d52734d00b
Since commit b0563468eeac ("x86/CPU/AMD: Disable XSAVES on AMD family 0x17") kernel unconditionally clears the XSAVES CPU feature bit on Zen1/2 CPUs. Because KVM CPU caps are initialized from the kernel boot CPU features this makes the XSAVES feature also unavailable for KVM guests in this case. At the same time the XSAVEC feature is left enabled. Unfortunately, having XSAVEC but no XSAVES in CPUID breaks Hyper-V enabled Windows Server 2016 VMs that have more than one vCPU. Let's at least give users hint in the kernel log what could be wrong since these VMs currently simply hang at boot with a black screen - giving no clue what suddenly broke them and how to make them work again. Trigger the kernel message hint based on the particular guest ID written to the Guest OS Identity Hyper-V MSR implemented by KVM. Defer this check to when the L1 Hyper-V hypervisor enables SVM in EFER since we want to limit this message to Hyper-V enabled Windows guests only (Windows session running nested as L2) but the actual Guest OS Identity MSR write is done by L1 and happens before it enables SVM. Fixes: b0563468eeac ("x86/CPU/AMD: Disable XSAVES on AMD family 0x17") Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Message-Id: <b83ab45c5e239e5d148b0ae7750133a67ac9575c.1706127425.git.maciej.szmigiero@oracle.com> [Move some checks before mutex_lock(), rename function. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2917 lines
77 KiB
C
2917 lines
77 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* KVM Microsoft Hyper-V emulation
|
|
*
|
|
* derived from arch/x86/kvm/x86.c
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright (C) 2008 Qumranet, Inc.
|
|
* Copyright IBM Corporation, 2008
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
* Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Amit Shah <amit.shah@qumranet.com>
|
|
* Ben-Ami Yassour <benami@il.ibm.com>
|
|
* Andrey Smetanin <asmetanin@virtuozzo.com>
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include "x86.h"
|
|
#include "lapic.h"
|
|
#include "ioapic.h"
|
|
#include "cpuid.h"
|
|
#include "hyperv.h"
|
|
#include "mmu.h"
|
|
#include "xen.h"
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/eventfd.h>
|
|
|
|
#include <asm/apicdef.h>
|
|
#include <asm/mshyperv.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include "trace.h"
|
|
#include "irq.h"
|
|
#include "fpu.h"
|
|
|
|
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
|
|
|
|
/*
|
|
* As per Hyper-V TLFS, extended hypercalls start from 0x8001
|
|
* (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
|
|
* where each bit tells which extended hypercall is available besides
|
|
* HvExtCallQueryCapabilities.
|
|
*
|
|
* 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
|
|
* assigned.
|
|
*
|
|
* 0x8002 - Bit 0
|
|
* 0x8003 - Bit 1
|
|
* ..
|
|
* 0x8041 - Bit 63
|
|
*
|
|
* Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
|
|
*/
|
|
#define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
|
|
|
|
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
|
|
bool vcpu_kick);
|
|
|
|
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
|
|
{
|
|
return atomic64_read(&synic->sint[sint]);
|
|
}
|
|
|
|
static inline int synic_get_sint_vector(u64 sint_value)
|
|
{
|
|
if (sint_value & HV_SYNIC_SINT_MASKED)
|
|
return -1;
|
|
return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
|
|
}
|
|
|
|
static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
|
|
int vector)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
|
|
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
|
|
int vector)
|
|
{
|
|
int i;
|
|
u64 sint_value;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
|
|
sint_value = synic_read_sint(synic, i);
|
|
if (synic_get_sint_vector(sint_value) == vector &&
|
|
sint_value & HV_SYNIC_SINT_AUTO_EOI)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
|
|
int vector)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
|
|
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
|
|
bool auto_eoi_old, auto_eoi_new;
|
|
|
|
if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
|
|
return;
|
|
|
|
if (synic_has_vector_connected(synic, vector))
|
|
__set_bit(vector, synic->vec_bitmap);
|
|
else
|
|
__clear_bit(vector, synic->vec_bitmap);
|
|
|
|
auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
|
|
|
|
if (synic_has_vector_auto_eoi(synic, vector))
|
|
__set_bit(vector, synic->auto_eoi_bitmap);
|
|
else
|
|
__clear_bit(vector, synic->auto_eoi_bitmap);
|
|
|
|
auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
|
|
|
|
if (auto_eoi_old == auto_eoi_new)
|
|
return;
|
|
|
|
if (!enable_apicv)
|
|
return;
|
|
|
|
down_write(&vcpu->kvm->arch.apicv_update_lock);
|
|
|
|
if (auto_eoi_new)
|
|
hv->synic_auto_eoi_used++;
|
|
else
|
|
hv->synic_auto_eoi_used--;
|
|
|
|
/*
|
|
* Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
|
|
* the hypervisor to manually inject IRQs.
