linux/drivers/gpu/drm/i915/intel_ddi.c
Sonika Jindal 9e45803465 drm/i915/skl: Add module parameter to select edp vswing table
This provides an option to override the value set by VBT
for selecting edp Vswing Pre-emph setting table.

v2: Adding comment about this being a temporary workaround and
making the parameter read-only (Jani)
v3: Changing mode to 0400 instead of 0 (Jani)

https://bugs.freedesktop.org/show_bug.cgi?id=89554
Signed-off-by: Sonika Jindal <sonika.jindal@intel.com>
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-08 13:03:41 +02:00

2804 lines
76 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include "i915_drv.h"
#include "intel_drv.h"
struct ddi_buf_trans {
u32 trans1; /* balance leg enable, de-emph level */
u32 trans2; /* vref sel, vswing */
};
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
* them for both DP and FDI transports, allowing those ports to
* automatically adapt to HDMI connections as well
*/
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0006000E },
{ 0x00D75FFF, 0x0005000A },
{ 0x00C30FFF, 0x00040006 },
{ 0x80AAAFFF, 0x000B0000 },
{ 0x00FFFFFF, 0x0005000A },
{ 0x00D75FFF, 0x000C0004 },
{ 0x80C30FFF, 0x000B0000 },
{ 0x00FFFFFF, 0x00040006 },
{ 0x80D75FFF, 0x000B0000 },
};
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0007000E },
{ 0x00D75FFF, 0x000F000A },
{ 0x00C30FFF, 0x00060006 },
{ 0x00AAAFFF, 0x001E0000 },
{ 0x00FFFFFF, 0x000F000A },
{ 0x00D75FFF, 0x00160004 },
{ 0x00C30FFF, 0x001E0000 },
{ 0x00FFFFFF, 0x00060006 },
{ 0x00D75FFF, 0x001E0000 },
};
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV d db */
{ 0x00FFFFFF, 0x0006000E }, /* 0: 400 400 0 */
{ 0x00E79FFF, 0x000E000C }, /* 1: 400 500 2 */
{ 0x00D75FFF, 0x0005000A }, /* 2: 400 600 3.5 */
{ 0x00FFFFFF, 0x0005000A }, /* 3: 600 600 0 */
{ 0x00E79FFF, 0x001D0007 }, /* 4: 600 750 2 */
{ 0x00D75FFF, 0x000C0004 }, /* 5: 600 900 3.5 */
{ 0x00FFFFFF, 0x00040006 }, /* 6: 800 800 0 */
{ 0x80E79FFF, 0x00030002 }, /* 7: 800 1000 2 */
{ 0x00FFFFFF, 0x00140005 }, /* 8: 850 850 0 */
{ 0x00FFFFFF, 0x000C0004 }, /* 9: 900 900 0 */
{ 0x00FFFFFF, 0x001C0003 }, /* 10: 950 950 0 */
{ 0x80FFFFFF, 0x00030002 }, /* 11: 1000 1000 0 */
};
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
{ 0x00FFFFFF, 0x00000012 },
{ 0x00EBAFFF, 0x00020011 },
{ 0x00C71FFF, 0x0006000F },
{ 0x00AAAFFF, 0x000E000A },
{ 0x00FFFFFF, 0x00020011 },
{ 0x00DB6FFF, 0x0005000F },
{ 0x00BEEFFF, 0x000A000C },
{ 0x00FFFFFF, 0x0005000F },
{ 0x00DB6FFF, 0x000A000C },
};
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0007000E },
{ 0x00D75FFF, 0x000E000A },
{ 0x00BEFFFF, 0x00140006 },
{ 0x80B2CFFF, 0x001B0002 },
{ 0x00FFFFFF, 0x000E000A },
{ 0x00DB6FFF, 0x00160005 },
{ 0x80C71FFF, 0x001A0002 },
{ 0x00F7DFFF, 0x00180004 },
{ 0x80D75FFF, 0x001B0002 },
};
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0001000E },
{ 0x00D75FFF, 0x0004000A },
{ 0x00C30FFF, 0x00070006 },
{ 0x00AAAFFF, 0x000C0000 },
{ 0x00FFFFFF, 0x0004000A },
{ 0x00D75FFF, 0x00090004 },
{ 0x00C30FFF, 0x000C0000 },
{ 0x00FFFFFF, 0x00070006 },
{ 0x00D75FFF, 0x000C0000 },
};
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV df db */
{ 0x00FFFFFF, 0x0007000E }, /* 0: 400 400 0 */
{ 0x00D75FFF, 0x000E000A }, /* 1: 400 600 3.5 */
{ 0x00BEFFFF, 0x00140006 }, /* 2: 400 800 6 */
{ 0x00FFFFFF, 0x0009000D }, /* 3: 450 450 0 */
{ 0x00FFFFFF, 0x000E000A }, /* 4: 600 600 0 */
{ 0x00D7FFFF, 0x00140006 }, /* 5: 600 800 2.5 */
{ 0x80CB2FFF, 0x001B0002 }, /* 6: 600 1000 4.5 */
{ 0x00FFFFFF, 0x00140006 }, /* 7: 800 800 0 */
{ 0x80E79FFF, 0x001B0002 }, /* 8: 800 1000 2 */
{ 0x80FFFFFF, 0x001B0002 }, /* 9: 1000 1000 0 */
};
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
{ 0x00000018, 0x000000a2 },
{ 0x00004014, 0x0000009B },
{ 0x00006012, 0x00000088 },
{ 0x00008010, 0x00000087 },
{ 0x00000018, 0x0000009B },
{ 0x00004014, 0x00000088 },
{ 0x00006012, 0x00000087 },
{ 0x00000018, 0x00000088 },
{ 0x00004014, 0x00000087 },
};
/* eDP 1.4 low vswing translation parameters */
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
{ 0x00000018, 0x000000a8 },
{ 0x00002016, 0x000000ab },
{ 0x00006012, 0x000000a2 },
{ 0x00008010, 0x00000088 },
{ 0x00000018, 0x000000ab },
{ 0x00004014, 0x000000a2 },
{ 0x00006012, 0x000000a6 },
{ 0x00000018, 0x000000a2 },
{ 0x00005013, 0x0000009c },
{ 0x00000018, 0x00000088 },
};
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000ac },
{ 0x00005012, 0x0000009d },
{ 0x00007011, 0x00000088 },
{ 0x00000018, 0x000000a1 },
{ 0x00000018, 0x00000098 },
{ 0x00004013, 0x00000088 },
{ 0x00006012, 0x00000087 },
{ 0x00000018, 0x000000df },
{ 0x00003015, 0x00000087 },
{ 0x00003015, 0x000000c7 },
{ 0x00000018, 0x000000c7 },
};
struct bxt_ddi_buf_trans {
u32 margin; /* swing value */
u32 scale; /* scale value */
u32 enable; /* scale enable */
u32 deemphasis;
bool default_index; /* true if the entry represents default value */
};
/* BSpec does not define separate vswing/pre-emphasis values for eDP.
* Using DP values for eDP as well.
