5691276b39
Like what we did to passive reset: only passing possible reset reason in each active reset path. No functional changes. Signed-off-by: Jason Xing <kernelxing@tencent.com> Acked-by: Matthieu Baerts (NGI0) <matttbe@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
870 lines
25 KiB
C
870 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Implementation of the Transmission Control Protocol(TCP).
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
* Mark Evans, <evansmp@uhura.aston.ac.uk>
|
|
* Corey Minyard <wf-rch!minyard@relay.EU.net>
|
|
* Florian La Roche, <flla@stud.uni-sb.de>
|
|
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
|
|
* Linus Torvalds, <torvalds@cs.helsinki.fi>
|
|
* Alan Cox, <gw4pts@gw4pts.ampr.org>
|
|
* Matthew Dillon, <dillon@apollo.west.oic.com>
|
|
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
|
|
* Jorge Cwik, <jorge@laser.satlink.net>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/gfp.h>
|
|
#include <net/tcp.h>
|
|
#include <net/rstreason.h>
|
|
|
|
static u32 tcp_clamp_rto_to_user_timeout(const struct sock *sk)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 elapsed, user_timeout;
|
|
s32 remaining;
|
|
|
|
user_timeout = READ_ONCE(icsk->icsk_user_timeout);
|
|
if (!user_timeout)
|
|
return icsk->icsk_rto;
|
|
|
|
elapsed = tcp_time_stamp_ts(tp) - tp->retrans_stamp;
|
|
if (tp->tcp_usec_ts)
|
|
elapsed /= USEC_PER_MSEC;
|
|
|
|
remaining = user_timeout - elapsed;
|
|
if (remaining <= 0)
|
|
return 1; /* user timeout has passed; fire ASAP */
|
|
|
|
return min_t(u32, icsk->icsk_rto, msecs_to_jiffies(remaining));
|
|
}
|
|
|
|
u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
u32 remaining, user_timeout;
|
|
s32 elapsed;
|
|
|
|
user_timeout = READ_ONCE(icsk->icsk_user_timeout);
|
|
if (!user_timeout || !icsk->icsk_probes_tstamp)
|
|
return when;
|
|
|
|
elapsed = tcp_jiffies32 - icsk->icsk_probes_tstamp;
|
|
if (unlikely(elapsed < 0))
|
|
elapsed = 0;
|
|
remaining = msecs_to_jiffies(user_timeout) - elapsed;
|
|
remaining = max_t(u32, remaining, TCP_TIMEOUT_MIN);
|
|
|
|
return min_t(u32, remaining, when);
|
|
}
|
|
|
|
/**
|
|
* tcp_write_err() - close socket and save error info
|
|
* @sk: The socket the error has appeared on.
|
|
*
|
|
* Returns: Nothing (void)
|
|
*/
|
|
|
|
static void tcp_write_err(struct sock *sk)
|
|
{
|
|
WRITE_ONCE(sk->sk_err, READ_ONCE(sk->sk_err_soft) ? : ETIMEDOUT);
|
|
sk_error_report(sk);
|
|
|
|
tcp_write_queue_purge(sk);
|
|
tcp_done(sk);
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONTIMEOUT);
|
|
}
|
|
|
|
/**
|
|
* tcp_out_of_resources() - Close socket if out of resources
|
|
* @sk: pointer to current socket
|
|
* @do_reset: send a last packet with reset flag
|
|
*
|
|
* Do not allow orphaned sockets to eat all our resources.
|
|
* This is direct violation of TCP specs, but it is required
|
|
* to prevent DoS attacks. It is called when a retransmission timeout
|
|
* or zero probe timeout occurs on orphaned socket.
|
|
*
|
|
* Also close if our net namespace is exiting; in that case there is no
|
|
* hope of ever communicating again since all netns interfaces are already
|
|
* down (or about to be down), and we need to release our dst references,
|
|
* which have been moved to the netns loopback interface, so the namespace
|
|
* can finish exiting. This condition is only possible if we are a kernel
|
|
* socket, as those do not hold references to the namespace.
|
|
*
|
|
* Criteria is still not confirmed experimentally and may change.
|
|
* We kill the socket, if:
|
|
* 1. If number of orphaned sockets exceeds an administratively configured
|
|
* limit.
|
|
* 2. If we have strong memory pressure.
|
|
* 3. If our net namespace is exiting.
