ranges = new_array;
|
|
mrange_info->mem_ranges_sz = new_size;
|
|
mrange_info->max_mem_ranges = (new_size /
|
|
sizeof(struct fadump_memory_range));
|
|
return 0;
|
|
}
|
|
static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
|
|
u64 base, u64 end)
|
|
{
|
|
struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
|
|
bool is_adjacent = false;
|
|
u64 start, size;
|
|
|
|
if (base == end)
|
|
return 0;
|
|
|
|
/*
|
|
* Fold adjacent memory ranges to bring down the memory ranges/
|
|
* PT_LOAD segments count.
|
|
*/
|
|
if (mrange_info->mem_range_cnt) {
|
|
start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
|
|
size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
|
|
|
|
/*
|
|
* Boot memory area needs separate PT_LOAD segment(s) as it
|
|
* is moved to a different location at the time of crash.
|
|
* So, fold only if the region is not boot memory area.
|
|
*/
|
|
if ((start + size) == base && start >= fw_dump.boot_mem_top)
|
|
is_adjacent = true;
|
|
}
|
|
if (!is_adjacent) {
|
|
/* resize the array on reaching the limit */
|
|
if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
|
|
int ret;
|
|
|
|
if (mrange_info->is_static) {
|
|
pr_err("Reached array size limit for %s memory ranges\n",
|
|
mrange_info->name);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ret = fadump_alloc_mem_ranges(mrange_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Update to the new resized array */
|
|
mem_ranges = mrange_info->mem_ranges;
|
|
}
|
|
|
|
start = base;
|
|
mem_ranges[mrange_info->mem_range_cnt].base = start;
|
|
mrange_info->mem_range_cnt++;
|
|
}
|
|
|
|
mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
|
|
pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
|
|
mrange_info->name, (mrange_info->mem_range_cnt - 1),
|
|
start, end - 1, (end - start));
|
|
return 0;
|
|
}
|
|
|
|
static int fadump_init_elfcore_header(char *bufp)
|
|
{
|
|
struct elfhdr *elf;
|
|
|
|
elf = (struct elfhdr *) bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
memcpy(elf->e_ident, ELFMAG, SELFMAG);
|
|
elf->e_ident[EI_CLASS] = ELF_CLASS;
|
|
elf->e_ident[EI_DATA] = ELF_DATA;
|
|
elf->e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf->e_ident[EI_OSABI] = ELF_OSABI;
|
|
memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
|
|
elf->e_type = ET_CORE;
|
|
elf->e_machine = ELF_ARCH;
|
|
elf->e_version = EV_CURRENT;
|
|
elf->e_entry = 0;
|
|
elf->e_phoff = sizeof(struct elfhdr);
|
|
elf->e_shoff = 0;
|
|
|
|
if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
|
|
elf->e_flags = 2;
|
|
else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
|
|
elf->e_flags = 1;
|
|
else
|
|
elf->e_flags = 0;
|
|
|
|
elf->e_ehsize = sizeof(struct elfhdr);
|
|
elf->e_phentsize = sizeof(struct elf_phdr);
|
|
elf->e_phnum = 0;
|
|
elf->e_shentsize = 0;
|
|
elf->e_shnum = 0;
|
|
elf->e_shstrndx = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the given physical address falls within the boot memory region then
|
|
* return the relocated address that points to the dump region reserved
|
|
* for saving initial boot memory contents.
|
|
*/
|
|
static inline unsigned long fadump_relocate(unsigned long paddr)
|
|
{
|
|
unsigned long raddr, rstart, rend, rlast, hole_size;
|
|
int i;
|
|
|
|
hole_size = 0;
|
|
rlast = 0;
|
|
raddr = paddr;
|
|
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
|
|
rstart = fw_dump.boot_mem_addr[i];
|
|
rend = rstart + fw_dump.boot_mem_sz[i];
|
|
hole_size += (rstart - rlast);
|
|
|
|
if (paddr >= rstart && paddr < rend) {
|
|
raddr += fw_dump.boot_mem_dest_addr - hole_size;
|
|
break;
|
|
}
|
|
|
|
rlast = rend;
|
|
}
|
|
|
|
pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
|
|
return raddr;
|
|
}
|
|
|
|
static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
|
|
u64 size, unsigned long long offset)
|
|
{
|
|
phdr->p_align = 0;
|
|
phdr->p_memsz = size;
|
|
phdr->p_filesz = size;
|
|
phdr->p_paddr = start;
|
|
phdr->p_offset = offset;
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_flags = PF_R|PF_W|PF_X;
|
|
phdr->p_vaddr = (unsigned long)__va(start);
|
|
}
|
|
|
|
static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
|
|
{
|
|
char *bufp;
|
|
struct elfhdr *elf;
|
|
struct elf_phdr *phdr;
|
|
u64 boot_mem_dest_offset;
|
|
unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
|
|
|
|
bufp = (char *) fw_dump.elfcorehdr_addr;
|
|
fadump_init_elfcore_header(bufp);
|
|
elf = (struct elfhdr *)bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
|
|
/*
|
|
* Set up ELF PT_NOTE, a placeholder for CPU notes information.