*/
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
/* Idx NT mV diff db */
{ 52, 0, 0, 128, true }, /* 0: 400 0 */
{ 78, 0, 0, 85, false }, /* 1: 400 3.5 */
{ 104, 0, 0, 64, false }, /* 2: 400 6 */
{ 154, 0, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0, 0, 128, false }, /* 4: 600 0 */
{ 116, 0, 0, 85, false }, /* 5: 600 3.5 */
{ 154, 0, 0, 64, false }, /* 6: 600 6 */
{ 102, 0, 0, 128, false }, /* 7: 800 0 */
{ 154, 0, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
};
/* BSpec has 2 recommended values - entries 0 and 8.
* Using the entry with higher vswing.
*/
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
/* Idx NT mV diff db */
{ 52, 0, 0, 128, false }, /* 0: 400 0 */
{ 52, 0, 0, 85, false }, /* 1: 400 3.5 */
{ 52, 0, 0, 64, false }, /* 2: 400 6 */
{ 42, 0, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0, 0, 128, false }, /* 4: 600 0 */
{ 77, 0, 0, 85, false }, /* 5: 600 3.5 */
{ 77, 0, 0, 64, false }, /* 6: 600 6 */
{ 102, 0, 0, 128, false }, /* 7: 800 0 */
{ 102, 0, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
};
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
struct intel_digital_port **dig_port,
enum port *port)
{
struct drm_encoder *encoder = &intel_encoder->base;
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_DP_MST) {
*dig_port = enc_to_mst(encoder)->primary;
*port = (*dig_port)->port;
} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
*dig_port = enc_to_dig_port(encoder);
*port = (*dig_port)->port;
} else if (type == INTEL_OUTPUT_ANALOG) {
*dig_port = NULL;
*port = PORT_E;
} else {
DRM_ERROR("Invalid DDI encoder type %d\n", type);
BUG();
}
}
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
struct intel_digital_port *dig_port;
enum port port;
ddi_get_encoder_port(intel_encoder, &dig_port, &port);
return port;
}
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
return intel_dig_port->hdmi.hdmi_reg;
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. The buffer values are different for FDI and DP modes,
* but the HDMI/DVI fields are shared among those. So we program the DDI
* in either FDI or DP modes only, as HDMI connections will work with both
* of those
*/
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
bool supports_hdmi)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
size;
int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
const struct ddi_buf_trans *ddi_translations_fdi;
const struct ddi_buf_trans *ddi_translations_dp;
const struct ddi_buf_trans *ddi_translations_edp;
const struct ddi_buf_trans *ddi_translations_hdmi;
const struct ddi_buf_trans *ddi_translations;
if (IS_BROXTON(dev)) {
if (!supports_hdmi)
return;
/* Vswing programming for HDMI */
bxt_ddi_vswing_sequence(dev, hdmi_level, port,
INTEL_OUTPUT_HDMI);
return;
} else if (IS_SKYLAKE(dev)) {
ddi_translations_fdi = NULL;
ddi_translations_dp = skl_ddi_translations_dp;
n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
if (dev_priv->edp_low_vswing) {
ddi_translations_edp = skl_ddi_translations_edp;
n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
} else {
ddi_translations_edp = skl_ddi_translations_dp;
n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
}
ddi_translations_hdmi = skl_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
hdmi_default_entry = 7;
} else if (IS_BROADWELL(dev)) {
ddi_translations_fdi = bdw_ddi_translations_fdi;
ddi_translations_dp = bdw_ddi_translations_dp;
ddi_translations_edp = bdw_ddi_translations_edp;
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
} else if (IS_HASWELL(dev)) {
ddi_translations_fdi = hsw_ddi_translations_fdi;
ddi_translations_dp = hsw_ddi_translations_dp;
ddi_translations_edp = hsw_ddi_translations_dp;
ddi_translations_hdmi = hsw_ddi_translations_hdmi;
n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
hdmi_default_entry = 6;
} else {
WARN(1, "ddi translation table missing\n");
ddi_translations_edp = bdw_ddi_translations_dp;
ddi_translations_fdi = bdw_ddi_translations_fdi;
ddi_translations_dp = bdw_ddi_translations_dp;
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
}
switch (port) {
case PORT_A:
ddi_translations = ddi_translations_edp;
size = n_edp_entries;
break;
case PORT_B:
case PORT_C:
ddi_translations = ddi_translations_dp;
size = n_dp_entries;
break;
case PORT_D:
if (intel_dp_is_edp(dev, PORT_D)) {
ddi_translations = ddi_translations_edp;
size = n_edp_entries;
} else {
ddi_translations = ddi_translations_dp;
size = n_dp_entries;
}
break;
case PORT_E:
if (ddi_translations_fdi)
ddi_translations = ddi_translations_fdi;
else
ddi_translations = ddi_translations_dp;
size = n_dp_entries;
break;
default:
BUG();
}
for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
I915_WRITE(reg, ddi_translations[i].trans1);
reg += 4;
I915_WRITE(reg, ddi_translations[i].trans2);
reg += 4;
}
if (!supports_hdmi)
return;
/* Choose a good default if VBT is badly populated */
if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
hdmi_level >= n_hdmi_entries)
hdmi_level = hdmi_default_entry;
/* Entry 9 is for HDMI: */
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
reg += 4;
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
reg += 4;
}
/* Program DDI buffers translations for DP. By default, program ports A-D in DP
* mode and port E for FDI.
*/
void intel_prepare_ddi(struct drm_device *dev)
{
struct intel_encoder *intel_encoder;
bool visited[I915_MAX_PORTS] = { 0, };
if (!HAS_DDI(dev))
return;
for_each_intel_encoder(dev, intel_encoder) {
struct intel_digital_port *intel_dig_port;
enum port port;
bool supports_hdmi;
ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
if (visited[port])
continue;
supports_hdmi = intel_dig_port &&
intel_dig_port_supports_hdmi(intel_dig_port);
intel_prepare_ddi_buffers(dev, port, supports_hdmi);
visited[port] = true;
}
}
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
enum port port)
{
uint32_t reg = DDI_BUF_CTL(port);
int i;
for (i = 0; i < 16; i++) {
udelay(1);
if (I915_READ(reg) & DDI_BUF_IS_IDLE)
return;
}
DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
/* Starting with Haswell, different DDI ports can work in FDI mode for
* connection to the PCH-located connectors. For this, it is necessary to train
* both the DDI port and PCH receiver for the desired DDI buffer settings.
