9179ba3136
Eric reported that syzkaller found a race of this variety: CPU 1 CPU 2 -------------------------------------------|--------------------------------------- wg_index_hashtable_replace(old, ...) | if (hlist_unhashed(&old->index_hash)) | | wg_index_hashtable_remove(old) | hlist_del_init_rcu(&old->index_hash) | old->index_hash.pprev = NULL hlist_replace_rcu(&old->index_hash, ...) | *old->index_hash.pprev | Syzbot wasn't actually able to reproduce this more than once or create a reproducer, because the race window between checking "hlist_unhashed" and calling "hlist_replace_rcu" is just so small. Adding an mdelay(5) or similar there helps make this demonstrable using this simple script: #!/bin/bash set -ex trap 'kill $pid1; kill $pid2; ip link del wg0; ip link del wg1' EXIT ip link add wg0 type wireguard ip link add wg1 type wireguard wg set wg0 private-key <(wg genkey) listen-port 9999 wg set wg1 private-key <(wg genkey) peer $(wg show wg0 public-key) endpoint 127.0.0.1:9999 persistent-keepalive 1 wg set wg0 peer $(wg show wg1 public-key) ip link set wg0 up yes link set wg1 up | ip -force -batch - & pid1=$! yes link set wg1 down | ip -force -batch - & pid2=$! wait The fundumental underlying problem is that we permit calls to wg_index_ hashtable_remove(handshake.entry) without requiring the caller to take the handshake mutex that is intended to protect members of handshake during mutations. This is consistently the case with calls to wg_index_ hashtable_insert(handshake.entry) and wg_index_hashtable_replace( handshake.entry), but it's missing from a pertinent callsite of wg_ index_hashtable_remove(handshake.entry). So, this patch makes sure that mutex is taken. The original code was a little bit funky though, in the form of: remove(handshake.entry) lock(), memzero(handshake.some_members), unlock() remove(handshake.entry) The original intention of that double removal pattern outside the lock appears to be some attempt to prevent insertions that might happen while locks are dropped during expensive crypto operations, but actually, all callers of wg_index_hashtable_insert(handshake.entry) take the write lock and then explicitly check handshake.state, as they should, which the aforementioned memzero clears, which means an insertion should already be impossible. And regardless, the original intention was necessarily racy, since it wasn't guaranteed that something else would run after the unlock() instead of after the remove(). So, from a soundness perspective, it seems positive to remove what looks like a hack at best. The crash from both syzbot and from the script above is as follows: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 7395 Comm: kworker/0:3 Not tainted 5.9.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: wg-kex-wg1 wg_packet_handshake_receive_worker RIP: 0010:hlist_replace_rcu include/linux/rculist.h:505 [inline] RIP: 0010:wg_index_hashtable_replace+0x176/0x330 drivers/net/wireguard/peerlookup.c:174 Code: 00 fc ff df 48 89 f9 48 c1 e9 03 80 3c 01 00 0f 85 44 01 00 00 48 b9 00 00 00 00 00 fc ff df 48 8b 45 10 48 89 c6 48 c1 ee 03 <80> 3c 0e 00 0f 85 06 01 00 00 48 85 d2 4c 89 28 74 47 e8 a3 4f b5 RSP: 0018:ffffc90006a97bf8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888050ffc4f8 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88808e04e010 RBP: ffff88808e04e000 R08: 0000000000000001 R09: ffff8880543d0000 R10: ffffed100a87a000 R11: 000000000000016e R12: ffff8880543d0000 R13: ffff88808e04e008 R14: ffff888050ffc508 R15: ffff888050ffc500 FS: 0000000000000000(0000) GS:ffff8880ae600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000f5505db0 CR3: 0000000097cf7000 CR4: 00000000001526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: wg_noise_handshake_begin_session+0x752/0xc9a drivers/net/wireguard/noise.c:820 wg_receive_handshake_packet drivers/net/wireguard/receive.c:183 [inline] wg_packet_handshake_receive_worker+0x33b/0x730 drivers/net/wireguard/receive.c:220 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 Reported-by: syzbot <syzkaller@googlegroups.com> Reported-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/wireguard/20200908145911.4090480-1-edumazet@google.com/ Fixes: e7096c131e51 ("net: WireGuard secure network tunnel") Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: David S. Miller <davem@davemloft.net>
829 lines
26 KiB
C
829 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
*/
|
|
|
|
#include "noise.h"
|
|
#include "device.h"
|
|
#include "peer.h"
|
|
#include "messages.h"
|
|
#include "queueing.h"
|
|
#include "peerlookup.h"
|
|
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/highmem.h>
|
|
#include <crypto/algapi.h>
|
|
|
|
/* This implements Noise_IKpsk2:
|
|
*
|
|
* <- s
|
|
* ******
|
|
* -> e, es, s, ss, {t}
|
|
* <- e, ee, se, psk, {}
|
|
*/
|
|
|
|