|
|
*/
|
|
static int tcp_out_of_resources(struct sock *sk, bool do_reset)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int shift = 0;
|
|
|
|
/* If peer does not open window for long time, or did not transmit
|
|
* anything for long time, penalize it. */
|
|
if ((s32)(tcp_jiffies32 - tp->lsndtime) > 2*TCP_RTO_MAX || !do_reset)
|
|
shift++;
|
|
|
|
/* If some dubious ICMP arrived, penalize even more. */
|
|
if (READ_ONCE(sk->sk_err_soft))
|
|
shift++;
|
|
|
|
if (tcp_check_oom(sk, shift)) {
|
|
/* Catch exceptional cases, when connection requires reset.
|
|
* 1. Last segment was sent recently. */
|
|
if ((s32)(tcp_jiffies32 - tp->lsndtime) <= TCP_TIMEWAIT_LEN ||
|
|
/* 2. Window is closed. */
|
|
(!tp->snd_wnd && !tp->packets_out))
|
|
do_reset = true;
|
|
if (do_reset)
|
|
tcp_send_active_reset(sk, GFP_ATOMIC,
|
|
SK_RST_REASON_NOT_SPECIFIED);
|
|
tcp_done(sk);
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONMEMORY);
|
|
return 1;
|
|
}
|
|
|
|
if (!check_net(sock_net(sk))) {
|
|
/* Not possible to send reset; just close */
|
|
tcp_done(sk);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tcp_orphan_retries() - Returns maximal number of retries on an orphaned socket
|
|
* @sk: Pointer to the current socket.
|
|
* @alive: bool, socket alive state
|
|
*/
|
|
static int tcp_orphan_retries(struct sock *sk, bool alive)
|
|
{
|
|
int retries = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_orphan_retries); /* May be zero. */
|
|
|
|
/* We know from an ICMP that something is wrong. */
|
|
if (READ_ONCE(sk->sk_err_soft) && !alive)
|
|
retries = 0;
|
|
|
|
/* However, if socket sent something recently, select some safe
|
|
* number of retries. 8 corresponds to >100 seconds with minimal
|
|
* RTO of 200msec. */
|
|
if (retries == 0 && alive)
|
|
retries = 8;
|
|
return retries;
|
|
}
|
|
|
|
static void tcp_mtu_probing(struct inet_connection_sock *icsk, struct sock *sk)
|
|
{
|
|
const struct net *net = sock_net(sk);
|
|
int mss;
|
|
|
|
/* Black hole detection */
|
|
if (!READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing))
|
|
return;
|
|
|
|
if (!icsk->icsk_mtup.enabled) {
|
|
icsk->icsk_mtup.enabled = 1;
|
|
icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
|
|
} else {
|
|
mss = tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low) >> 1;
|
|
mss = min(READ_ONCE(net->ipv4.sysctl_tcp_base_mss), mss);
|
|
mss = max(mss, READ_ONCE(net->ipv4.sysctl_tcp_mtu_probe_floor));
|
|
mss = max(mss, READ_ONCE(net->ipv4.sysctl_tcp_min_snd_mss));
|
|
icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
|
|
}
|
|
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
|
|
}
|
|
|
|
static unsigned int tcp_model_timeout(struct sock *sk,
|
|
unsigned int boundary,
|
|
unsigned int rto_base)
|
|
{
|
|
unsigned int linear_backoff_thresh, timeout;
|
|
|
|
linear_backoff_thresh = ilog2(TCP_RTO_MAX / rto_base);
|
|
if (boundary <= linear_backoff_thresh)
|
|
timeout = ((2 << boundary) - 1) * rto_base;
|
|
else
|
|
timeout = ((2 << linear_backoff_thresh) - 1) * rto_base +
|
|
(boundary - linear_backoff_thresh) * TCP_RTO_MAX;
|
|
return jiffies_to_msecs(timeout);
|
|
}
|
|
/**
|
|
* retransmits_timed_out() - returns true if this connection has timed out
|
|
* @sk: The current socket
|
|
* @boundary: max number of retransmissions
|
|
* @timeout: A custom timeout value.
|
|
* If set to 0 the default timeout is calculated and used.
|
|
* Using TCP_RTO_MIN and the number of unsuccessful retransmits.
|
|
*
|
|
* The default "timeout" value this function can calculate and use
|
|
* is equivalent to the timeout of a TCP Connection
|
|
* after "boundary" unsuccessful, exponentially backed-off
|
|
* retransmissions with an initial RTO of TCP_RTO_MIN.