*
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
* please note that when FDI mode is active on DDI E, it shares 2 lines with
* DDI A (which is used for eDP)
*/
void hsw_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 temp, i, rx_ctl_val;
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
* mode set "sequence for CRT port" document:
* - TP1 to TP2 time with the default value
* - FDI delay to 90h
*
* WaFDIAutoLinkSetTimingOverrride:hsw
*/
I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
FDI_RX_PWRDN_LANE0_VAL(2) |
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
/* Enable the PCH Receiver FDI PLL */
rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
FDI_RX_PLL_ENABLE |
FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
udelay(220);
/* Switch from Rawclk to PCDclk */
rx_ctl_val |= FDI_PCDCLK;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
/* Configure Port Clock Select */
I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
/* Start the training iterating through available voltages and emphasis,
* testing each value twice. */
for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
/* Configure DP_TP_CTL with auto-training */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 |
DP_TP_CTL_ENABLE);
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
* DDI E does not support port reversal, the functionality is
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
* port reversal bit */
I915_WRITE(DDI_BUF_CTL(PORT_E),
DDI_BUF_CTL_ENABLE |
((intel_crtc->config->fdi_lanes - 1) << 1) |
DDI_BUF_TRANS_SELECT(i / 2));
POSTING_READ(DDI_BUF_CTL(PORT_E));
udelay(600);
/* Program PCH FDI Receiver TU */
I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
/* Enable PCH FDI Receiver with auto-training */
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
/* Wait for FDI receiver lane calibration */
udelay(30);
/* Unset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(_FDI_RXA_MISC);
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
I915_WRITE(_FDI_RXA_MISC, temp);
POSTING_READ(_FDI_RXA_MISC);
/* Wait for FDI auto training time */
udelay(5);
temp = I915_READ(DP_TP_STATUS(PORT_E));
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
/* Enable normal pixel sending for FDI */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_LINK_TRAIN_NORMAL |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_ENABLE);
return;
}
temp = I915_READ(DDI_BUF_CTL(PORT_E));
temp &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
POSTING_READ(DDI_BUF_CTL(PORT_E));
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
temp = I915_READ(DP_TP_CTL(PORT_E));
temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(PORT_E), temp);
POSTING_READ(DP_TP_CTL(PORT_E));
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
rx_ctl_val &= ~FDI_RX_ENABLE;
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
POSTING_READ(_FDI_RXA_CTL);
/* Reset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(_FDI_RXA_MISC);
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(_FDI_RXA_MISC, temp);
POSTING_READ(_FDI_RXA_MISC);
}
DRM_ERROR("FDI link training failed!\n");
}
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(&encoder->base);
intel_dp->DP = intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
}
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder, *ret = NULL;
int num_encoders = 0;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
ret = intel_encoder;
num_encoders++;
}
if (num_encoders != 1)
WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(intel_crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
struct intel_encoder *
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_encoder *ret = NULL;
struct drm_atomic_state *state;
int num_encoders = 0;
int i;
state = crtc_state->base.state;
for (i = 0; i < state->num_connector; i++) {
if (!state->connectors[i] ||
state->connector_states[i]->crtc != crtc_state->base.crtc)
continue;
ret = to_intel_encoder(state->connector_states[i]->best_encoder);
num_encoders++;
}
WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
#define P_MIN 2
#define P_MAX 64
#define P_INC 2
/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800
#define abs_diff(a, b) ({ \
typeof(a) __a = (a); \
typeof(b) __b = (b); \
(void) (&__a == &__b); \
__a > __b ? (__a - __b) : (__b - __a); })
struct wrpll_rnp {
unsigned p, n2, r2;
};
static unsigned wrpll_get_budget_for_freq(int clock)
{
unsigned budget;
switch (clock) {
case 25175000:
case 25200000:
case 27000000:
case 27027000:
case 37762500:
case 37800000:
case 40500000:
case 40541000:
case 54000000:
case 54054000:
case 59341000:
case 59400000:
case 72000000:
case 74176000:
case 74250000:
case 81000000:
case 81081000:
case 89012000:
case 89100000:
case 108000000:
case 108108000:
case 111264000:
case 111375000:
case 148352000:
case 148500000:
case 162000000:
case 162162000:
case 222525000:
case 222750000:
case 296703000:
case 297000000:
budget = 0;
break;
case 233500000:
case 245250000:
case 247750000:
case 253250000:
case 298000000:
budget = 1500;
break;
case 169128000:
case 169500000:
case 179500000:
case 202000000:
budget = 2000;
break;
case 256250000:
case 262500000:
case 270000000:
case 272500000:
case 273750000:
case 280750000:
case 281250000:
case 286000000:
case 291750000:
budget = 4000;
break;
case 267250000:
case 268500000:
budget = 5000;
break;
default:
budget = 1000;
break;
}
return budget;
}
static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
unsigned r2, unsigned n2, unsigned p,
struct wrpll_rnp *best)
{
uint64_t a, b, c, d, diff, diff_best;
/* No best (r,n,p) yet */
if (best->p == 0) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
return;
}
/*
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
* freq2k.
*
* delta = 1e6 *
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
* freq2k;
*
* and we would like delta <= budget.
*
* If the discrepancy is above the PPM-based budget, always prefer to
* improve upon the previous solution. However, if you're within the
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
*/
a = freq2k * budget * p * r2;
b = freq2k * budget * best->p * best->r2;
diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
diff_best = abs_diff(freq2k * best->p * best->r2,
LC_FREQ_2K * best->n2);
c = 1000000 * diff;
d = 1000000 * diff_best;
if (a < c && b < d) {
/* If both are above the budget, pick the closer */
if (best->p * best->r2 * diff < p * r2 * diff_best) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
} else if (a >= c && b < d) {
/* If A is below the threshold but B is above it? Update. */
best->p = p;
best->n2 = n2;
best->r2 = r2;
} else if (a >= c && b >= d) {
/* Both are below the limit, so pick the higher n2/(r2*r2) */
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
}
/* Otherwise a < c && b >= d, do nothing */
}
static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
int reg)
{
int refclk = LC_FREQ;
int n, p, r;
u32 wrpll;
wrpll = I915_READ(reg);
switch (wrpll & WRPLL_PLL_REF_MASK) {
case WRPLL_PLL_SSC:
case WRPLL_PLL_NON_SSC:
/*
* We could calculate spread here, but our checking
* code only cares about 5% accuracy, and spread is a max of
* 0.5% downspread.