static const u8 handshake_name[37] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
|
|
static const u8 identifier_name[34] = "WireGuard v1 zx2c4 Jason@zx2c4.com";
|
|
static u8 handshake_init_hash[NOISE_HASH_LEN] __ro_after_init;
|
|
static u8 handshake_init_chaining_key[NOISE_HASH_LEN] __ro_after_init;
|
|
static atomic64_t keypair_counter = ATOMIC64_INIT(0);
|
|
|
|
void __init wg_noise_init(void)
|
|
{
|
|
struct blake2s_state blake;
|
|
|
|
blake2s(handshake_init_chaining_key, handshake_name, NULL,
|
|
NOISE_HASH_LEN, sizeof(handshake_name), 0);
|
|
blake2s_init(&blake, NOISE_HASH_LEN);
|
|
blake2s_update(&blake, handshake_init_chaining_key, NOISE_HASH_LEN);
|
|
blake2s_update(&blake, identifier_name, sizeof(identifier_name));
|
|
blake2s_final(&blake, handshake_init_hash);
|
|
}
|
|
|
|
/* Must hold peer->handshake.static_identity->lock */
|
|
void wg_noise_precompute_static_static(struct wg_peer *peer)
|
|
{
|
|
down_write(&peer->handshake.lock);
|
|
if (!peer->handshake.static_identity->has_identity ||
|
|
!curve25519(peer->handshake.precomputed_static_static,
|
|
peer->handshake.static_identity->static_private,
|
|
peer->handshake.remote_static))
|
|
memset(peer->handshake.precomputed_static_static, 0,
|
|
NOISE_PUBLIC_KEY_LEN);
|
|
up_write(&peer->handshake.lock);
|
|
}
|
|
|
|
void wg_noise_handshake_init(struct noise_handshake *handshake,
|
|
struct noise_static_identity *static_identity,
|
|
const u8 peer_public_key[NOISE_PUBLIC_KEY_LEN],
|
|
const u8 peer_preshared_key[NOISE_SYMMETRIC_KEY_LEN],
|
|
struct wg_peer *peer)
|
|
{
|
|
memset(handshake, 0, sizeof(*handshake));
|
|
init_rwsem(&handshake->lock);
|
|
handshake->entry.type = INDEX_HASHTABLE_HANDSHAKE;
|
|
handshake->entry.peer = peer;
|
|
memcpy(handshake->remote_static, peer_public_key, NOISE_PUBLIC_KEY_LEN);
|
|
if (peer_preshared_key)
|
|
memcpy(handshake->preshared_key, peer_preshared_key,
|
|
NOISE_SYMMETRIC_KEY_LEN);
|
|
handshake->static_identity = static_identity;
|
|
handshake->state = HANDSHAKE_ZEROED;
|
|
wg_noise_precompute_static_static(peer);
|
|
}
|
|
|
|
static void handshake_zero(struct noise_handshake *handshake)
|
|
{
|
|
memset(&handshake->ephemeral_private, 0, NOISE_PUBLIC_KEY_LEN);
|
|
memset(&handshake->remote_ephemeral, 0, NOISE_PUBLIC_KEY_LEN);
|
|
memset(&handshake->hash, 0, NOISE_HASH_LEN);
|
|
memset(&handshake->chaining_key, 0, NOISE_HASH_LEN);
|
|
handshake->remote_index = 0;
|
|
handshake->state = HANDSHAKE_ZEROED;
|
|
}
|
|
|
|
void wg_noise_handshake_clear(struct noise_handshake *handshake)
|
|
{
|
|
down_write(&handshake->lock);
|
|
wg_index_hashtable_remove(
|
|
handshake->entry.peer->device->index_hashtable,
|
|
&handshake->entry);
|
|
handshake_zero(handshake);
|
|
up_write(&handshake->lock);
|
|
}
|
|
|
|
static struct noise_keypair *keypair_create(struct wg_peer *peer)
|
|
{
|
|
struct noise_keypair *keypair = kzalloc(sizeof(*keypair), GFP_KERNEL);
|
|
|
|
if (unlikely(!keypair))
|
|
return NULL;
|
|
spin_lock_init(&keypair->receiving_counter.lock);
|
|
keypair->internal_id = atomic64_inc_return(&keypair_counter);
|
|
keypair->entry.type = INDEX_HASHTABLE_KEYPAIR;
|
|
keypair->entry.peer = peer;
|
|
kref_init(&keypair->refcount);
|
|
return keypair;
|
|
}
|
|
|
|
static void keypair_free_rcu(struct rcu_head *rcu)
|
|
{
|
|
kfree_sensitive(container_of(rcu, struct noise_keypair, rcu));
|
|
}
|
|
|
|
static void keypair_free_kref(struct kref *kref)
|
|
{
|
|
struct noise_keypair *keypair =
|
|
container_of(kref, struct noise_keypair, refcount);
|
|
|
|
net_dbg_ratelimited("%s: Keypair %llu destroyed for peer %llu\n",
|
|
keypair->entry.peer->device->dev->name,
|
|
keypair->internal_id,
|
|
keypair->entry.peer->internal_id);
|
|
wg_index_hashtable_remove(keypair->entry.peer->device->index_hashtable,
|
|
&keypair->entry);
|
|
call_rcu(&keypair->rcu, keypair_free_rcu);
|
|
}
|
|
|
|
void wg_noise_keypair_put(struct noise_keypair *keypair, bool unreference_now)
|
|
{
|
|
if (unlikely(!keypair))
|
|
return;
|
|
if (unlikely(unreference_now))
|
|
wg_index_hashtable_remove(
|
|
keypair->entry.peer->device->index_hashtable,
|
|
&keypair->entry);
|
|
kref_put(&keypair->refcount, keypair_free_kref);
|
|
}
|
|
|
|
struct noise_keypair *wg_noise_keypair_get(struct noise_keypair *keypair)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(),
|
|
"Taking noise keypair reference without holding the RCU BH read lock");
|
|
if (unlikely(!keypair || !kref_get_unless_zero(&keypair->refcount)))
|
|
return NULL;
|
|
return keypair;
|
|
}
|
|
|
|
void wg_noise_keypairs_clear(struct noise_keypairs *keypairs)
|
|
{
|
|
struct noise_keypair *old;
|
|
|
|
spin_lock_bh(&keypairs->keypair_update_lock);
|
|
|
|
/* We zero the next_keypair before zeroing the others, so that
|
|
* wg_noise_received_with_keypair returns early before subsequent ones
|
|
* are zeroed.