|
|
*/
|
|
static bool retransmits_timed_out(struct sock *sk,
|
|
unsigned int boundary,
|
|
unsigned int timeout)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
unsigned int start_ts, delta;
|
|
|
|
if (!inet_csk(sk)->icsk_retransmits)
|
|
return false;
|
|
|
|
start_ts = tp->retrans_stamp;
|
|
if (likely(timeout == 0)) {
|
|
unsigned int rto_base = TCP_RTO_MIN;
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
|
|
rto_base = tcp_timeout_init(sk);
|
|
timeout = tcp_model_timeout(sk, boundary, rto_base);
|
|
}
|
|
|
|
if (tp->tcp_usec_ts) {
|
|
/* delta maybe off up to a jiffy due to timer granularity. */
|
|
delta = tp->tcp_mstamp - start_ts + jiffies_to_usecs(1);
|
|
return (s32)(delta - timeout * USEC_PER_MSEC) >= 0;
|
|
}
|
|
return (s32)(tcp_time_stamp_ts(tp) - start_ts - timeout) >= 0;
|
|
}
|
|
|
|
/* A write timeout has occurred. Process the after effects. */
|
|
static int tcp_write_timeout(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct net *net = sock_net(sk);
|
|
bool expired = false, do_reset;
|
|
int retry_until, max_retransmits;
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
|
|
if (icsk->icsk_retransmits)
|
|
__dst_negative_advice(sk);
|
|
/* Paired with WRITE_ONCE() in tcp_sock_set_syncnt() */
|
|
retry_until = READ_ONCE(icsk->icsk_syn_retries) ? :
|
|
READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
|
|
|
|
max_retransmits = retry_until;
|
|
if (sk->sk_state == TCP_SYN_SENT)
|
|
max_retransmits += READ_ONCE(net->ipv4.sysctl_tcp_syn_linear_timeouts);
|
|
|
|
expired = icsk->icsk_retransmits >= max_retransmits;
|
|
} else {
|
|
if (retransmits_timed_out(sk, READ_ONCE(net->ipv4.sysctl_tcp_retries1), 0)) {
|
|
/* Black hole detection */
|
|
tcp_mtu_probing(icsk, sk);
|
|
|
|
__dst_negative_advice(sk);
|
|
}
|
|
|
|
retry_until = READ_ONCE(net->ipv4.sysctl_tcp_retries2);
|
|
if (sock_flag(sk, SOCK_DEAD)) {
|
|
const bool alive = icsk->icsk_rto < TCP_RTO_MAX;
|
|
|
|
retry_until = tcp_orphan_retries(sk, alive);
|
|
do_reset = alive ||
|
|
!retransmits_timed_out(sk, retry_until, 0);
|
|
|
|
if (tcp_out_of_resources(sk, do_reset))
|
|
return 1;
|
|
}
|
|
}
|
|
if (!expired)
|
|
expired = retransmits_timed_out(sk, retry_until,
|
|
READ_ONCE(icsk->icsk_user_timeout));
|
|
tcp_fastopen_active_detect_blackhole(sk, expired);
|
|
|
|
if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RTO_CB_FLAG))
|
|
tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RTO_CB,
|
|
icsk->icsk_retransmits,
|
|
icsk->icsk_rto, (int)expired);
|
|
|
|
if (expired) {
|
|
/* Has it gone just too far? */
|
|
tcp_write_err(sk);
|
|
return 1;
|
|
}
|
|
|
|
if (sk_rethink_txhash(sk)) {
|
|
tp->timeout_rehash++;
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEOUTREHASH);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with BH disabled */
|
|
void tcp_delack_timer_handler(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
|
|
return;
|
|
|
|
/* Handling the sack compression case */
|
|
if (tp->compressed_ack) {
|
|
tcp_mstamp_refresh(tp);
|
|
tcp_sack_compress_send_ack(sk);
|
|
return;
|
|
}
|
|
|
|
if (!(icsk->icsk_ack.pending & ICSK_ACK_TIMER))
|
|
return;
|
|
|
|
if (time_after(icsk->icsk_ack.timeout, jiffies)) {
|
|
sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout);
|
|
return;
|
|
}
|
|
icsk->icsk_ack.pending &= ~ICSK_ACK_TIMER;
|
|
|
|
if (inet_csk_ack_scheduled(sk)) {
|
|
if (!inet_csk_in_pingpong_mode(sk)) {
|
|
/* Delayed ACK missed: inflate ATO. */
|
|
icsk->icsk_ack.ato = min_t(u32, icsk->icsk_ack.ato << 1, icsk->icsk_rto);
|
|
} else {
|
|
/* Delayed ACK missed: leave pingpong mode and
|
|
* deflate ATO.