*/
refclk = 135;
break;
case WRPLL_PLL_LCPLL:
refclk = LC_FREQ;
break;
default:
WARN(1, "bad wrpll refclk\n");
return 0;
}
r = wrpll & WRPLL_DIVIDER_REF_MASK;
p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
/* Convert to KHz, p & r have a fixed point portion */
return (refclk * n * 100) / (p * r);
}
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
uint32_t dpll)
{
uint32_t cfgcr1_reg, cfgcr2_reg;
uint32_t cfgcr1_val, cfgcr2_val;
uint32_t p0, p1, p2, dco_freq;
cfgcr1_reg = GET_CFG_CR1_REG(dpll);
cfgcr2_reg = GET_CFG_CR2_REG(dpll);
cfgcr1_val = I915_READ(cfgcr1_reg);
cfgcr2_val = I915_READ(cfgcr2_reg);
p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR2_PDIV_1:
p0 = 1;
break;
case DPLL_CFGCR2_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR2_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR2_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR2_KDIV_5:
p2 = 5;
break;
case DPLL_CFGCR2_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR2_KDIV_3:
p2 = 3;
break;
case DPLL_CFGCR2_KDIV_1:
p2 = 1;
break;
}
dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
1000) / 0x8000;
return dco_freq / (p0 * p1 * p2 * 5);
}
static void skl_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
int link_clock = 0;
uint32_t dpll_ctl1, dpll;
dpll = pipe_config->ddi_pll_sel;
dpll_ctl1 = I915_READ(DPLL_CTRL1);
if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
link_clock = skl_calc_wrpll_link(dev_priv, dpll);
} else {
link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
switch (link_clock) {
case DPLL_CTRL1_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CTRL1_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CTRL1_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CTRL1_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CTRL1_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CTRL1_LINK_RATE_2700:
link_clock = 270000;
break;
default:
WARN(1, "Unsupported link rate\n");
break;
}
link_clock *= 2;
}
pipe_config->port_clock = link_clock;
if (pipe_config->has_dp_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else
pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
}
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
int link_clock = 0;
u32 val, pll;
val = pipe_config->ddi_pll_sel;
switch (val & PORT_CLK_SEL_MASK) {
case PORT_CLK_SEL_LCPLL_810:
link_clock = 81000;
break;
case PORT_CLK_SEL_LCPLL_1350:
link_clock = 135000;
break;
case PORT_CLK_SEL_LCPLL_2700:
link_clock = 270000;
break;
case PORT_CLK_SEL_WRPLL1:
link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
break;
case PORT_CLK_SEL_WRPLL2:
link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
break;
case PORT_CLK_SEL_SPLL:
pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
if (pll == SPLL_PLL_FREQ_810MHz)
link_clock = 81000;
else if (pll == SPLL_PLL_FREQ_1350MHz)
link_clock = 135000;
else if (pll == SPLL_PLL_FREQ_2700MHz)
link_clock = 270000;
else {
WARN(1, "bad spll freq\n");
return;
}
break;
default:
WARN(1, "bad port clock sel\n");
return;
}
pipe_config->port_clock = link_clock * 2;
if (pipe_config->has_pch_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->fdi_m_n);
else if (pipe_config->has_dp_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else
pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
}
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
enum intel_dpll_id dpll)
{
/* FIXME formula not available in bspec */
return 0;
}
static void bxt_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
enum port port = intel_ddi_get_encoder_port(encoder);
uint32_t dpll = port;
pipe_config->port_clock =
bxt_calc_pll_link(dev_priv, dpll);
if (pipe_config->has_dp_encoder)
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else
pipe_config->base.adjusted_mode.crtc_clock =
pipe_config->port_clock;
}
void intel_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
if (INTEL_INFO(dev)->gen <= 8)
hsw_ddi_clock_get(encoder, pipe_config);
else if (IS_SKYLAKE(dev))
skl_ddi_clock_get(encoder, pipe_config);
else if (IS_BROXTON(dev))
bxt_ddi_clock_get(encoder, pipe_config);
}
static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
uint64_t freq2k;
unsigned p, n2, r2;
struct wrpll_rnp best = { 0, 0, 0 };
unsigned budget;
freq2k = clock / 100;
budget = wrpll_get_budget_for_freq(clock);
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
* and directly pass the LC PLL to it. */
if (freq2k == 5400000) {
*n2_out = 2;
*p_out = 1;
*r2_out = 2;
return;
}
/*
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
* the WR PLL.
*
* We want R so that REF_MIN <= Ref <= REF_MAX.
* Injecting R2 = 2 * R gives:
* REF_MAX * r2 > LC_FREQ * 2 and
* REF_MIN * r2 < LC_FREQ * 2
*
* Which means the desired boundaries for r2 are:
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
*
*/
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
r2 <= LC_FREQ * 2 / REF_MIN;
r2++) {
/*
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
*
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
* VCO_MAX * r2 > n2 * LC_FREQ and
* VCO_MIN * r2 < n2 * LC_FREQ)
*
* Which means the desired boundaries for n2 are:
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
*/
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
n2 <= VCO_MAX * r2 / LC_FREQ;
n2++) {
for (p = P_MIN; p <= P_MAX; p += P_INC)
wrpll_update_rnp(freq2k, budget,
r2, n2, p, &best);
}
}
*n2_out = best.n2;
*p_out = best.p;
*r2_out = best.r2;
}
static bool
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder,
int clock)
{
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
struct intel_shared_dpll *pll;
uint32_t val;
unsigned p, n2, r2;
hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
WRPLL_DIVIDER_POST(p);
crtc_state->dpll_hw_state.wrpll = val;
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return false;
}
crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
}
return true;
}
struct skl_wrpll_params {
uint32_t dco_fraction;
uint32_t dco_integer;
uint32_t qdiv_ratio;
uint32_t qdiv_mode;
uint32_t kdiv;
uint32_t pdiv;
uint32_t central_freq;
};
static void
skl_ddi_calculate_wrpll(int clock /* in Hz */,
struct skl_wrpll_params *wrpll_params)
{
uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
uint64_t dco_central_freq[3] = {8400000000ULL,
9000000000ULL,
9600000000ULL};
uint32_t min_dco_deviation = 400;
uint32_t min_dco_index = 3;
uint32_t P0[4] = {1, 2, 3, 7};
uint32_t P2[4] = {1, 2, 3, 5};
bool found = false;
uint32_t candidate_p = 0;
uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
uint32_t candidate_p2[3] = {0};
uint32_t dco_central_freq_deviation[3];
uint32_t i, P1, k, dco_count;
bool retry_with_odd = false;
uint64_t dco_freq;
/* Determine P0, P1 or P2 */
for (dco_count = 0; dco_count < 3; dco_count++) {
found = false;
candidate_p =
div64_u64(dco_central_freq[dco_count], afe_clock);
if (retry_with_odd == false)
candidate_p = (candidate_p % 2 == 0 ?
candidate_p : candidate_p + 1);
for (P1 = 1; P1 < candidate_p; P1++) {
for (i = 0; i < 4; i++) {
if (!(P0[i] != 1 || P1 == 1))
continue;
for (k = 0; k < 4; k++) {
if (P1 != 1 && P2[k] != 2)
continue;
if (candidate_p == P0[i] * P1 * P2[k]) {
/* Found possible P0, P1, P2 */
found = true;
candidate_p0[dco_count] = P0[i];
candidate_p1[dco_count] = P1;
candidate_p2[dco_count] = P2[k];
goto found;
}
}
}
}
found:
if (found) {
dco_central_freq_deviation[dco_count] =
div64_u64(10000 *
abs_diff((candidate_p * afe_clock),
dco_central_freq[dco_count]),
dco_central_freq[dco_count]);
if (dco_central_freq_deviation[dco_count] <
min_dco_deviation) {
min_dco_deviation =
dco_central_freq_deviation[dco_count];
min_dco_index = dco_count;
}
}
if (min_dco_index > 2 && dco_count == 2) {
retry_with_odd = true;
dco_count = 0;
}
}
if (min_dco_index > 2) {
WARN(1, "No valid values found for the given pixel clock\n");
} else {
wrpll_params->central_freq = dco_central_freq[min_dco_index];
switch (dco_central_freq[min_dco_index]) {
case 9600000000ULL:
wrpll_params->central_freq = 0;
break;
case 9000000000ULL:
wrpll_params->central_freq = 1;
break;
case 8400000000ULL:
wrpll_params->central_freq = 3;
}
switch (candidate_p0[min_dco_index]) {
case 1:
wrpll_params->pdiv = 0;
break;
case 2:
wrpll_params->pdiv = 1;
break;
case 3:
wrpll_params->pdiv = 2;
break;
case 7:
wrpll_params->pdiv = 4;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
switch (candidate_p2[min_dco_index]) {
case 5:
wrpll_params->kdiv = 0;
break;
case 2:
wrpll_params->kdiv = 1;
break;
case 3:
wrpll_params->kdiv = 2;
break;
case 1:
wrpll_params->kdiv = 3;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
wrpll_params->qdiv_mode =
(wrpll_params->qdiv_ratio == 1) ? 0 : 1;
dco_freq = candidate_p0[min_dco_index] *
candidate_p1[min_dco_index] *
candidate_p2[min_dco_index] * afe_clock;
/*
* Intermediate values are in Hz.