|
|
*/
|
|
old = rcu_dereference_protected(keypairs->next_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
|
|
wg_noise_keypair_put(old, true);
|
|
|
|
old = rcu_dereference_protected(keypairs->previous_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
RCU_INIT_POINTER(keypairs->previous_keypair, NULL);
|
|
wg_noise_keypair_put(old, true);
|
|
|
|
old = rcu_dereference_protected(keypairs->current_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
RCU_INIT_POINTER(keypairs->current_keypair, NULL);
|
|
wg_noise_keypair_put(old, true);
|
|
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
}
|
|
|
|
void wg_noise_expire_current_peer_keypairs(struct wg_peer *peer)
|
|
{
|
|
struct noise_keypair *keypair;
|
|
|
|
wg_noise_handshake_clear(&peer->handshake);
|
|
wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake);
|
|
|
|
spin_lock_bh(&peer->keypairs.keypair_update_lock);
|
|
keypair = rcu_dereference_protected(peer->keypairs.next_keypair,
|
|
lockdep_is_held(&peer->keypairs.keypair_update_lock));
|
|
if (keypair)
|
|
keypair->sending.is_valid = false;
|
|
keypair = rcu_dereference_protected(peer->keypairs.current_keypair,
|
|
lockdep_is_held(&peer->keypairs.keypair_update_lock));
|
|
if (keypair)
|
|
keypair->sending.is_valid = false;
|
|
spin_unlock_bh(&peer->keypairs.keypair_update_lock);
|
|
}
|
|
|
|
static void add_new_keypair(struct noise_keypairs *keypairs,
|
|
struct noise_keypair *new_keypair)
|
|
{
|
|
struct noise_keypair *previous_keypair, *next_keypair, *current_keypair;
|
|
|
|
spin_lock_bh(&keypairs->keypair_update_lock);
|
|
previous_keypair = rcu_dereference_protected(keypairs->previous_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
next_keypair = rcu_dereference_protected(keypairs->next_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
current_keypair = rcu_dereference_protected(keypairs->current_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
if (new_keypair->i_am_the_initiator) {
|
|
/* If we're the initiator, it means we've sent a handshake, and
|
|
* received a confirmation response, which means this new
|
|
* keypair can now be used.
|
|
*/
|
|
if (next_keypair) {
|
|
/* If there already was a next keypair pending, we
|
|
* demote it to be the previous keypair, and free the
|
|
* existing current. Note that this means KCI can result
|
|
* in this transition. It would perhaps be more sound to
|
|
* always just get rid of the unused next keypair
|
|
* instead of putting it in the previous slot, but this
|
|
* might be a bit less robust. Something to think about
|
|
* for the future.
|
|
*/
|
|
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
|
|
rcu_assign_pointer(keypairs->previous_keypair,
|
|
next_keypair);
|
|
wg_noise_keypair_put(current_keypair, true);
|
|
} else /* If there wasn't an existing next keypair, we replace
|
|
* the previous with the current one.
|
|
*/
|
|
rcu_assign_pointer(keypairs->previous_keypair,
|
|
current_keypair);
|
|
/* At this point we can get rid of the old previous keypair, and
|
|
* set up the new keypair.
|
|
*/
|
|
wg_noise_keypair_put(previous_keypair, true);
|
|
rcu_assign_pointer(keypairs->current_keypair, new_keypair);
|
|
} else {
|
|
/* If we're the responder, it means we can't use the new keypair
|
|
* until we receive confirmation via the first data packet, so
|
|
* we get rid of the existing previous one, the possibly
|
|
* existing next one, and slide in the new next one.