|
|
*/
|
|
inet_csk_exit_pingpong_mode(sk);
|
|
icsk->icsk_ack.ato = TCP_ATO_MIN;
|
|
}
|
|
tcp_mstamp_refresh(tp);
|
|
tcp_send_ack(sk);
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKS);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* tcp_delack_timer() - The TCP delayed ACK timeout handler
|
|
* @t: Pointer to the timer. (gets casted to struct sock *)
|
|
*
|
|
* This function gets (indirectly) called when the kernel timer for a TCP packet
|
|
* of this socket expires. Calls tcp_delack_timer_handler() to do the actual work.
|
|
*
|
|
* Returns: Nothing (void)
|
|
*/
|
|
static void tcp_delack_timer(struct timer_list *t)
|
|
{
|
|
struct inet_connection_sock *icsk =
|
|
from_timer(icsk, t, icsk_delack_timer);
|
|
struct sock *sk = &icsk->icsk_inet.sk;
|
|
|
|
bh_lock_sock(sk);
|
|
if (!sock_owned_by_user(sk)) {
|
|
tcp_delack_timer_handler(sk);
|
|
} else {
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOCKED);
|
|
/* deleguate our work to tcp_release_cb() */
|
|
if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED, &sk->sk_tsq_flags))
|
|
sock_hold(sk);
|
|
}
|
|
bh_unlock_sock(sk);
|
|
sock_put(sk);
|
|
}
|
|
|
|
static void tcp_probe_timer(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct sk_buff *skb = tcp_send_head(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int max_probes;
|
|
|
|
if (tp->packets_out || !skb) {
|
|
icsk->icsk_probes_out = 0;
|
|
icsk->icsk_probes_tstamp = 0;
|
|
return;
|
|
}
|
|
|
|
/* RFC 1122 4.2.2.17 requires the sender to stay open indefinitely as
|
|
* long as the receiver continues to respond probes. We support this by
|
|
* default and reset icsk_probes_out with incoming ACKs. But if the
|
|
* socket is orphaned or the user specifies TCP_USER_TIMEOUT, we
|
|
* kill the socket when the retry count and the time exceeds the
|
|
* corresponding system limit. We also implement similar policy when
|
|
* we use RTO to probe window in tcp_retransmit_timer().
|
|
*/
|
|
if (!icsk->icsk_probes_tstamp) {
|
|
icsk->icsk_probes_tstamp = tcp_jiffies32;
|
|
} else {
|
|
u32 user_timeout = READ_ONCE(icsk->icsk_user_timeout);
|
|
|
|
if (user_timeout &&
|
|
(s32)(tcp_jiffies32 - icsk->icsk_probes_tstamp) >=
|
|
msecs_to_jiffies(user_timeout))
|
|
goto abort;
|
|
}
|
|
max_probes = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retries2);
|
|
if (sock_flag(sk, SOCK_DEAD)) {
|
|
const bool alive = inet_csk_rto_backoff(icsk, TCP_RTO_MAX) < TCP_RTO_MAX;
|
|
|
|
max_probes = tcp_orphan_retries(sk, alive);
|
|
if (!alive && icsk->icsk_backoff >= max_probes)
|
|
goto abort;
|
|
if (tcp_out_of_resources(sk, true))
|
|
return;
|
|
}
|
|
|
|
if (icsk->icsk_probes_out >= max_probes) {
|
|
abort: tcp_write_err(sk);
|
|
} else {
|
|
/* Only send another probe if we didn't close things up. */
|
|
tcp_send_probe0(sk);
|
|
}
|
|
}
|
|
|
|
static void tcp_update_rto_stats(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (!icsk->icsk_retransmits) {
|
|
tp->total_rto_recoveries++;
|
|
tp->rto_stamp = tcp_time_stamp_ms(tp);
|
|
}
|
|
icsk->icsk_retransmits++;
|
|
tp->total_rto++;
|
|
}
|
|
|
|
/*
|
|
* Timer for Fast Open socket to retransmit SYNACK. Note that the
|
|
* sk here is the child socket, not the parent (listener) socket.