|
|
*/
|
|
__kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
|
|
APICV_INHIBIT_REASON_HYPERV,
|
|
!!hv->synic_auto_eoi_used);
|
|
|
|
up_write(&vcpu->kvm->arch.apicv_update_lock);
|
|
}
|
|
|
|
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
|
|
u64 data, bool host)
|
|
{
|
|
int vector, old_vector;
|
|
bool masked;
|
|
|
|
vector = data & HV_SYNIC_SINT_VECTOR_MASK;
|
|
masked = data & HV_SYNIC_SINT_MASKED;
|
|
|
|
/*
|
|
* Valid vectors are 16-255, however, nested Hyper-V attempts to write
|
|
* default '0x10000' value on boot and this should not #GP. We need to
|
|
* allow zero-initing the register from host as well.
|
|
*/
|
|
if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
|
|
return 1;
|
|
/*
|
|
* Guest may configure multiple SINTs to use the same vector, so
|
|
* we maintain a bitmap of vectors handled by synic, and a
|
|
* bitmap of vectors with auto-eoi behavior. The bitmaps are
|
|
* updated here, and atomically queried on fast paths.
|
|
*/
|
|
old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
|
|
|
|
atomic64_set(&synic->sint[sint], data);
|
|
|
|
synic_update_vector(synic, old_vector);
|
|
|
|
synic_update_vector(synic, vector);
|
|
|
|
/* Load SynIC vectors into EOI exit bitmap */
|
|
kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
|
|
{
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
unsigned long i;
|
|
|
|
if (vpidx >= KVM_MAX_VCPUS)
|
|
return NULL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vpidx);
|
|
if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
|
|
return vcpu;
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
if (kvm_hv_get_vpindex(vcpu) == vpidx)
|
|
return vcpu;
|
|
return NULL;
|
|
}
|
|
|
|
static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_vcpu_hv_synic *synic;
|
|
|
|
vcpu = get_vcpu_by_vpidx(kvm, vpidx);
|
|
if (!vcpu || !to_hv_vcpu(vcpu))
|
|
return NULL;
|
|
synic = to_hv_synic(vcpu);
|
|
return (synic->active) ? synic : NULL;
|
|
}
|
|
|
|
static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
struct kvm_vcpu_hv_stimer *stimer;
|
|
int gsi, idx;
|
|
|
|
trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
|
|
|
|
/* Try to deliver pending Hyper-V SynIC timers messages */
|
|
for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
|
|
stimer = &hv_vcpu->stimer[idx];
|
|
if (stimer->msg_pending && stimer->config.enable &&
|
|
!stimer->config.direct_mode &&
|
|
stimer->config.sintx == sint)
|
|
stimer_mark_pending(stimer, false);
|
|
}
|
|
|
|
idx = srcu_read_lock(&kvm->irq_srcu);
|
|
gsi = atomic_read(&synic->sint_to_gsi[sint]);
|
|
if (gsi != -1)
|
|
kvm_notify_acked_gsi(kvm, gsi);
|
|
srcu_read_unlock(&kvm->irq_srcu, idx);
|
|
}
|
|
|
|
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
|
|
hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
|
|
hv_vcpu->exit.u.synic.msr = msr;
|
|
hv_vcpu->exit.u.synic.control = synic->control;
|
|
hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
|
|
hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
|
|
|
|
kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
|
|
}
|
|
|
|
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
|
|
u32 msr, u64 data, bool host)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
|
|
int ret;
|
|
|
|
if (!synic->active && (!host || data))
|
|
return 1;
|
|
|
|
trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
|
|
|
|
ret = 0;
|
|
switch (msr) {
|
|
case HV_X64_MSR_SCONTROL:
|
|
synic->control = data;
|
|
if (!host)
|
|
synic_exit(synic, msr);
|
|
break;
|
|
case HV_X64_MSR_SVERSION:
|
|
if (!host) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
synic->version = data;
|
|
break;
|
|
case HV_X64_MSR_SIEFP:
|
|
if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
|
|
!synic->dont_zero_synic_pages)
|
|
if (kvm_clear_guest(vcpu->kvm,
|
|
data & PAGE_MASK, PAGE_SIZE)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
synic->evt_page = data;
|
|
if (!host)
|
|
synic_exit(synic, msr);
|
|
break;
|
|
case HV_X64_MSR_SIMP:
|
|
if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
|
|
!synic->dont_zero_synic_pages)
|
|
if (kvm_clear_guest(vcpu->kvm,
|
|
data & PAGE_MASK, PAGE_SIZE)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
synic->msg_page = data;
|
|
if (!host)
|
|
synic_exit(synic, msr);
|
|
break;
|
|
case HV_X64_MSR_EOM: {
|
|
int i;
|
|
|
|
if (!synic->active)
|
|