|
|
*/
|
|
rcu_assign_pointer(keypairs->next_keypair, new_keypair);
|
|
wg_noise_keypair_put(next_keypair, true);
|
|
RCU_INIT_POINTER(keypairs->previous_keypair, NULL);
|
|
wg_noise_keypair_put(previous_keypair, true);
|
|
}
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
}
|
|
|
|
bool wg_noise_received_with_keypair(struct noise_keypairs *keypairs,
|
|
struct noise_keypair *received_keypair)
|
|
{
|
|
struct noise_keypair *old_keypair;
|
|
bool key_is_new;
|
|
|
|
/* We first check without taking the spinlock. */
|
|
key_is_new = received_keypair ==
|
|
rcu_access_pointer(keypairs->next_keypair);
|
|
if (likely(!key_is_new))
|
|
return false;
|
|
|
|
spin_lock_bh(&keypairs->keypair_update_lock);
|
|
/* After locking, we double check that things didn't change from
|
|
* beneath us.
|
|
*/
|
|
if (unlikely(received_keypair !=
|
|
rcu_dereference_protected(keypairs->next_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock)))) {
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
return false;
|
|
}
|
|
|
|
/* When we've finally received the confirmation, we slide the next
|
|
* into the current, the current into the previous, and get rid of
|
|
* the old previous.
|
|
*/
|
|
old_keypair = rcu_dereference_protected(keypairs->previous_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock));
|
|
rcu_assign_pointer(keypairs->previous_keypair,
|
|
rcu_dereference_protected(keypairs->current_keypair,
|
|
lockdep_is_held(&keypairs->keypair_update_lock)));
|
|
wg_noise_keypair_put(old_keypair, true);
|
|
rcu_assign_pointer(keypairs->current_keypair, received_keypair);
|
|
RCU_INIT_POINTER(keypairs->next_keypair, NULL);
|
|
|
|
spin_unlock_bh(&keypairs->keypair_update_lock);
|
|
return true;
|
|
}
|
|
|
|
/* Must hold static_identity->lock */
|
|
void wg_noise_set_static_identity_private_key(
|
|
struct noise_static_identity *static_identity,
|
|
const u8 private_key[NOISE_PUBLIC_KEY_LEN])
|
|
{
|
|
memcpy(static_identity->static_private, private_key,
|
|
NOISE_PUBLIC_KEY_LEN);
|
|
curve25519_clamp_secret(static_identity->static_private);
|
|
static_identity->has_identity = curve25519_generate_public(
|
|
static_identity->static_public, private_key);
|
|
}
|
|
|
|
/* This is Hugo Krawczyk's HKDF:
|
|
* - https://eprint.iacr.org/2010/264.pdf
|
|
* - https://tools.ietf.org/html/rfc5869
|
|
*/
|
|
static void kdf(u8 *first_dst, u8 *second_dst, u8 *third_dst, const u8 *data,
|
|
size_t first_len, size_t second_len, size_t third_len,
|
|
size_t data_len, const u8 chaining_key[NOISE_HASH_LEN])
|
|
{
|
|
u8 output[BLAKE2S_HASH_SIZE + 1];
|
|
u8 secret[BLAKE2S_HASH_SIZE];
|
|
|
|
WARN_ON(IS_ENABLED(DEBUG) &&
|
|
(first_len > BLAKE2S_HASH_SIZE ||
|
|
second_len > BLAKE2S_HASH_SIZE ||
|
|
third_len > BLAKE2S_HASH_SIZE ||
|
|
((second_len || second_dst || third_len || third_dst) &&
|
|
(!first_len || !first_dst)) ||
|
|
((third_len || third_dst) && (!second_len || !second_dst))));
|
|
|
|
/* Extract entropy from data into secret */
|
|
blake2s256_hmac(secret, data, chaining_key, data_len, NOISE_HASH_LEN);
|
|
|
|
if (!first_dst || !first_len)
|
|
goto out;
|
|
|
|
/* Expand first key: key = secret, data = 0x1 */
|
|
output[0] = 1;
|
|
blake2s256_hmac(output, output, secret, 1, BLAKE2S_HASH_SIZE);
|
|
memcpy(first_dst, output, first_len);
|
|
|
|
if (!second_dst || !second_len)
|
|
goto out;
|
|
|
|
/* Expand second key: key = secret, data = first-key || 0x2 */
|
|
output[BLAKE2S_HASH_SIZE] = 2;
|
|
blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1,
|
|
BLAKE2S_HASH_SIZE);
|
|
memcpy(second_dst, output, second_len);
|
|
|
|
if (!third_dst || !third_len)
|
|
goto out;
|
|
|
|
/* Expand third key: key = secret, data = second-key || 0x3 */
|
|
output[BLAKE2S_HASH_SIZE] = 3;
|
|
blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1,
|
|
BLAKE2S_HASH_SIZE);
|
|
memcpy(third_dst, output, third_len);
|
|
|
|
out:
|
|
/* Clear sensitive data from stack */
|
|
memzero_explicit(secret, BLAKE2S_HASH_SIZE);
|
|
memzero_explicit(output, BLAKE2S_HASH_SIZE + 1);
|
|
}
|
|
|
|
static void derive_keys(struct noise_symmetric_key *first_dst,
|
|
struct noise_symmetric_key *second_dst,
|
|