|
|
*/
|
|
static void tcp_fastopen_synack_timer(struct sock *sk, struct request_sock *req)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int max_retries;
|
|
|
|
req->rsk_ops->syn_ack_timeout(req);
|
|
|
|
/* Add one more retry for fastopen.
|
|
* Paired with WRITE_ONCE() in tcp_sock_set_syncnt()
|
|
*/
|
|
max_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
|
|
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_synack_retries) + 1;
|
|
|
|
if (req->num_timeout >= max_retries) {
|
|
tcp_write_err(sk);
|
|
return;
|
|
}
|
|
/* Lower cwnd after certain SYNACK timeout like tcp_init_transfer() */
|
|
if (icsk->icsk_retransmits == 1)
|
|
tcp_enter_loss(sk);
|
|
/* XXX (TFO) - Unlike regular SYN-ACK retransmit, we ignore error
|
|
* returned from rtx_syn_ack() to make it more persistent like
|
|
* regular retransmit because if the child socket has been accepted
|
|
* it's not good to give up too easily.
|
|
*/
|
|
inet_rtx_syn_ack(sk, req);
|
|
req->num_timeout++;
|
|
tcp_update_rto_stats(sk);
|
|
if (!tp->retrans_stamp)
|
|
tp->retrans_stamp = tcp_time_stamp_ts(tp);
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
|
req->timeout << req->num_timeout, TCP_RTO_MAX);
|
|
}
|
|
|
|
static bool tcp_rtx_probe0_timed_out(const struct sock *sk,
|
|
const struct sk_buff *skb,
|
|
u32 rtx_delta)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
const int timeout = TCP_RTO_MAX * 2;
|
|
u32 rcv_delta;
|
|
|
|
rcv_delta = inet_csk(sk)->icsk_timeout - tp->rcv_tstamp;
|
|
if (rcv_delta <= timeout)
|
|
return false;
|
|
|
|
return msecs_to_jiffies(rtx_delta) > timeout;
|
|
}
|
|
|
|
/**
|
|
* tcp_retransmit_timer() - The TCP retransmit timeout handler
|
|
* @sk: Pointer to the current socket.
|
|
*
|
|
* This function gets called when the kernel timer for a TCP packet
|
|
* of this socket expires.
|
|
*
|
|
* It handles retransmission, timer adjustment and other necessary measures.
|
|
*
|
|
* Returns: Nothing (void)
|
|
*/
|
|
void tcp_retransmit_timer(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct net *net = sock_net(sk);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct request_sock *req;
|
|
struct sk_buff *skb;
|
|
|
|
req = rcu_dereference_protected(tp->fastopen_rsk,
|
|
lockdep_sock_is_held(sk));
|
|
if (req) {
|
|
WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
|
|
sk->sk_state != TCP_FIN_WAIT1);
|
|
tcp_fastopen_synack_timer(sk, req);
|
|
/* Before we receive ACK to our SYN-ACK don't retransmit
|
|
* anything else (e.g., data or FIN segments).
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (!tp->packets_out)
|
|
return;
|
|
|
|
skb = tcp_rtx_queue_head(sk);
|
|
if (WARN_ON_ONCE(!skb))
|
|
return;
|
|
|
|
tp->tlp_high_seq = 0;
|
|
|
|
if (!tp->snd_wnd && !sock_flag(sk, SOCK_DEAD) &&
|
|
!((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))) {
|
|
/* Receiver dastardly shrinks window. Our retransmits
|
|
* become zero probes, but we should not timeout this
|
|
* connection. If the socket is an orphan, time it out,
|
|
* we cannot allow such beasts to hang infinitely.