* Divide by MHz to match bsepc
*/
wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
wrpll_params->dco_fraction =
div_u64(((div_u64(dco_freq, 24) -
wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
}
}
static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder,
int clock)
{
struct intel_shared_dpll *pll;
uint32_t ctrl1, cfgcr1, cfgcr2;
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
struct skl_wrpll_params wrpll_params = { 0, };
ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
wrpll_params.central_freq;
} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
struct drm_encoder *encoder = &intel_encoder->base;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
switch (intel_dp->link_bw) {
case DP_LINK_BW_1_62:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
break;
case DP_LINK_BW_2_7:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
break;
case DP_LINK_BW_5_4:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
break;
}
cfgcr1 = cfgcr2 = 0;
} else /* eDP */
return true;
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return false;
}
/* shared DPLL id 0 is DPLL 1 */
crtc_state->ddi_pll_sel = pll->id + 1;
return true;
}
/* bxt clock parameters */
struct bxt_clk_div {
uint32_t p1;
uint32_t p2;
uint32_t m2_int;
uint32_t m2_frac;
bool m2_frac_en;
uint32_t n;
uint32_t prop_coef;
uint32_t int_coef;
uint32_t gain_ctl;
uint32_t targ_cnt;
uint32_t lanestagger;
};
/* pre-calculated values for DP linkrates */
static struct bxt_clk_div bxt_dp_clk_val[7] = {
/* 162 */ {4, 2, 32, 1677722, 1, 1, 5, 11, 2, 9, 0xd},
/* 270 */ {4, 1, 27, 0, 0, 1, 3, 8, 1, 9, 0xd},
/* 540 */ {2, 1, 27, 0, 0, 1, 3, 8, 1, 9, 0x18},
/* 216 */ {3, 2, 32, 1677722, 1, 1, 5, 11, 2, 9, 0xd},
/* 243 */ {4, 1, 24, 1258291, 1, 1, 5, 11, 2, 9, 0xd},
/* 324 */ {4, 1, 32, 1677722, 1, 1, 5, 11, 2, 9, 0xd},
/* 432 */ {3, 1, 32, 1677722, 1, 1, 5, 11, 2, 9, 0x18}
};
static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder,
int clock)
{
struct intel_shared_dpll *pll;
struct bxt_clk_div clk_div = {0};
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
intel_clock_t best_clock;
/* Calculate HDMI div */
/*
* FIXME: tie the following calculation into
* i9xx_crtc_compute_clock
*/
if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
clock, pipe_name(intel_crtc->pipe));
return false;
}
clk_div.p1 = best_clock.p1;
clk_div.p2 = best_clock.p2;
WARN_ON(best_clock.m1 != 2);
clk_div.n = best_clock.n;
clk_div.m2_int = best_clock.m2 >> 22;
clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
clk_div.m2_frac_en = clk_div.m2_frac != 0;
/* FIXME: set coef, gain, targcnt based on freq band */
clk_div.prop_coef = 5;
clk_div.int_coef = 11;
clk_div.gain_ctl = 2;
clk_div.targ_cnt = 9;
if (clock > 270000)
clk_div.lanestagger = 0x18;
else if (clock > 135000)
clk_div.lanestagger = 0x0d;
else if (clock > 67000)
clk_div.lanestagger = 0x07;
else if (clock > 33000)
clk_div.lanestagger = 0x04;
else
clk_div.lanestagger = 0x02;
} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
intel_encoder->type == INTEL_OUTPUT_EDP) {
struct drm_encoder *encoder = &intel_encoder->base;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
switch (intel_dp->link_bw) {
case DP_LINK_BW_1_62:
clk_div = bxt_dp_clk_val[0];
break;
case DP_LINK_BW_2_7:
clk_div = bxt_dp_clk_val[1];
break;
case DP_LINK_BW_5_4:
clk_div = bxt_dp_clk_val[2];
break;
default:
clk_div = bxt_dp_clk_val[0];
DRM_ERROR("Unknown link rate\n");
}
}
crtc_state->dpll_hw_state.ebb0 =
PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
if (clk_div.m2_frac_en)
crtc_state->dpll_hw_state.pll3 =
PORT_PLL_M2_FRAC_ENABLE;
crtc_state->dpll_hw_state.pll6 =
clk_div.prop_coef | PORT_PLL_INT_COEFF(clk_div.int_coef);
crtc_state->dpll_hw_state.pll6 |=
PORT_PLL_GAIN_CTL(clk_div.gain_ctl);
crtc_state->dpll_hw_state.pll8 = clk_div.targ_cnt;
crtc_state->dpll_hw_state.pcsdw12 =
LANESTAGGER_STRAP_OVRD | clk_div.lanestagger;
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return false;
}
/* shared DPLL id 0 is DPLL A */
crtc_state->ddi_pll_sel = pll->id;
return true;
}
/*
* Tries to find a *shared* PLL for the CRTC and store it in
* intel_crtc->ddi_pll_sel.
*
* For private DPLLs, compute_config() should do the selection for us. This
* function should be folded into compute_config() eventually.