break;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
|
|
kvm_hv_notify_acked_sint(vcpu, i);
|
|
break;
|
|
}
|
|
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
|
|
ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
|
|
break;
|
|
default:
|
|
ret = 1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
|
|
return hv_vcpu->cpuid_cache.syndbg_cap_eax &
|
|
HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
|
|
}
|
|
|
|
static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
|
|
|
|
if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
|
|
hv->hv_syndbg.control.status =
|
|
vcpu->run->hyperv.u.syndbg.status;
|
|
return 1;
|
|
}
|
|
|
|
static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
|
|
hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
|
|
hv_vcpu->exit.u.syndbg.msr = msr;
|
|
hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
|
|
hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
|
|
hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
|
|
hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
|
|
vcpu->arch.complete_userspace_io =
|
|
kvm_hv_syndbg_complete_userspace;
|
|
|
|
kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
|
|
}
|
|
|
|
static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
|
|
{
|
|
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
|
|
|
|
if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
|
|
return 1;
|
|
|
|
trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
|
|
to_hv_vcpu(vcpu)->vp_index, msr, data);
|
|
switch (msr) {
|
|
case HV_X64_MSR_SYNDBG_CONTROL:
|
|
syndbg->control.control = data;
|
|
if (!host)
|
|
syndbg_exit(vcpu, msr);
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_STATUS:
|
|
syndbg->control.status = data;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_SEND_BUFFER:
|
|
syndbg->control.send_page = data;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_RECV_BUFFER:
|
|
syndbg->control.recv_page = data;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
|
|
syndbg->control.pending_page = data;
|
|
if (!host)
|
|
syndbg_exit(vcpu, msr);
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_OPTIONS:
|
|
syndbg->options = data;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
|
|
{
|
|
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
|
|
|
|
if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
|
|
return 1;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_SYNDBG_CONTROL:
|
|
*pdata = syndbg->control.control;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_STATUS:
|
|
*pdata = syndbg->control.status;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_SEND_BUFFER:
|
|
*pdata = syndbg->control.send_page;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_RECV_BUFFER:
|
|
*pdata = syndbg->control.recv_page;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
|
|
*pdata = syndbg->control.pending_page;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_OPTIONS:
|
|
*pdata = syndbg->options;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
|
|
bool host)
|
|
{
|
|
int ret;
|
|
|
|
if (!synic->active && !host)
|
|
return 1;
|
|
|
|
ret = 0;
|
|
switch (msr) {
|
|
case HV_X64_MSR_SCONTROL:
|
|
*pdata = synic->control;
|
|
break;
|
|
case HV_X64_MSR_SVERSION:
|
|
*pdata = synic->version;
|
|
break;
|
|
case HV_X64_MSR_SIEFP:
|
|
*pdata = synic->evt_page;
|
|
break;
|
|
case HV_X64_MSR_SIMP:
|
|
*pdata = synic->msg_page;
|
|
break;
|
|
case HV_X64_MSR_EOM:
|
|
*pdata = 0;
|
|
break;
|
|
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
|
|
*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
|
|
break;
|
|
default:
|
|
ret = 1;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
|
|
struct kvm_lapic_irq irq;
|
|
int ret, vector;
|
|
|
|
if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
if (sint >= ARRAY_SIZE(synic->sint))
|
|
return -EINVAL;
|
|
|
|
vector = synic_get_sint_vector(synic_read_sint(synic, sint));
|
|
if (vector < 0)
|
|
return -ENOENT;
|
|
|
|
memset(&irq, 0, sizeof(irq));
|
|
irq.shorthand = APIC_DEST_SELF;
|
|
irq.dest_mode = APIC_DEST_PHYSICAL;
|
|
irq.delivery_mode = APIC_DM_FIXED;
|
|
irq.vector = vector;
|
|
irq.level = 1;
|
|
|
|
ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
|
|
trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
|
|
{
|
|
struct kvm_vcpu_hv_synic *synic;
|
|
|
|
synic = synic_get(kvm, vpidx);
|
|
if (!synic)
|
|