|
|
* The notes info will be populated later by platform-specific code.
|
|
* Hence, this PT_NOTE will always be the first ELF note.
|
|
*
|
|
* NOTE: Any new ELF note addition should be placed after this note.
|
|
*/
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_flags = 0;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_align = 0;
|
|
phdr->p_offset = 0;
|
|
phdr->p_paddr = 0;
|
|
phdr->p_filesz = 0;
|
|
phdr->p_memsz = 0;
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
|
|
/* setup ELF PT_NOTE for vmcoreinfo */
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_flags = 0;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_align = 0;
|
|
phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr;
|
|
phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size;
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
|
|
/*
|
|
* Setup PT_LOAD sections. first include boot memory regions
|
|
* and then add rest of the memory regions.
|
|
*/
|
|
boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
|
|
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
|
|
fw_dump.boot_mem_sz[i],
|
|
boot_mem_dest_offset);
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
|
|
}
|
|
|
|
/* Memory reserved for fadump in first kernel */
|
|
ra_start = fw_dump.reserve_dump_area_start;
|
|
ra_size = get_fadump_area_size();
|
|
ra_end = ra_start + ra_size;
|
|
|
|
phdr = (struct elf_phdr *)bufp;
|
|
for_each_mem_range(i, &mstart, &mend) {
|
|
/* Boot memory regions already added, skip them now */
|
|
if (mstart < fw_dump.boot_mem_top) {
|
|
if (mend > fw_dump.boot_mem_top)
|
|
mstart = fw_dump.boot_mem_top;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/* Handle memblock regions overlaps with fadump reserved area */
|
|
if ((ra_start < mend) && (ra_end > mstart)) {
|
|
if ((mstart < ra_start) && (mend > ra_end)) {
|
|
populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr = (struct elf_phdr *)bufp;
|
|
populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
|
|
} else if (mstart < ra_start) {
|
|
populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
|
|
} else if (ra_end < mend) {
|
|
populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
|
|
}
|
|
} else {
|
|
/* No overlap with fadump reserved memory region */
|
|
populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
|
|
}
|
|
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr = (struct elf_phdr *) bufp;
|
|
}
|
|
}
|
|
|
|
static unsigned long init_fadump_header(unsigned long addr)
|
|
{
|
|
struct fadump_crash_info_header *fdh;
|
|
|
|
if (!addr)
|
|
return 0;
|
|
|
|
fdh = __va(addr);
|
|
addr += sizeof(struct fadump_crash_info_header);
|
|
|
|
memset(fdh, 0, sizeof(struct fadump_crash_info_header));
|
|
fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
|
|
fdh->version = FADUMP_HEADER_VERSION;
|
|
/* We will set the crashing cpu id in crash_fadump() during crash. */
|
|
fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
|
|
|
|
/*
|
|
* The physical address and size of vmcoreinfo are required in the
|
|
* second kernel to prepare elfcorehdr.
|
|
*/
|
|
fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
|
|
fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
|
|
|
|
|
|
fdh->pt_regs_sz = sizeof(struct pt_regs);
|
|
/*
|
|
* When LPAR is terminated by PYHP, ensure all possible CPUs'
|
|
* register data is processed while exporting the vmcore.
|
|
*/
|
|
fdh->cpu_mask = *cpu_possible_mask;
|
|
fdh->cpu_mask_sz = sizeof(struct cpumask);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int register_fadump(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* If no memory is reserved then we can not register for firmware-
|
|
* assisted dump.