*/
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = intel_crtc->base.dev;
struct intel_encoder *intel_encoder =
intel_ddi_get_crtc_new_encoder(crtc_state);
int clock = crtc_state->port_clock;
if (IS_SKYLAKE(dev))
return skl_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder, clock);
else if (IS_BROXTON(dev))
return bxt_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder, clock);
else
return hsw_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder, clock);
}
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
int type = intel_encoder->type;
uint32_t temp;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
temp = TRANS_MSA_SYNC_CLK;
switch (intel_crtc->config->pipe_bpp) {
case 18:
temp |= TRANS_MSA_6_BPC;
break;
case 24:
temp |= TRANS_MSA_8_BPC;
break;
case 30:
temp |= TRANS_MSA_10_BPC;
break;
case 36:
temp |= TRANS_MSA_12_BPC;
break;
default:
BUG();
}
I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
}
}
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
uint32_t temp;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (state == true)
temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
else
temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t temp;
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
temp = TRANS_DDI_FUNC_ENABLE;
temp |= TRANS_DDI_SELECT_PORT(port);
switch (intel_crtc->config->pipe_bpp) {
case 18:
temp |= TRANS_DDI_BPC_6;
break;
case 24:
temp |= TRANS_DDI_BPC_8;
break;
case 30:
temp |= TRANS_DDI_BPC_10;
break;
case 36:
temp |= TRANS_DDI_BPC_12;
break;
default:
BUG();
}
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DDI_PVSYNC;
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DDI_PHSYNC;
if (cpu_transcoder == TRANSCODER_EDP) {
switch (pipe) {
case PIPE_A:
/* On Haswell, can only use the always-on power well for
* eDP when not using the panel fitter, and when not
* using motion blur mitigation (which we don't
* support). */
if (IS_HASWELL(dev) &&
(intel_crtc->config->pch_pfit.enabled ||
intel_crtc->config->pch_pfit.force_thru))
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
else
temp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
default:
BUG();
break;
}
}
if (type == INTEL_OUTPUT_HDMI) {
if (intel_crtc->config->has_hdmi_sink)
temp |= TRANS_DDI_MODE_SELECT_HDMI;
else
temp |= TRANS_DDI_MODE_SELECT_DVI;
} else if (type == INTEL_OUTPUT_ANALOG) {
temp |= TRANS_DDI_MODE_SELECT_FDI;
temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (intel_dp->is_mst) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
} else
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
} else if (type == INTEL_OUTPUT_DP_MST) {
struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
if (intel_dp->is_mst) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
} else
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
} else {
WARN(1, "Invalid encoder type %d for pipe %c\n",
intel_encoder->type, pipe_name(pipe));
}
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
uint32_t val = I915_READ(reg);
val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
val |= TRANS_DDI_PORT_NONE;
I915_WRITE(reg, val);
}
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder = intel_connector->encoder;
int type = intel_connector->base.connector_type;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum pipe pipe = 0;
enum transcoder cpu_transcoder;
enum intel_display_power_domain power_domain;
uint32_t tmp;
power_domain = intel_display_port_power_domain(intel_encoder);
if (!intel_display_power_is_enabled(dev_priv, power_domain))
return false;
if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
return false;
if (port == PORT_A)
cpu_transcoder = TRANSCODER_EDP;
else
cpu_transcoder = (enum transcoder) pipe;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
case TRANS_DDI_MODE_SELECT_DVI:
return (type == DRM_MODE_CONNECTOR_HDMIA);
case TRANS_DDI_MODE_SELECT_DP_SST:
if (type == DRM_MODE_CONNECTOR_eDP)
return true;
return (type == DRM_MODE_CONNECTOR_DisplayPort);
case TRANS_DDI_MODE_SELECT_DP_MST:
/* if the transcoder is in MST state then
* connector isn't connected */
return false;
case TRANS_DDI_MODE_SELECT_FDI:
return (type == DRM_MODE_CONNECTOR_VGA);
default:
return false;
}
}
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(encoder);
enum intel_display_power_domain power_domain;
u32 tmp;
int i;
power_domain = intel_display_port_power_domain(encoder);
if (!intel_display_power_is_enabled(dev_priv, power_domain))
return false;
tmp = I915_READ(DDI_BUF_CTL(port));
if (!(tmp & DDI_BUF_CTL_ENABLE))
return false;
if (port == PORT_A) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
case TRANS_DDI_EDP_INPUT_A_ON:
case TRANS_DDI_EDP_INPUT_A_ONOFF:
*pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe = PIPE_C;
break;
}
return true;
} else {
for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
if ((tmp & TRANS_DDI_PORT_MASK)
== TRANS_DDI_SELECT_PORT(port)) {
if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
return false;
*pipe = i;
return true;
}
}
}
DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
return false;
}
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_PORT(port));
}
void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_DISABLED);
}
void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
enum port port, int type)
{
struct drm_i915_private *dev_priv = dev->dev_private;
const struct bxt_ddi_buf_trans *ddi_translations;
u32 n_entries, i;
uint32_t val;
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
ddi_translations = bxt_ddi_translations_dp;
} else if (type == INTEL_OUTPUT_HDMI) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
ddi_translations = bxt_ddi_translations_hdmi;
} else {
DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
type);
return;
}
/* Check if default value has to be used */
if (level >= n_entries ||
(type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
for (i = 0; i < n_entries; i++) {
if (ddi_translations[i].default_index) {
level = i;
break;
}
}
}
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
val &= ~UNIQE_TRANGE_EN_METHOD;
if (ddi_translations[level].enable)
val |= UNIQE_TRANGE_EN_METHOD;
I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
val &= ~DE_EMPHASIS;
val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
int hdmi_level;
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_edp_panel_on(intel_dp);
}
if (IS_SKYLAKE(dev)) {
uint32_t dpll = crtc->config->ddi_pll_sel;
uint32_t val;
/*
* DPLL0 is used for eDP and is the only "private" DPLL (as
* opposed to shared) on SKL
*/
if (type == INTEL_OUTPUT_EDP) {
WARN_ON(dpll != SKL_DPLL0);
val = I915_READ(DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
DPLL_CTRL1_SSC(dpll) |
DPLL_CTRL1_LINK_RATE_MASK(dpll));
val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
}
/* DDI -> PLL mapping */
val = I915_READ(DPLL_CTRL2);
val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
I915_WRITE(DPLL_CTRL2, val);
} else if (INTEL_INFO(dev)->gen < 9) {
WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
}
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_ddi_init_dp_buf_reg(intel_encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
intel_dp_complete_link_train(intel_dp);
if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
intel_dp_stop_link_train(intel_dp);
} else if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
if (IS_BROXTON(dev)) {
hdmi_level = dev_priv->vbt.
ddi_port_info[port].hdmi_level_shift;
bxt_ddi_vswing_sequence(dev, hdmi_level, port,
INTEL_OUTPUT_HDMI);
}
intel_hdmi->set_infoframes(encoder,
crtc->config->has_hdmi_sink,
&crtc->config->base.adjusted_mode);
}
}
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t val;
bool wait = false;
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
intel_edp_panel_vdd_on(intel_dp);
intel_edp_panel_off(intel_dp);
}
if (IS_SKYLAKE(dev))
I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
DPLL_CTRL2_DDI_CLK_OFF(port)));
else if (INTEL_INFO(dev)->gen < 9)
I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
}
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_HDMI) {
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(encoder);
/* In HDMI/DVI mode, the port width, and swing/emphasis values
* are ignored so nothing special needs to be done besides
* enabling the port.