|
|
*/
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
u32 rtx_delta;
|
|
|
|
rtx_delta = tcp_time_stamp_ts(tp) - (tp->retrans_stamp ?:
|
|
tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
|
|
if (tp->tcp_usec_ts)
|
|
rtx_delta /= USEC_PER_MSEC;
|
|
|
|
if (sk->sk_family == AF_INET) {
|
|
net_dbg_ratelimited("Probing zero-window on %pI4:%u/%u, seq=%u:%u, recv %ums ago, lasting %ums\n",
|
|
&inet->inet_daddr, ntohs(inet->inet_dport),
|
|
inet->inet_num, tp->snd_una, tp->snd_nxt,
|
|
jiffies_to_msecs(jiffies - tp->rcv_tstamp),
|
|
rtx_delta);
|
|
}
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
else if (sk->sk_family == AF_INET6) {
|
|
net_dbg_ratelimited("Probing zero-window on %pI6:%u/%u, seq=%u:%u, recv %ums ago, lasting %ums\n",
|
|
&sk->sk_v6_daddr, ntohs(inet->inet_dport),
|
|
inet->inet_num, tp->snd_una, tp->snd_nxt,
|
|
jiffies_to_msecs(jiffies - tp->rcv_tstamp),
|
|
rtx_delta);
|
|
}
|
|
#endif
|
|
if (tcp_rtx_probe0_timed_out(sk, skb, rtx_delta)) {
|
|
tcp_write_err(sk);
|
|
goto out;
|
|
}
|
|
tcp_enter_loss(sk);
|
|
tcp_retransmit_skb(sk, skb, 1);
|
|
__sk_dst_reset(sk);
|
|
goto out_reset_timer;
|
|
}
|
|
|
|
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEOUTS);
|
|
if (tcp_write_timeout(sk))
|
|
goto out;
|
|
|
|
if (icsk->icsk_retransmits == 0) {
|
|
int mib_idx = 0;
|
|
|
|
if (icsk->icsk_ca_state == TCP_CA_Recovery) {
|
|
if (tcp_is_sack(tp))
|
|
mib_idx = LINUX_MIB_TCPSACKRECOVERYFAIL;
|
|
else
|
|
mib_idx = LINUX_MIB_TCPRENORECOVERYFAIL;
|
|
} else if (icsk->icsk_ca_state == TCP_CA_Loss) {
|
|
mib_idx = LINUX_MIB_TCPLOSSFAILURES;
|
|
} else if ((icsk->icsk_ca_state == TCP_CA_Disorder) ||
|
|
tp->sacked_out) {
|
|
if (tcp_is_sack(tp))
|
|
mib_idx = LINUX_MIB_TCPSACKFAILURES;
|
|
else
|
|
mib_idx = LINUX_MIB_TCPRENOFAILURES;
|
|
}
|
|
if (mib_idx)
|
|
__NET_INC_STATS(sock_net(sk), mib_idx);
|
|
}
|
|
|
|
tcp_enter_loss(sk);
|
|
|
|
tcp_update_rto_stats(sk);
|
|
if (tcp_retransmit_skb(sk, tcp_rtx_queue_head(sk), 1) > 0) {
|
|
/* Retransmission failed because of local congestion,
|
|
* Let senders fight for local resources conservatively.
|
|
*/
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
|
TCP_RESOURCE_PROBE_INTERVAL,
|
|
TCP_RTO_MAX);
|
|
goto out;
|
|
}
|
|
|
|
/* Increase the timeout each time we retransmit. Note that
|
|
* we do not increase the rtt estimate. rto is initialized
|
|
* from rtt, but increases here. Jacobson (SIGCOMM 88) suggests
|
|
* that doubling rto each time is the least we can get away with.
|
|
* In KA9Q, Karn uses this for the first few times, and then
|
|
* goes to quadratic. netBSD doubles, but only goes up to *64,
|
|
* and clamps at 1 to 64 sec afterwards. Note that 120 sec is
|
|
* defined in the protocol as the maximum possible RTT. I guess
|
|
* we'll have to use something other than TCP to talk to the
|
|
* University of Mars.
|
|
*
|
|
* PAWS allows us longer timeouts and large windows, so once
|
|
* implemented ftp to mars will work nicely. We will have to fix
|
|
* the 120 second clamps though!
|
|
*/
|
|
|
|
out_reset_timer:
|
|
/* If stream is thin, use linear timeouts. Since 'icsk_backoff' is
|
|
* used to reset timer, set to 0. Recalculate 'icsk_rto' as this
|
|
* might be increased if the stream oscillates between thin and thick,
|
|
* thus the old value might already be too high compared to the value
|
|
* set by 'tcp_set_rto' in tcp_input.c which resets the rto without
|
|
* backoff. Limit to TCP_THIN_LINEAR_RETRIES before initiating
|
|
* exponential backoff behaviour to avoid continue hammering
|
|
* linear-timeout retransmissions into a black hole
|
|
*/
|
|
if (sk->sk_state == TCP_ESTABLISHED &&
|
|
(tp->thin_lto || READ_ONCE(net->ipv4.sysctl_tcp_thin_linear_timeouts)) &&
|
|
tcp_stream_is_thin(tp) &&
|
|
icsk->icsk_retransmits <= TCP_THIN_LINEAR_RETRIES) {
|
|
icsk->icsk_backoff = 0;
|
|
icsk->icsk_rto = clamp(__tcp_set_rto(tp),
|
|
tcp_rto_min(sk),
|
|
TCP_RTO_MAX);
|
|
} else if (sk->sk_state != TCP_SYN_SENT ||
|
|
tp->total_rto >
|
|
READ_ONCE(net->ipv4.sysctl_tcp_syn_linear_timeouts)) {
|
|
/* Use normal (exponential) backoff unless linear timeouts are
|
|
* activated.