|
|
*/
|
|
if (!fw_dump.reserve_dump_area_size)
|
|
return -ENODEV;
|
|
|
|
addr = fw_dump.fadumphdr_addr;
|
|
|
|
/* Initialize fadump crash info header. */
|
|
addr = init_fadump_header(addr);
|
|
|
|
/* register the future kernel dump with firmware. */
|
|
pr_debug("Registering for firmware-assisted kernel dump...\n");
|
|
return fw_dump.ops->fadump_register(&fw_dump);
|
|
}
|
|
|
|
void fadump_cleanup(void)
|
|
{
|
|
if (!fw_dump.fadump_supported)
|
|
return;
|
|
|
|
/* Invalidate the registration only if dump is active. */
|
|
if (fw_dump.dump_active) {
|
|
pr_debug("Invalidating firmware-assisted dump registration\n");
|
|
fw_dump.ops->fadump_invalidate(&fw_dump);
|
|
} else if (fw_dump.dump_registered) {
|
|
/* Un-register Firmware-assisted dump if it was registered. */
|
|
fw_dump.ops->fadump_unregister(&fw_dump);
|
|
}
|
|
|
|
if (fw_dump.ops->fadump_cleanup)
|
|
fw_dump.ops->fadump_cleanup(&fw_dump);
|
|
}
|
|
|
|
static void fadump_free_reserved_memory(unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long time_limit = jiffies + HZ;
|
|
|
|
pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
|
|
PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
|
free_reserved_page(pfn_to_page(pfn));
|
|
|
|
if (time_after(jiffies, time_limit)) {
|
|
cond_resched();
|
|
time_limit = jiffies + HZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Skip memory holes and free memory that was actually reserved.
|
|
*/
|
|
static void fadump_release_reserved_area(u64 start, u64 end)
|
|
{
|
|
unsigned long reg_spfn, reg_epfn;
|
|
u64 tstart, tend, spfn, epfn;
|
|
int i;
|
|
|
|
spfn = PHYS_PFN(start);
|
|
epfn = PHYS_PFN(end);
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) {
|
|
tstart = max_t(u64, spfn, reg_spfn);
|
|
tend = min_t(u64, epfn, reg_epfn);
|
|
|
|
if (tstart < tend) {
|
|
fadump_free_reserved_memory(tstart, tend);
|
|
|
|
if (tend == epfn)
|
|
break;
|
|
|
|
spfn = tend;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sort the mem ranges in-place and merge adjacent ranges
|
|
* to minimize the memory ranges count.
|
|
*/
|
|
static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
|
|
{
|
|
struct fadump_memory_range *mem_ranges;
|
|
u64 base, size;
|
|
int i, j, idx;
|
|
|
|
if (!reserved_mrange_info.mem_range_cnt)
|
|
return;
|
|
|
|
/* Sort the memory ranges */
|
|
mem_ranges = mrange_info->mem_ranges;
|
|
for (i = 0; i < mrange_info->mem_range_cnt; i++) {
|
|
idx = i;
|
|
for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
|
|
if (mem_ranges[idx].base > mem_ranges[j].base)
|
|
idx = j;
|
|
}
|
|
if (idx != i)
|
|
swap(mem_ranges[idx], mem_ranges[i]);
|
|
}
|
|
|
|
/* Merge adjacent reserved ranges */
|
|
idx = 0;
|
|
for (i = 1; i < mrange_info->mem_range_cnt; i++) {
|
|
base = mem_ranges[i-1].base;
|
|
size = mem_ranges[i-1].size;
|
|
if (mem_ranges[i].base == (base + size))
|
|
mem_ranges[idx].size += mem_ranges[i].size;
|
|
else {
|
|
idx++;
|
|
if (i == idx)
|
|
continue;
|
|
|
|
mem_ranges[idx] = mem_ranges[i];
|
|
}
|
|
}
|
|
mrange_info->mem_range_cnt = idx + 1;
|
|
}
|
|
|
|
/*
|
|
* Scan reserved-ranges to consider them while reserving/releasing
|
|
* memory for FADump.
|
|
*/
|
|
static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
|
|
{
|
|
const __be32 *prop;
|
|
int len, ret = -1;
|
|
unsigned long i;
|
|
|
|
/* reserved-ranges already scanned */
|
|
if (reserved_mrange_info.mem_range_cnt != 0)
|
|
return;
|
|
|
|
prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
|
|
if (!prop)
|
|
return;
|
|
|
|
/*
|
|
* Each reserved range is an (address,size) pair, 2 cells each,
|
|
* totalling 4 cells per range.