const u8 chaining_key[NOISE_HASH_LEN])
|
|
{
|
|
u64 birthdate = ktime_get_coarse_boottime_ns();
|
|
kdf(first_dst->key, second_dst->key, NULL, NULL,
|
|
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
|
|
chaining_key);
|
|
first_dst->birthdate = second_dst->birthdate = birthdate;
|
|
first_dst->is_valid = second_dst->is_valid = true;
|
|
}
|
|
|
|
static bool __must_check mix_dh(u8 chaining_key[NOISE_HASH_LEN],
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
const u8 private[NOISE_PUBLIC_KEY_LEN],
|
|
const u8 public[NOISE_PUBLIC_KEY_LEN])
|
|
{
|
|
u8 dh_calculation[NOISE_PUBLIC_KEY_LEN];
|
|
|
|
if (unlikely(!curve25519(dh_calculation, private, public)))
|
|
return false;
|
|
kdf(chaining_key, key, NULL, dh_calculation, NOISE_HASH_LEN,
|
|
NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key);
|
|
memzero_explicit(dh_calculation, NOISE_PUBLIC_KEY_LEN);
|
|
return true;
|
|
}
|
|
|
|
static bool __must_check mix_precomputed_dh(u8 chaining_key[NOISE_HASH_LEN],
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
const u8 precomputed[NOISE_PUBLIC_KEY_LEN])
|
|
{
|
|
static u8 zero_point[NOISE_PUBLIC_KEY_LEN];
|
|
if (unlikely(!crypto_memneq(precomputed, zero_point, NOISE_PUBLIC_KEY_LEN)))
|
|
return false;
|
|
kdf(chaining_key, key, NULL, precomputed, NOISE_HASH_LEN,
|
|
NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
|
|
chaining_key);
|
|
return true;
|
|
}
|
|
|
|
static void mix_hash(u8 hash[NOISE_HASH_LEN], const u8 *src, size_t src_len)
|
|
{
|
|
struct blake2s_state blake;
|
|
|
|
blake2s_init(&blake, NOISE_HASH_LEN);
|
|
blake2s_update(&blake, hash, NOISE_HASH_LEN);
|
|
blake2s_update(&blake, src, src_len);
|
|
blake2s_final(&blake, hash);
|
|
}
|
|
|
|
static void mix_psk(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN],
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
const u8 psk[NOISE_SYMMETRIC_KEY_LEN])
|
|
{
|
|
u8 temp_hash[NOISE_HASH_LEN];
|
|
|
|
kdf(chaining_key, temp_hash, key, psk, NOISE_HASH_LEN, NOISE_HASH_LEN,
|
|
NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, chaining_key);
|
|
mix_hash(hash, temp_hash, NOISE_HASH_LEN);
|
|
memzero_explicit(temp_hash, NOISE_HASH_LEN);
|
|
}
|
|
|
|
static void handshake_init(u8 chaining_key[NOISE_HASH_LEN],
|
|
u8 hash[NOISE_HASH_LEN],
|
|
const u8 remote_static[NOISE_PUBLIC_KEY_LEN])
|
|
{
|
|
memcpy(hash, handshake_init_hash, NOISE_HASH_LEN);
|
|
memcpy(chaining_key, handshake_init_chaining_key, NOISE_HASH_LEN);
|
|
mix_hash(hash, remote_static, NOISE_PUBLIC_KEY_LEN);
|
|
}
|
|
|
|
static void message_encrypt(u8 *dst_ciphertext, const u8 *src_plaintext,
|
|
size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
u8 hash[NOISE_HASH_LEN])
|
|
{
|
|
chacha20poly1305_encrypt(dst_ciphertext, src_plaintext, src_len, hash,
|
|
NOISE_HASH_LEN,
|
|
0 /* Always zero for Noise_IK */, key);
|
|
mix_hash(hash, dst_ciphertext, noise_encrypted_len(src_len));
|
|
}
|
|
|
|
static bool message_decrypt(u8 *dst_plaintext, const u8 *src_ciphertext,
|
|
size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN],
|
|
u8 hash[NOISE_HASH_LEN])
|
|
{
|
|
if (!chacha20poly1305_decrypt(dst_plaintext, src_ciphertext, src_len,
|
|
hash, NOISE_HASH_LEN,
|
|
0 /* Always zero for Noise_IK */, key))
|
|
return false;
|
|
mix_hash(hash, src_ciphertext, src_len);
|
|
return true;
|
|
}
|
|
|
|
static void message_ephemeral(u8 ephemeral_dst[NOISE_PUBLIC_KEY_LEN],
|
|
const u8 ephemeral_src[NOISE_PUBLIC_KEY_LEN],
|
|
u8 chaining_key[NOISE_HASH_LEN],
|
|
u8 hash[NOISE_HASH_LEN])
|
|
{
|
|
if (ephemeral_dst != ephemeral_src)
|
|
memcpy(ephemeral_dst, ephemeral_src, NOISE_PUBLIC_KEY_LEN);
|
|
mix_hash(hash, ephemeral_src, NOISE_PUBLIC_KEY_LEN);
|
|
kdf(chaining_key, NULL, NULL, ephemeral_src, NOISE_HASH_LEN, 0, 0,
|
|
NOISE_PUBLIC_KEY_LEN, chaining_key);
|
|
}
|
|
|
|
static void tai64n_now(u8 output[NOISE_TIMESTAMP_LEN])
|
|
{
|
|
struct timespec64 now;
|
|
|
|
ktime_get_real_ts64(&now);
|
|
|
|
/* In order to prevent some sort of infoleak from precise timers, we
|
|
* round down the nanoseconds part to the closest rounded-down power of
|
|
* two to the maximum initiations per second allowed anyway by the
|
|
* implementation.