|
|
*/
|
|
icsk->icsk_backoff++;
|
|
icsk->icsk_rto = min(icsk->icsk_rto << 1, TCP_RTO_MAX);
|
|
}
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
|
tcp_clamp_rto_to_user_timeout(sk), TCP_RTO_MAX);
|
|
if (retransmits_timed_out(sk, READ_ONCE(net->ipv4.sysctl_tcp_retries1) + 1, 0))
|
|
__sk_dst_reset(sk);
|
|
|
|
out:;
|
|
}
|
|
|
|
/* Called with bottom-half processing disabled.
|
|
Called by tcp_write_timer() */
|
|
void tcp_write_timer_handler(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
int event;
|
|
|
|
if (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
|
|
!icsk->icsk_pending)
|
|
return;
|
|
|
|
if (time_after(icsk->icsk_timeout, jiffies)) {
|
|
sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout);
|
|
return;
|
|
}
|
|
|
|
tcp_mstamp_refresh(tcp_sk(sk));
|
|
event = icsk->icsk_pending;
|
|
|
|
switch (event) {
|
|
case ICSK_TIME_REO_TIMEOUT:
|
|
tcp_rack_reo_timeout(sk);
|
|
break;
|
|
case ICSK_TIME_LOSS_PROBE:
|
|
tcp_send_loss_probe(sk);
|
|
break;
|
|
case ICSK_TIME_RETRANS:
|
|
icsk->icsk_pending = 0;
|
|
tcp_retransmit_timer(sk);
|
|
break;
|
|
case ICSK_TIME_PROBE0:
|
|
icsk->icsk_pending = 0;
|
|
tcp_probe_timer(sk);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void tcp_write_timer(struct timer_list *t)
|
|
{
|
|
struct inet_connection_sock *icsk =
|
|
from_timer(icsk, t, icsk_retransmit_timer);
|
|
struct sock *sk = &icsk->icsk_inet.sk;
|
|
|
|
bh_lock_sock(sk);
|
|
if (!sock_owned_by_user(sk)) {
|
|
tcp_write_timer_handler(sk);
|
|
} else {
|
|
/* delegate our work to tcp_release_cb() */
|
|
if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, &sk->sk_tsq_flags))
|
|
sock_hold(sk);
|
|
}
|
|
bh_unlock_sock(sk);
|
|
sock_put(sk);
|
|
}
|
|
|
|
void tcp_syn_ack_timeout(const struct request_sock *req)
|
|
{
|
|
struct net *net = read_pnet(&inet_rsk(req)->ireq_net);
|
|
|
|
__NET_INC_STATS(net, LINUX_MIB_TCPTIMEOUTS);
|
|
}
|
|
EXPORT_SYMBOL(tcp_syn_ack_timeout);
|
|
|
|
void tcp_set_keepalive(struct sock *sk, int val)
|
|
{
|
|
if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
|
|
return;
|
|
|
|
if (val && !sock_flag(sk, SOCK_KEEPOPEN))
|
|
inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tcp_sk(sk)));
|
|
else if (!val)
|
|
inet_csk_delete_keepalive_timer(sk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tcp_set_keepalive);
|
|
|
|
|
|
static void tcp_keepalive_timer (struct timer_list *t)
|
|
{
|
|
struct sock *sk = from_timer(sk, t, sk_timer);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 elapsed;
|
|
|
|
/* Only process if socket is not in use. */
|
|
bh_lock_sock(sk);
|
|
if (sock_owned_by_user(sk)) {
|
|
/* Try again later. */
|
|
inet_csk_reset_keepalive_timer (sk, HZ/20);
|
|
goto out;
|
|
}
|
|
|
|
if (sk->sk_state == TCP_LISTEN) {
|
|
pr_err("Hmm... keepalive on a LISTEN ???\n");
|
|
goto out;
|
|
}
|
|
|
|
tcp_mstamp_refresh(tp);
|
|
if (sk->sk_state == TCP_FIN_WAIT2 && sock_flag(sk, SOCK_DEAD)) {
|
|
if (READ_ONCE(tp->linger2) >= 0) {
|
|
const int tmo = tcp_fin_time(sk) - TCP_TIMEWAIT_LEN;
|
|
|
|
if (tmo > 0) {
|
|
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
|
|
goto out;
|
|
}
|
|
}
|
|
tcp_send_active_reset(sk, GFP_ATOMIC, SK_RST_REASON_NOT_SPECIFIED);
|
|
goto death;
|
|
}
|
|
|
|
if (!sock_flag(sk, SOCK_KEEPOPEN) ||
|
|
((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)))
|
|
goto out;
|
|
|
|
elapsed = keepalive_time_when(tp);
|
|
|
|
/* It is alive without keepalive 8) */
|
|
if (tp->packets_out || !tcp_write_queue_empty(sk))
|
|
goto resched;
|
|
|
|
elapsed = keepalive_time_elapsed(tp);
|
|
|
|
if (elapsed >= keepalive_time_when(tp)) {
|
|
u32 user_timeout = READ_ONCE(icsk->icsk_user_timeout);
|
|
|
|
/* If the TCP_USER_TIMEOUT option is enabled, use that
|
|
* to determine when to timeout instead.