*/
I915_WRITE(DDI_BUF_CTL(port),
intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE);
} else if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
intel_dp_stop_link_train(intel_dp);
intel_edp_backlight_on(intel_dp);
intel_psr_enable(intel_dp);
intel_edp_drrs_enable(intel_dp);
}
if (intel_crtc->config->has_audio) {
intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
intel_audio_codec_enable(intel_encoder);
}
}
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int type = intel_encoder->type;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (intel_crtc->config->has_audio) {
intel_audio_codec_disable(intel_encoder);
intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
}
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_edp_drrs_disable(intel_dp);
intel_psr_disable(intel_dp);
intel_edp_backlight_off(intel_dp);
}
}
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
POSTING_READ(WRPLL_CTL(pll->id));
udelay(20);
}
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
val = I915_READ(WRPLL_CTL(pll->id));
I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
POSTING_READ(WRPLL_CTL(pll->id));
}
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(WRPLL_CTL(pll->id));
hw_state->wrpll = val;
return val & WRPLL_PLL_ENABLE;
}
static const char * const hsw_ddi_pll_names[] = {
"WRPLL 1",
"WRPLL 2",
};
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
{
int i;
dev_priv->num_shared_dpll = 2;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
dev_priv->shared_dplls[i].get_hw_state =
hsw_ddi_pll_get_hw_state;
}
}
static const char * const skl_ddi_pll_names[] = {
"DPLL 1",
"DPLL 2",
"DPLL 3",
};
struct skl_dpll_regs {
u32 ctl, cfgcr1, cfgcr2;
};
/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
{
/* DPLL 1 */
.ctl = LCPLL2_CTL,
.cfgcr1 = DPLL1_CFGCR1,
.cfgcr2 = DPLL1_CFGCR2,
},
{
/* DPLL 2 */
.ctl = WRPLL_CTL1,
.cfgcr1 = DPLL2_CFGCR1,
.cfgcr2 = DPLL2_CFGCR2,
},
{
/* DPLL 3 */
.ctl = WRPLL_CTL2,
.cfgcr1 = DPLL3_CFGCR1,
.cfgcr2 = DPLL3_CFGCR2,
},
};
static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t val;
unsigned int dpll;
const struct skl_dpll_regs *regs = skl_dpll_regs;
/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
dpll = pll->id + 1;
val = I915_READ(DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
DPLL_CTRL1_LINK_RATE_MASK(dpll));
val |= pll->config.hw_state.ctrl1 << (dpll * 6);
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
POSTING_READ(regs[pll->id].cfgcr1);
POSTING_READ(regs[pll->id].cfgcr2);
/* the enable bit is always bit 31 */
I915_WRITE(regs[pll->id].ctl,
I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
DRM_ERROR("DPLL %d not locked\n", dpll);
}
static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
/* the enable bit is always bit 31 */
I915_WRITE(regs[pll->id].ctl,
I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
POSTING_READ(regs[pll->id].ctl);
}
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
unsigned int dpll;
const struct skl_dpll_regs *regs = skl_dpll_regs;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
dpll = pll->id + 1;
val = I915_READ(regs[pll->id].ctl);
if (!(val & LCPLL_PLL_ENABLE))
return false;
val = I915_READ(DPLL_CTRL1);
hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
}
return true;
}
static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
int i;
dev_priv->num_shared_dpll = 3;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
dev_priv->shared_dplls[i].get_hw_state =
skl_ddi_pll_get_hw_state;
}
}
static void broxton_phy_init(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
enum port port;
uint32_t val;
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
val |= GT_DISPLAY_POWER_ON(phy);
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
/* Considering 10ms timeout until BSpec is updated */
if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
DRM_ERROR("timeout during PHY%d power on\n", phy);
for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
int lane;
for (lane = 0; lane < 4; lane++) {
val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
/*
* Note that on CHV this flag is called UPAR, but has
* the same function.
*/
val &= ~LATENCY_OPTIM;
if (lane != 1)
val |= LATENCY_OPTIM;
I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
}
}
/* Program PLL Rcomp code offset */
val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
val &= ~IREF0RC_OFFSET_MASK;
val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
val &= ~IREF1RC_OFFSET_MASK;
val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
/* Program power gating */
val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
SUS_CLK_CONFIG;
I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
if (phy == DPIO_PHY0) {
val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
val |= DW6_OLDO_DYN_PWR_DOWN_EN;
I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
}
val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
val &= ~OCL2_LDOFUSE_PWR_DIS;
/*
* On PHY1 disable power on the second channel, since no port is
* connected there. On PHY0 both channels have a port, so leave it
* enabled.
* TODO: port C is only connected on BXT-P, so on BXT0/1 we should
* power down the second channel on PHY0 as well.
*/
if (phy == DPIO_PHY1)
val |= OCL2_LDOFUSE_PWR_DIS;
I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
if (phy == DPIO_PHY0) {
uint32_t grc_code;
/*
* PHY0 isn't connected to an RCOMP resistor so copy over
* the corresponding calibrated value from PHY1, and disable
* the automatic calibration on PHY0.
*/
if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
10))
DRM_ERROR("timeout waiting for PHY1 GRC\n");
val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
grc_code = val << GRC_CODE_FAST_SHIFT |
val << GRC_CODE_SLOW_SHIFT |
val;
I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
val |= GRC_DIS | GRC_RDY_OVRD;
I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
}
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val |= COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}
void broxton_ddi_phy_init(struct drm_device *dev)
{
/* Enable PHY1 first since it provides Rcomp for PHY0 */
broxton_phy_init(dev->dev_private, DPIO_PHY1);
broxton_phy_init(dev->dev_private, DPIO_PHY0);
}
static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
uint32_t val;
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val &= ~COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}
void broxton_ddi_phy_uninit(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
broxton_phy_uninit(dev_priv, DPIO_PHY1);
broxton_phy_uninit(dev_priv, DPIO_PHY0);
/* FIXME: do this in broxton_phy_uninit per phy */
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}
static const char * const bxt_ddi_pll_names[] = {
"PORT PLL A",
"PORT PLL B",
"PORT PLL C",
};
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
uint32_t temp;
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_REF_SEL;
/* Non-SSC reference */
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
/* Disable 10 bit clock */
temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
/* Write P1 & P2 */
temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
temp |= pll->config.hw_state.ebb0;
I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
/* Write M2 integer */
temp = I915_READ(BXT_PORT_PLL(port, 0));
temp &= ~PORT_PLL_M2_MASK;
temp |= pll->config.hw_state.pll0;
I915_WRITE(BXT_PORT_PLL(port, 0), temp);
/* Write N */
temp = I915_READ(BXT_PORT_PLL(port, 1));
temp &= ~PORT_PLL_N_MASK;
temp |= pll->config.hw_state.pll1;
I915_WRITE(BXT_PORT_PLL(port, 1), temp);
/* Write M2 fraction */
temp = I915_READ(BXT_PORT_PLL(port, 2));
temp &= ~PORT_PLL_M2_FRAC_MASK;
temp |= pll->config.hw_state.pll2;
I915_WRITE(BXT_PORT_PLL(port, 2), temp);
/* Write M2 fraction enable */
temp = I915_READ(BXT_PORT_PLL(port, 3));
temp &= ~PORT_PLL_M2_FRAC_ENABLE;
temp |= pll->config.hw_state.pll3;
I915_WRITE(BXT_PORT_PLL(port, 3), temp);
/* Write coeff */
temp = I915_READ(BXT_PORT_PLL(port, 6));
temp &= ~PORT_PLL_PROP_COEFF_MASK;
temp &= ~PORT_PLL_INT_COEFF_MASK;
temp &= ~PORT_PLL_GAIN_CTL_MASK;
temp |= pll->config.hw_state.pll6;
I915_WRITE(BXT_PORT_PLL(port, 6), temp);
/* Write calibration val */
temp = I915_READ(BXT_PORT_PLL(port, 8));
temp &= ~PORT_PLL_TARGET_CNT_MASK;
temp |= pll->config.hw_state.pll8;
I915_WRITE(BXT_PORT_PLL(port, 8), temp);
/*
* FIXME: program PORT_PLL_9/i_lockthresh according to the latest
* specification update.