|
|
*/
|
|
now.tv_nsec = ALIGN_DOWN(now.tv_nsec,
|
|
rounddown_pow_of_two(NSEC_PER_SEC / INITIATIONS_PER_SECOND));
|
|
|
|
/* https://cr.yp.to/libtai/tai64.html */
|
|
*(__be64 *)output = cpu_to_be64(0x400000000000000aULL + now.tv_sec);
|
|
*(__be32 *)(output + sizeof(__be64)) = cpu_to_be32(now.tv_nsec);
|
|
}
|
|
|
|
bool
|
|
wg_noise_handshake_create_initiation(struct message_handshake_initiation *dst,
|
|
struct noise_handshake *handshake)
|
|
{
|
|
u8 timestamp[NOISE_TIMESTAMP_LEN];
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
bool ret = false;
|
|
|
|
/* We need to wait for crng _before_ taking any locks, since
|
|
* curve25519_generate_secret uses get_random_bytes_wait.
|
|
*/
|
|
wait_for_random_bytes();
|
|
|
|
down_read(&handshake->static_identity->lock);
|
|
down_write(&handshake->lock);
|
|
|
|
if (unlikely(!handshake->static_identity->has_identity))
|
|
goto out;
|
|
|
|
dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION);
|
|
|
|
handshake_init(handshake->chaining_key, handshake->hash,
|
|
handshake->remote_static);
|
|
|
|
/* e */
|
|
curve25519_generate_secret(handshake->ephemeral_private);
|
|
if (!curve25519_generate_public(dst->unencrypted_ephemeral,
|
|
handshake->ephemeral_private))
|
|
goto out;
|
|
message_ephemeral(dst->unencrypted_ephemeral,
|
|
dst->unencrypted_ephemeral, handshake->chaining_key,
|
|
handshake->hash);
|
|
|
|
/* es */
|
|
if (!mix_dh(handshake->chaining_key, key, handshake->ephemeral_private,
|
|
handshake->remote_static))
|
|
goto out;
|
|
|
|
/* s */
|
|
message_encrypt(dst->encrypted_static,
|
|
handshake->static_identity->static_public,
|
|
NOISE_PUBLIC_KEY_LEN, key, handshake->hash);
|
|
|
|
/* ss */
|
|
if (!mix_precomputed_dh(handshake->chaining_key, key,
|
|
handshake->precomputed_static_static))
|
|
goto out;
|
|
|
|
/* {t} */
|
|
tai64n_now(timestamp);
|
|
message_encrypt(dst->encrypted_timestamp, timestamp,
|
|
NOISE_TIMESTAMP_LEN, key, handshake->hash);
|
|
|
|
dst->sender_index = wg_index_hashtable_insert(
|
|
handshake->entry.peer->device->index_hashtable,
|
|
&handshake->entry);
|
|
|
|
handshake->state = HANDSHAKE_CREATED_INITIATION;
|
|
ret = true;
|
|
|
|
out:
|
|
up_write(&handshake->lock);
|
|
up_read(&handshake->static_identity->lock);
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
return ret;
|
|
}
|
|
|
|
struct wg_peer *
|
|
wg_noise_handshake_consume_initiation(struct message_handshake_initiation *src,
|
|
struct wg_device *wg)
|
|
{
|
|
struct wg_peer *peer = NULL, *ret_peer = NULL;
|
|
struct noise_handshake *handshake;
|
|
bool replay_attack, flood_attack;
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
u8 chaining_key[NOISE_HASH_LEN];
|
|
u8 hash[NOISE_HASH_LEN];
|
|
u8 s[NOISE_PUBLIC_KEY_LEN];
|
|
u8 e[NOISE_PUBLIC_KEY_LEN];
|
|
u8 t[NOISE_TIMESTAMP_LEN];
|
|
u64 initiation_consumption;
|
|
|
|
down_read(&wg->static_identity.lock);
|
|
if (unlikely(!wg->static_identity.has_identity))
|
|
goto out;
|
|
|
|
handshake_init(chaining_key, hash, wg->static_identity.static_public);
|
|
|
|
/* e */
|
|
message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash);
|
|
|
|
/* es */
|
|
if (!mix_dh(chaining_key, key, wg->static_identity.static_private, e))
|
|
goto out;
|
|
|
|
/* s */
|
|
if (!message_decrypt(s, src->encrypted_static,
|
|
sizeof(src->encrypted_static), key, hash))
|
|
goto out;
|
|
|
|
/* Lookup which peer we're actually talking to */
|
|
peer = wg_pubkey_hashtable_lookup(wg->peer_hashtable, s);
|
|
if (!peer)
|
|
goto out;
|
|
handshake = &peer->handshake;
|
|
|
|
/* ss */
|
|
if (!mix_precomputed_dh(chaining_key, key,
|
|
handshake->precomputed_static_static))
|
|
goto out;
|
|
|
|
/* {t} */
|
|
if (!message_decrypt(t, src->encrypted_timestamp,
|
|
sizeof(src->encrypted_timestamp), key, hash))
|
|
goto out;
|
|
|
|