|
|
*/
|
|
if ((user_timeout != 0 &&
|
|
elapsed >= msecs_to_jiffies(user_timeout) &&
|
|
icsk->icsk_probes_out > 0) ||
|
|
(user_timeout == 0 &&
|
|
icsk->icsk_probes_out >= keepalive_probes(tp))) {
|
|
tcp_send_active_reset(sk, GFP_ATOMIC,
|
|
SK_RST_REASON_NOT_SPECIFIED);
|
|
tcp_write_err(sk);
|
|
goto out;
|
|
}
|
|
if (tcp_write_wakeup(sk, LINUX_MIB_TCPKEEPALIVE) <= 0) {
|
|
icsk->icsk_probes_out++;
|
|
elapsed = keepalive_intvl_when(tp);
|
|
} else {
|
|
/* If keepalive was lost due to local congestion,
|
|
* try harder.
|
|
*/
|
|
elapsed = TCP_RESOURCE_PROBE_INTERVAL;
|
|
}
|
|
} else {
|
|
/* It is tp->rcv_tstamp + keepalive_time_when(tp) */
|
|
elapsed = keepalive_time_when(tp) - elapsed;
|
|
}
|
|
|
|
resched:
|
|
inet_csk_reset_keepalive_timer (sk, elapsed);
|
|
goto out;
|
|
|
|
death:
|
|
tcp_done(sk);
|
|
|
|
out:
|
|
bh_unlock_sock(sk);
|
|
sock_put(sk);
|
|
}
|
|
|
|
static enum hrtimer_restart tcp_compressed_ack_kick(struct hrtimer *timer)
|
|
{
|
|
struct tcp_sock *tp = container_of(timer, struct tcp_sock, compressed_ack_timer);
|
|
struct sock *sk = (struct sock *)tp;
|
|
|
|
bh_lock_sock(sk);
|
|
if (!sock_owned_by_user(sk)) {
|
|
if (tp->compressed_ack) {
|
|
/* Since we have to send one ack finally,
|
|
* subtract one from tp->compressed_ack to keep
|
|
* LINUX_MIB_TCPACKCOMPRESSED accurate.
|
|
*/
|
|
tp->compressed_ack--;
|
|
tcp_send_ack(sk);
|
|
}
|
|
} else {
|
|
if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED,
|
|
&sk->sk_tsq_flags))
|
|
sock_hold(sk);
|
|
}
|
|
bh_unlock_sock(sk);
|
|
|
|
sock_put(sk);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
void tcp_init_xmit_timers(struct sock *sk)
|
|
{
|
|
inet_csk_init_xmit_timers(sk, &tcp_write_timer, &tcp_delack_timer,
|
|
&tcp_keepalive_timer);
|
|
hrtimer_init(&tcp_sk(sk)->pacing_timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_ABS_PINNED_SOFT);
|
|
tcp_sk(sk)->pacing_timer.function = tcp_pace_kick;
|
|
|
|
hrtimer_init(&tcp_sk(sk)->compressed_ack_timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_REL_PINNED_SOFT);
|
|
tcp_sk(sk)->compressed_ack_timer.function = tcp_compressed_ack_kick;
|
|
}
|