|
|
*/
|
|
for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
|
|
u64 base, size;
|
|
|
|
base = of_read_number(prop + (i * 4) + 0, 2);
|
|
size = of_read_number(prop + (i * 4) + 2, 2);
|
|
|
|
if (size) {
|
|
ret = fadump_add_mem_range(&reserved_mrange_info,
|
|
base, base + size);
|
|
if (ret < 0) {
|
|
pr_warn("some reserved ranges are ignored!\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compact reserved ranges */
|
|
sort_and_merge_mem_ranges(&reserved_mrange_info);
|
|
}
|
|
|
|
/*
|
|
* Release the memory that was reserved during early boot to preserve the
|
|
* crash'ed kernel's memory contents except reserved dump area (permanent
|
|
* reservation) and reserved ranges used by F/W. The released memory will
|
|
* be available for general use.
|
|
*/
|
|
static void fadump_release_memory(u64 begin, u64 end)
|
|
{
|
|
u64 ra_start, ra_end, tstart;
|
|
int i, ret;
|
|
|
|
ra_start = fw_dump.reserve_dump_area_start;
|
|
ra_end = ra_start + fw_dump.reserve_dump_area_size;
|
|
|
|
/*
|
|
* If reserved ranges array limit is hit, overwrite the last reserved
|
|
* memory range with reserved dump area to ensure it is excluded from
|
|
* the memory being released (reused for next FADump registration).
|
|
*/
|
|
if (reserved_mrange_info.mem_range_cnt ==
|
|
reserved_mrange_info.max_mem_ranges)
|
|
reserved_mrange_info.mem_range_cnt--;
|
|
|
|
ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
|
|
if (ret != 0)
|
|
return;
|
|
|
|
/* Get the reserved ranges list in order first. */
|
|
sort_and_merge_mem_ranges(&reserved_mrange_info);
|
|
|
|
/* Exclude reserved ranges and release remaining memory */
|
|
tstart = begin;
|
|
for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
|
|
ra_start = reserved_mrange_info.mem_ranges[i].base;
|
|
ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
|
|
|
|
if (tstart >= ra_end)
|
|
continue;
|
|
|
|
if (tstart < ra_start)
|
|
fadump_release_reserved_area(tstart, ra_start);
|
|
tstart = ra_end;
|
|
}
|
|
|
|
if (tstart < end)
|
|
fadump_release_reserved_area(tstart, end);
|
|
}
|
|
|
|
static void fadump_free_elfcorehdr_buf(void)
|
|
{
|
|
if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
|
|
return;
|
|
|
|
/*
|
|
* Before freeing the memory of `elfcorehdr`, reset the global
|
|
* `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
|
|
* invalid memory.
|
|
*/
|
|
elfcorehdr_addr = ELFCORE_ADDR_ERR;
|
|
fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
|
|
fw_dump.elfcorehdr_addr = 0;
|
|
fw_dump.elfcorehdr_size = 0;
|
|
}
|
|
|
|
static void fadump_invalidate_release_mem(void)
|
|
{
|
|
mutex_lock(&fadump_mutex);
|
|
if (!fw_dump.dump_active) {
|
|
mutex_unlock(&fadump_mutex);
|
|
return;
|
|
}
|
|
|
|
fadump_cleanup();
|
|
mutex_unlock(&fadump_mutex);
|
|
|
|
fadump_free_elfcorehdr_buf();
|
|
fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
|
|
fadump_free_cpu_notes_buf();
|
|
|
|
/*
|
|
* Setup kernel metadata and initialize the kernel dump
|
|
* memory structure for FADump re-registration.
|
|
*/
|
|
if (fw_dump.ops->fadump_setup_metadata &&
|
|
(fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
|
|
pr_warn("Failed to setup kernel metadata!\n");
|
|
fw_dump.ops->fadump_init_mem_struct(&fw_dump);
|
|
}
|
|
|
|
static ssize_t release_mem_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int input = -1;
|
|
|
|
if (!fw_dump.dump_active)
|
|
return -EPERM;
|
|
|
|
if (kstrtoint(buf, 0, &input))
|
|
return -EINVAL;
|
|
|
|
if (input == 1) {
|
|
/*
|
|
* Take away the '/proc/vmcore'. We are releasing the dump
|
|
* memory, hence it will not be valid anymore.