down_read(&handshake->lock);
|
|
replay_attack = memcmp(t, handshake->latest_timestamp,
|
|
NOISE_TIMESTAMP_LEN) <= 0;
|
|
flood_attack = (s64)handshake->last_initiation_consumption +
|
|
NSEC_PER_SEC / INITIATIONS_PER_SECOND >
|
|
(s64)ktime_get_coarse_boottime_ns();
|
|
up_read(&handshake->lock);
|
|
if (replay_attack || flood_attack)
|
|
goto out;
|
|
|
|
/* Success! Copy everything to peer */
|
|
down_write(&handshake->lock);
|
|
memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN);
|
|
if (memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) > 0)
|
|
memcpy(handshake->latest_timestamp, t, NOISE_TIMESTAMP_LEN);
|
|
memcpy(handshake->hash, hash, NOISE_HASH_LEN);
|
|
memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN);
|
|
handshake->remote_index = src->sender_index;
|
|
initiation_consumption = ktime_get_coarse_boottime_ns();
|
|
if ((s64)(handshake->last_initiation_consumption - initiation_consumption) < 0)
|
|
handshake->last_initiation_consumption = initiation_consumption;
|
|
handshake->state = HANDSHAKE_CONSUMED_INITIATION;
|
|
up_write(&handshake->lock);
|
|
ret_peer = peer;
|
|
|
|
out:
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
memzero_explicit(hash, NOISE_HASH_LEN);
|
|
memzero_explicit(chaining_key, NOISE_HASH_LEN);
|
|
up_read(&wg->static_identity.lock);
|
|
if (!ret_peer)
|
|
wg_peer_put(peer);
|
|
return ret_peer;
|
|
}
|
|
|
|
bool wg_noise_handshake_create_response(struct message_handshake_response *dst,
|
|
struct noise_handshake *handshake)
|
|
{
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
bool ret = false;
|
|
|
|
/* We need to wait for crng _before_ taking any locks, since
|
|
* curve25519_generate_secret uses get_random_bytes_wait.
|
|
*/
|
|
wait_for_random_bytes();
|
|
|
|
down_read(&handshake->static_identity->lock);
|
|
down_write(&handshake->lock);
|
|
|
|
if (handshake->state != HANDSHAKE_CONSUMED_INITIATION)
|
|
goto out;
|
|
|
|
dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE);
|
|
dst->receiver_index = handshake->remote_index;
|
|
|
|
/* e */
|
|
curve25519_generate_secret(handshake->ephemeral_private);
|
|
if (!curve25519_generate_public(dst->unencrypted_ephemeral,
|
|
handshake->ephemeral_private))
|
|
goto out;
|
|
message_ephemeral(dst->unencrypted_ephemeral,
|
|
dst->unencrypted_ephemeral, handshake->chaining_key,
|
|
handshake->hash);
|
|
|
|
/* ee */
|
|
if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private,
|
|
handshake->remote_ephemeral))
|
|
goto out;
|
|
|
|
/* se */
|
|
if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private,
|
|
handshake->remote_static))
|
|
goto out;
|
|
|
|
/* psk */
|
|
mix_psk(handshake->chaining_key, handshake->hash, key,
|
|
handshake->preshared_key);
|
|
|
|
/* {} */
|
|
message_encrypt(dst->encrypted_nothing, NULL, 0, key, handshake->hash);
|
|
|
|
dst->sender_index = wg_index_hashtable_insert(
|
|
handshake->entry.peer->device->index_hashtable,
|
|
&handshake->entry);
|
|
|
|
handshake->state = HANDSHAKE_CREATED_RESPONSE;
|
|
ret = true;
|
|
|
|
out:
|
|
up_write(&handshake->lock);
|
|
up_read(&handshake->static_identity->lock);
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
return ret;
|
|
}
|
|
|
|
struct wg_peer *
|
|
wg_noise_handshake_consume_response(struct message_handshake_response *src,
|
|
struct wg_device *wg)
|
|
{
|
|
enum noise_handshake_state state = HANDSHAKE_ZEROED;
|
|
struct wg_peer *peer = NULL, *ret_peer = NULL;
|
|
struct noise_handshake *handshake;
|
|
u8 key[NOISE_SYMMETRIC_KEY_LEN];
|
|
u8 hash[NOISE_HASH_LEN];
|
|
u8 chaining_key[NOISE_HASH_LEN];
|
|
u8 e[NOISE_PUBLIC_KEY_LEN];
|
|
u8 ephemeral_private[NOISE_PUBLIC_KEY_LEN];
|
|
u8 static_private[NOISE_PUBLIC_KEY_LEN];
|
|
u8 preshared_key[NOISE_SYMMETRIC_KEY_LEN];
|
|
|
|
down_read(&wg->static_identity.lock);
|
|