*/
/* Recalibrate with new settings */
temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
temp |= PORT_PLL_RECALIBRATE;
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
/* Enable 10 bit clock */
temp |= PORT_PLL_10BIT_CLK_ENABLE;
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
/* Enable PLL */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_LOCK), 200))
DRM_ERROR("PLL %d not locked\n", port);
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
temp &= ~LANE_STAGGER_MASK;
temp &= ~LANESTAGGER_STRAP_OVRD;
temp |= pll->config.hw_state.pcsdw12;
I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}
static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
uint32_t temp;
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}
static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
uint32_t val;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(BXT_PORT_PLL_ENABLE(port));
if (!(val & PORT_PLL_ENABLE))
return false;
hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers. We configure all lanes the same way, so
* here just read out lanes 0/1 and output a note if lanes 2/3 differ.
*/
hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
hw_state->pcsdw12,
I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
return true;
}
static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
int i;
dev_priv->num_shared_dpll = 3;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
dev_priv->shared_dplls[i].get_hw_state =
bxt_ddi_pll_get_hw_state;
}
}
void intel_ddi_pll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val = I915_READ(LCPLL_CTL);
if (IS_SKYLAKE(dev))
skl_shared_dplls_init(dev_priv);
else if (IS_BROXTON(dev))
bxt_shared_dplls_init(dev_priv);
else
hsw_shared_dplls_init(dev_priv);
DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
dev_priv->display.get_display_clock_speed(dev));
if (IS_SKYLAKE(dev)) {
if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
DRM_ERROR("LCPLL1 is disabled\n");
} else if (IS_BROXTON(dev)) {
broxton_init_cdclk(dev);
broxton_ddi_phy_init(dev);
} else {
/*
* The LCPLL register should be turned on by the BIOS. For now
* let's just check its state and print errors in case
* something is wrong. Don't even try to turn it on.
*/
if (val & LCPLL_CD_SOURCE_FCLK)
DRM_ERROR("CDCLK source is not LCPLL\n");
if (val & LCPLL_PLL_DISABLE)
DRM_ERROR("LCPLL is disabled\n");
}
}
void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
enum port port = intel_dig_port->port;
uint32_t val;
bool wait = false;
if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
val = DP_TP_CTL_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
if (intel_dp->is_mst)
val |= DP_TP_CTL_MODE_MST;
else {
val |= DP_TP_CTL_MODE_SST;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
}
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
POSTING_READ(DDI_BUF_CTL(port));
udelay(600);
}
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
uint32_t val;
intel_ddi_post_disable(intel_encoder);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_RX_ENABLE;
I915_WRITE(_FDI_RXA_CTL, val);
val = I915_READ(_FDI_RXA_MISC);
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(_FDI_RXA_MISC, val);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_PCDCLK;
I915_WRITE(_FDI_RXA_CTL, val);
val = I915_READ(_FDI_RXA_CTL);
val &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(_FDI_RXA_CTL, val);
}
static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
int type = intel_dig_port->base.type;
if (type != INTEL_OUTPUT_DISPLAYPORT &&
type != INTEL_OUTPUT_EDP &&
type != INTEL_OUTPUT_UNKNOWN) {
return;
}
intel_dp_hot_plug(intel_encoder);
}
void intel_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_hdmi *intel_hdmi;
u32 temp, flags = 0;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (temp & TRANS_DDI_PHSYNC)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (temp & TRANS_DDI_PVSYNC)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->base.adjusted_mode.flags |= flags;
switch (temp & TRANS_DDI_BPC_MASK) {
case TRANS_DDI_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANS_DDI_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANS_DDI_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANS_DDI_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
pipe_config->has_hdmi_sink = true;
intel_hdmi = enc_to_intel_hdmi(&encoder->base);
if (intel_hdmi->infoframe_enabled(&encoder->base))
pipe_config->has_infoframe = true;
break;
case TRANS_DDI_MODE_SELECT_DVI:
case TRANS_DDI_MODE_SELECT_FDI:
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
case TRANS_DDI_MODE_SELECT_DP_MST:
pipe_config->has_dp_encoder = true;
intel_dp_get_m_n(intel_crtc, pipe_config);
break;
default:
break;
}
if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
pipe_config->has_audio = true;
}
if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
}
intel_ddi_clock_get(encoder, pipe_config);
}
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
/* HDMI has nothing special to destroy, so we can go with this. */
intel_dp_encoder_destroy(encoder);
}
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
int type = encoder->type;
int port = intel_ddi_get_encoder_port(encoder);
WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
if (port == PORT_A)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
if (type == INTEL_OUTPUT_HDMI)
return intel_hdmi_compute_config(encoder, pipe_config);
else
return intel_dp_compute_config(encoder, pipe_config);
}
static const struct drm_encoder_funcs intel_ddi_funcs = {
.destroy = intel_ddi_destroy,
};
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
if (!intel_dp_init_connector(intel_dig_port, connector)) {
kfree(connector);
return NULL;
}
return connector;
}
static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
intel_hdmi_init_connector(intel_dig_port, connector);
return connector;
}
void intel_ddi_init(struct drm_device *dev, enum port port)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
bool init_hdmi, init_dp;
init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
dev_priv->vbt.ddi_port_info[port].supports_hdmi);
init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
if (!init_dp && !init_hdmi) {
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
port_name(port));
init_hdmi = true;
init_dp = true;
}
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(dev, encoder, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS);
intel_encoder->compute_config = intel_ddi_compute_config;
intel_encoder->enable = intel_enable_ddi;
intel_encoder->pre_enable = intel_ddi_pre_enable;
intel_encoder->disable = intel_disable_ddi;
intel_encoder->post_disable = intel_ddi_post_disable;
intel_encoder->get_hw_state = intel_ddi_get_hw_state;
intel_encoder->get_config = intel_ddi_get_config;
intel_dig_port->port = port;
intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
(DDI_BUF_PORT_REVERSAL |
DDI_A_4_LANES);
intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
intel_encoder->cloneable = 0;
intel_encoder->hot_plug = intel_ddi_hot_plug;
if (init_dp) {
if (!intel_ddi_init_dp_connector(intel_dig_port))
goto err;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
dev_priv->hpd_irq_port[port] = intel_dig_port;
}
/* In theory we don't need the encoder->type check, but leave it just in
* case we have some really bad VBTs... */
if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
if (!intel_ddi_init_hdmi_connector(intel_dig_port))
goto err;
}
return;
err:
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
}