|
|
*/
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
vmcore_cleanup();
|
|
#endif
|
|
fadump_invalidate_release_mem();
|
|
|
|
} else
|
|
return -EINVAL;
|
|
return count;
|
|
}
|
|
|
|
/* Release the reserved memory and disable the FADump */
|
|
static void __init unregister_fadump(void)
|
|
{
|
|
fadump_cleanup();
|
|
fadump_release_memory(fw_dump.reserve_dump_area_start,
|
|
fw_dump.reserve_dump_area_size);
|
|
fw_dump.fadump_enabled = 0;
|
|
kobject_put(fadump_kobj);
|
|
}
|
|
|
|
static ssize_t enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
|
|
}
|
|
|
|
/*
|
|
* /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
|
|
* to usersapce that fadump re-registration is not required on memory
|
|
* hotplug events.
|
|
*/
|
|
static ssize_t hotplug_ready_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", 1);
|
|
}
|
|
|
|
static ssize_t mem_reserved_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
|
|
}
|
|
|
|
static ssize_t registered_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", fw_dump.dump_registered);
|
|
}
|
|
|
|
static ssize_t bootargs_append_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
|
|
}
|
|
|
|
static ssize_t bootargs_append_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
char *params;
|
|
|
|
if (!fw_dump.fadump_enabled || fw_dump.dump_active)
|
|
return -EPERM;
|
|
|
|
if (count >= COMMAND_LINE_SIZE)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Fail here instead of handling this scenario with
|
|
* some silly workaround in capture kernel.
|
|
*/
|
|
if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
|
|
pr_err("Appending parameters exceeds cmdline size!\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
params = __va(fw_dump.param_area);
|
|
strscpy_pad(params, buf, COMMAND_LINE_SIZE);
|
|
/* Remove newline character at the end. */
|
|
if (params[count-1] == '\n')
|
|
params[count-1] = '\0';
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t registered_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
int input = -1;
|
|
|
|
if (!fw_dump.fadump_enabled || fw_dump.dump_active)
|
|
return -EPERM;
|
|
|
|
if (kstrtoint(buf, 0, &input))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&fadump_mutex);
|
|
|
|
switch (input) {
|
|
case 0:
|
|
if (fw_dump.dump_registered == 0) {
|
|
goto unlock_out;
|
|
}
|
|
|
|
/* Un-register Firmware-assisted dump */
|
|
pr_debug("Un-register firmware-assisted dump\n");
|
|
fw_dump.ops->fadump_unregister(&fw_dump);
|
|
break;
|
|
case 1:
|
|
if (fw_dump.dump_registered == 1) {
|
|
/* Un-register Firmware-assisted dump */
|
|
fw_dump.ops->fadump_unregister(&fw_dump);
|
|
}
|
|
/* Register Firmware-assisted dump */
|
|
ret = register_fadump();
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
unlock_out:
|
|
mutex_unlock(&fadump_mutex);
|
|
return ret < 0 ? ret : count;
|
|
}
|
|
|
|
static int fadump_region_show(struct seq_file *m, void *private)
|
|
{
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
mutex_lock(&fadump_mutex);
|
|
fw_dump.ops->fadump_region_show(&fw_dump, m);
|
|
mutex_unlock(&fadump_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
|
|
static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
|
|
static struct kobj_attribute register_attr = __ATTR_RW(registered);
|
|
static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
|
|
static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
|
|
static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
|
|
|
|
static struct attribute *fadump_attrs[] = {
|
|
&enable_attr.attr,
|
|
®ister_attr.attr,
|
|
&mem_reserved_attr.attr,
|
|
&hotplug_ready_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
ATTRIBUTE_GROUPS(fadump);
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(fadump_region);
|
|
|
|
static void __init fadump_init_files(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
|
|
if (!fadump_kobj) {
|
|
pr_err("failed to create fadump kobject\n");
|
|
return;
|
|
}
|
|
|
|
debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
|
|
&fadump_region_fops);
|
|
|
|
if (fw_dump.dump_active) {
|
|
rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
|
|
if (rc)
|
|
pr_err("unable to create release_mem sysfs file (%d)\n",
|
|
rc);
|
|
}
|
|
|
|
rc = sysfs_create_groups(fadump_kobj, fadump_groups);
|
|
if (rc) {
|
|
pr_err("sysfs group creation failed (%d), unregistering FADump",
|
|
rc);
|
|
unregister_fadump();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
|
|
* create symlink at old location to maintain backward compatibility.