|
|
if (unlikely(!wg->static_identity.has_identity))
|
|
goto out;
|
|
|
|
handshake = (struct noise_handshake *)wg_index_hashtable_lookup(
|
|
wg->index_hashtable, INDEX_HASHTABLE_HANDSHAKE,
|
|
src->receiver_index, &peer);
|
|
if (unlikely(!handshake))
|
|
goto out;
|
|
|
|
down_read(&handshake->lock);
|
|
state = handshake->state;
|
|
memcpy(hash, handshake->hash, NOISE_HASH_LEN);
|
|
memcpy(chaining_key, handshake->chaining_key, NOISE_HASH_LEN);
|
|
memcpy(ephemeral_private, handshake->ephemeral_private,
|
|
NOISE_PUBLIC_KEY_LEN);
|
|
memcpy(preshared_key, handshake->preshared_key,
|
|
NOISE_SYMMETRIC_KEY_LEN);
|
|
up_read(&handshake->lock);
|
|
|
|
if (state != HANDSHAKE_CREATED_INITIATION)
|
|
goto fail;
|
|
|
|
/* e */
|
|
message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash);
|
|
|
|
/* ee */
|
|
if (!mix_dh(chaining_key, NULL, ephemeral_private, e))
|
|
goto fail;
|
|
|
|
/* se */
|
|
if (!mix_dh(chaining_key, NULL, wg->static_identity.static_private, e))
|
|
goto fail;
|
|
|
|
/* psk */
|
|
mix_psk(chaining_key, hash, key, preshared_key);
|
|
|
|
/* {} */
|
|
if (!message_decrypt(NULL, src->encrypted_nothing,
|
|
sizeof(src->encrypted_nothing), key, hash))
|
|
goto fail;
|
|
|
|
/* Success! Copy everything to peer */
|
|
down_write(&handshake->lock);
|
|
/* It's important to check that the state is still the same, while we
|
|
* have an exclusive lock.
|
|
*/
|
|
if (handshake->state != state) {
|
|
up_write(&handshake->lock);
|
|
goto fail;
|
|
}
|
|
memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN);
|
|
memcpy(handshake->hash, hash, NOISE_HASH_LEN);
|
|
memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN);
|
|
handshake->remote_index = src->sender_index;
|
|
handshake->state = HANDSHAKE_CONSUMED_RESPONSE;
|
|
up_write(&handshake->lock);
|
|
ret_peer = peer;
|
|
goto out;
|
|
|
|
fail:
|
|
wg_peer_put(peer);
|
|
out:
|
|
memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN);
|
|
memzero_explicit(hash, NOISE_HASH_LEN);
|
|
memzero_explicit(chaining_key, NOISE_HASH_LEN);
|
|
memzero_explicit(ephemeral_private, NOISE_PUBLIC_KEY_LEN);
|
|
memzero_explicit(static_private, NOISE_PUBLIC_KEY_LEN);
|
|
memzero_explicit(preshared_key, NOISE_SYMMETRIC_KEY_LEN);
|
|
up_read(&wg->static_identity.lock);
|
|
return ret_peer;
|
|
}
|
|
|
|
bool wg_noise_handshake_begin_session(struct noise_handshake *handshake,
|
|
struct noise_keypairs *keypairs)
|
|
{
|
|
struct noise_keypair *new_keypair;
|
|
bool ret = false;
|
|
|
|
down_write(&handshake->lock);
|
|
if (handshake->state != HANDSHAKE_CREATED_RESPONSE &&
|
|
handshake->state != HANDSHAKE_CONSUMED_RESPONSE)
|
|
goto out;
|
|
|
|
new_keypair = keypair_create(handshake->entry.peer);
|
|
if (!new_keypair)
|
|
goto out;
|
|
new_keypair->i_am_the_initiator = handshake->state ==
|
|
HANDSHAKE_CONSUMED_RESPONSE;
|
|
new_keypair->remote_index = handshake->remote_index;
|
|
|
|
if (new_keypair->i_am_the_initiator)
|
|
derive_keys(&new_keypair->sending, &new_keypair->receiving,
|
|
handshake->chaining_key);
|
|
else
|
|
derive_keys(&new_keypair->receiving, &new_keypair->sending,
|
|
handshake->chaining_key);
|
|
|
|
handshake_zero(handshake);
|
|
rcu_read_lock_bh();
|
|
if (likely(!READ_ONCE(container_of(handshake, struct wg_peer,
|
|
handshake)->is_dead))) {
|
|
add_new_keypair(keypairs, new_keypair);
|
|
net_dbg_ratelimited("%s: Keypair %llu created for peer %llu\n",
|
|
handshake->entry.peer->device->dev->name,
|
|
new_keypair->internal_id,
|
|
handshake->entry.peer->internal_id);
|
|
ret = wg_index_hashtable_replace(
|
|
handshake->entry.peer->device->index_hashtable,
|
|
&handshake->entry, &new_keypair->entry);
|
|
} else {
|
|
kfree_sensitive(new_keypair);
|
|
}
|
|
rcu_read_unlock_bh();
|
|
|
|
out:
|
|
up_write(&handshake->lock);
|
|
return ret;
|
|
}
|