|
|
*
|
|
* - fadump_enabled -> fadump/enabled
|
|
* - fadump_registered -> fadump/registered
|
|
* - fadump_release_mem -> fadump/release_mem
|
|
*/
|
|
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
|
|
"enabled", "fadump_enabled");
|
|
if (rc) {
|
|
pr_err("unable to create fadump_enabled symlink (%d)", rc);
|
|
return;
|
|
}
|
|
|
|
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
|
|
"registered",
|
|
"fadump_registered");
|
|
if (rc) {
|
|
pr_err("unable to create fadump_registered symlink (%d)", rc);
|
|
sysfs_remove_link(kernel_kobj, "fadump_enabled");
|
|
return;
|
|
}
|
|
|
|
if (fw_dump.dump_active) {
|
|
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
|
|
fadump_kobj,
|
|
"release_mem",
|
|
"fadump_release_mem");
|
|
if (rc)
|
|
pr_err("unable to create fadump_release_mem symlink (%d)",
|
|
rc);
|
|
}
|
|
return;
|
|
}
|
|
|
|
static int __init fadump_setup_elfcorehdr_buf(void)
|
|
{
|
|
int elf_phdr_cnt;
|
|
unsigned long elfcorehdr_size;
|
|
|
|
/*
|
|
* Program header for CPU notes comes first, followed by one for
|
|
* vmcoreinfo, and the remaining program headers correspond to
|
|
* memory regions.
|
|
*/
|
|
elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
|
|
elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
|
|
elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
|
|
|
|
fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
|
|
if (!fw_dump.elfcorehdr_addr) {
|
|
pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
|
|
elfcorehdr_size);
|
|
return -ENOMEM;
|
|
}
|
|
fw_dump.elfcorehdr_size = elfcorehdr_size;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if the fadump header of crashed kernel is compatible with fadump kernel.
|
|
*
|
|
* It checks the magic number, endianness, and size of non-primitive type
|
|
* members of fadump header to ensure safe dump collection.
|
|
*/
|
|
static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
|
|
{
|
|
if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
|
|
pr_err("Old magic number, can't process the dump.\n");
|
|
return false;
|
|
}
|
|
|
|
if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
|
|
if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
|
|
pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
|
|
else
|
|
pr_err("Fadump header is corrupted.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Dump collection is not safe if the size of non-primitive type members
|
|
* of the fadump header do not match between crashed and fadump kernel.
|
|
*/
|
|
if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
|
|
fdh->cpu_mask_sz != sizeof(struct cpumask)) {
|
|
pr_err("Fadump header size mismatch.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __init fadump_process(void)
|
|
{
|
|
struct fadump_crash_info_header *fdh;
|
|
|
|
fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
|
|
if (!fdh) {
|
|
pr_err("Crash info header is empty.\n");
|
|
goto err_out;
|
|
}
|
|
|
|
/* Avoid processing the dump if fadump header isn't compatible */
|
|
if (!is_fadump_header_compatible(fdh))
|
|
goto err_out;
|
|
|
|
/* Allocate buffer for elfcorehdr */
|
|
if (fadump_setup_elfcorehdr_buf())
|
|
goto err_out;
|
|
|
|
fadump_populate_elfcorehdr(fdh);
|
|
|
|
/* Let platform update the CPU notes in elfcorehdr */
|
|
if (fw_dump.ops->fadump_process(&fw_dump) < 0)
|
|
goto err_out;
|
|
|
|
/*
|
|
* elfcorehdr is now ready to be exported.
|
|
*
|
|
* set elfcorehdr_addr so that vmcore module will export the
|
|
* elfcorehdr through '/proc/vmcore'.
|
|
*/
|
|
elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
|
|
return;
|
|
|
|
err_out:
|
|
fadump_invalidate_release_mem();
|
|
}
|
|
|
|
/*
|
|
* Reserve memory to store additional parameters to be passed
|
|
* for fadump/capture kernel.
|
|
*/
|
|
static void __init fadump_setup_param_area(void)
|
|
{
|
|
phys_addr_t range_start, range_end;
|
|
|
|
if (!fw_dump.param_area_supported || fw_dump.dump_active)
|
|
return;
|
|
|
|
/* This memory can't be used by PFW or bootloader as it is shared across kernels */
|
|
if (radix_enabled()) {
|
|
/*
|
|
* Anywhere in the upper half should be good enough as all memory
|
|
* is accessible in real mode.
|
|
*/
|
|
range_start = memblock_end_of_DRAM() / 2;
|
|
range_end = memblock_end_of_DRAM();
|
|
} else {
|
|
/*
|
|
* Passing additional parameters is supported for hash MMU only
|
|
* if the first memory block size is 768MB or higher.
|
|
*/
|
|
if (ppc64_rma_size < 0x30000000)
|
|
return;
|
|
|
|
/*
|
|
* 640 MB to 768 MB is not used by PFW/bootloader. So, try reserving
|
|
* memory for passing additional parameters in this range to avoid
|
|
* being stomped on by PFW/bootloader.
|
|
*/
|
|
range_start = 0x2A000000;
|
|
range_end = range_start + 0x4000000;
|
|
}
|
|
|
|
fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
|
|
COMMAND_LINE_SIZE,
|
|
range_start,
|
|
range_end);
|
|
if (!fw_dump.param_area || sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr)) {
|
|
pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
|
|
return;
|
|
}
|
|
|
|
memset(phys_to_virt(fw_dump.param_area), 0, COMMAND_LINE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Prepare for firmware-assisted dump.
|
|
*/
|
|
int __init setup_fadump(void)
|
|
{
|
|
if (!fw_dump.fadump_supported)
|
|
return 0;
|
|
|
|
fadump_init_files();
|
|
fadump_show_config();
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 1;
|
|
|
|
/*
|
|
* If dump data is available then see if it is valid and prepare for
|
|
* saving it to the disk.
|
|
*/
|
|
if (fw_dump.dump_active) {
|
|
fadump_process();
|
|
}
|
|
/* Initialize the kernel dump memory structure and register with f/w */
|
|
else if (fw_dump.reserve_dump_area_size) {
|
|
fadump_setup_param_area();
|
|
fw_dump.ops->fadump_init_mem_struct(&fw_dump);
|
|
register_fadump();
|
|
}
|
|
|
|
/*
|
|
* In case of panic, fadump is triggered via ppc_panic_event()
|
|
* panic notifier. Setting crash_kexec_post_notifiers to 'true'
|
|
* lets panic() function take crash friendly path before panic
|
|
* notifiers are invoked.
|
|
*/
|
|
crash_kexec_post_notifiers = true;
|
|
|
|
return 1;
|
|
}
|
|
/*
|
|
* Use subsys_initcall_sync() here because there is dependency with
|
|
* crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
|
|
* is done before registering with f/w.
|
|
*/
|
|
subsys_initcall_sync(setup_fadump);
|
|
#else /* !CONFIG_PRESERVE_FA_DUMP */
|
|
|
|
/* Scan the Firmware Assisted dump configuration details. */
|
|
int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
|
|
return 0;
|
|
|
|
opal_fadump_dt_scan(&fw_dump, node);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
|
|
* preserve crash data. The subsequent memory preserving kernel boot
|
|
* is likely to process this crash data.
|
|
*/
|
|
int __init fadump_reserve_mem(void)
|
|
{
|
|
if (fw_dump.dump_active) {
|
|
/*
|
|
* If last boot has crashed then reserve all the memory
|
|
* above boot memory to preserve crash data.
|
|
*/
|
|
pr_info("Preserving crash data for processing in next boot.\n");
|
|
fadump_reserve_crash_area(fw_dump.boot_mem_top);
|
|
} else
|
|
pr_debug("FADump-aware kernel..\n");
|
|
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_PRESERVE_FA_DUMP */
|
|
|
|
/* Preserve everything above the base address */
|
|
static void __init fadump_reserve_crash_area(u64 base)
|
|
{
|
|
u64 i, mstart, mend, msize;
|
|
|
|
for_each_mem_range(i, &mstart, &mend) {
|
|
msize = mend - mstart;
|
|
|
|
if ((mstart + msize) < base)
|
|
continue;
|
|
|
|
if (mstart < base) {
|
|
msize -= (base - mstart);
|
|
mstart = base;
|
|
}
|
|
|
|
pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
|
|
(msize >> 20), mstart);
|
|
memblock_reserve(mstart, msize);
|
|
}
|
|
}
|