return -EINVAL;
|
|
|
|
return synic_set_irq(synic, sint);
|
|
}
|
|
|
|
void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
|
|
{
|
|
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
|
|
int i;
|
|
|
|
trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
|
|
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
|
|
kvm_hv_notify_acked_sint(vcpu, i);
|
|
}
|
|
|
|
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
|
|
{
|
|
struct kvm_vcpu_hv_synic *synic;
|
|
|
|
synic = synic_get(kvm, vpidx);
|
|
if (!synic)
|
|
return -EINVAL;
|
|
|
|
if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
|
|
return -EINVAL;
|
|
|
|
atomic_set(&synic->sint_to_gsi[sint], gsi);
|
|
return 0;
|
|
}
|
|
|
|
void kvm_hv_irq_routing_update(struct kvm *kvm)
|
|
{
|
|
struct kvm_irq_routing_table *irq_rt;
|
|
struct kvm_kernel_irq_routing_entry *e;
|
|
u32 gsi;
|
|
|
|
irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
|
|
lockdep_is_held(&kvm->irq_lock));
|
|
|
|
for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
|
|
hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
|
|
if (e->type == KVM_IRQ_ROUTING_HV_SINT)
|
|
kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
|
|
e->hv_sint.sint, gsi);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void synic_init(struct kvm_vcpu_hv_synic *synic)
|
|
{
|
|
int i;
|
|
|
|
memset(synic, 0, sizeof(*synic));
|
|
synic->version = HV_SYNIC_VERSION_1;
|
|
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
|
|
atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
|
|
atomic_set(&synic->sint_to_gsi[i], -1);
|
|
}
|
|
}
|
|
|
|
static u64 get_time_ref_counter(struct kvm *kvm)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
struct kvm_vcpu *vcpu;
|
|
u64 tsc;
|
|
|
|
/*
|
|
* Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
|
|
* is broken, disabled or being updated.
|
|
*/
|
|
if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
|
|
return div_u64(get_kvmclock_ns(kvm), 100);
|
|
|
|
vcpu = kvm_get_vcpu(kvm, 0);
|
|
tsc = kvm_read_l1_tsc(vcpu, rdtsc());
|
|
return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
|
|
+ hv->tsc_ref.tsc_offset;
|
|
}
|
|
|
|
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
|
|
bool vcpu_kick)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
|
|
|
|
set_bit(stimer->index,
|
|
to_hv_vcpu(vcpu)->stimer_pending_bitmap);
|
|
kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
|
|
if (vcpu_kick)
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
|
|
|
|
trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
|
|
stimer->index);
|
|
|
|
hrtimer_cancel(&stimer->timer);
|
|
clear_bit(stimer->index,
|
|
to_hv_vcpu(vcpu)->stimer_pending_bitmap);
|
|
stimer->msg_pending = false;
|
|
stimer->exp_time = 0;
|
|
}
|
|
|
|
static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
|
|
{
|
|
struct kvm_vcpu_hv_stimer *stimer;
|
|
|
|
stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
|
|
trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
|
|
stimer->index);
|
|
stimer_mark_pending(stimer, true);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
/*
|
|
* stimer_start() assumptions:
|
|
* a) stimer->count is not equal to 0
|
|
* b) stimer->config has HV_STIMER_ENABLE flag
|
|
*/
|
|
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
|
|
{
|
|
u64 time_now;
|
|
ktime_t ktime_now;
|
|
|
|
time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
|
|
ktime_now = ktime_get();
|
|
|
|
if (stimer->config.periodic) {
|
|
if (stimer->exp_time) {
|
|
if (time_now >= stimer->exp_time) {
|
|
u64 remainder;
|
|
|
|
div64_u64_rem(time_now - stimer->exp_time,
|
|
stimer->count, &remainder);
|
|
stimer->exp_time =
|
|
time_now + (stimer->count - remainder);
|
|
}
|
|
} else
|
|
stimer->exp_time = time_now + stimer->count;
|
|
|
|
trace_kvm_hv_stimer_start_periodic(
|
|
hv_stimer_to_vcpu(stimer)->vcpu_id,
|
|
stimer->index,
|
|
time_now, stimer->exp_time);
|
|
|
|
hrtimer_start(&stimer->timer,
|
|
ktime_add_ns(ktime_now,
|
|
100 * (stimer->exp_time - time_now)),
|
|
HRTIMER_MODE_ABS);
|
|
return 0;
|
|
}
|
|
stimer->exp_time = stimer->count;
|
|
if (time_now >= stimer->count) {
|
|
/*
|
|
* Expire timer according to Hypervisor Top-Level Functional
|
|
* specification v4(15.3.1):
|
|
* "If a one shot is enabled and the specified count is in
|
|
* the past, it will expire immediately."
|
|
*/
|
|
stimer_mark_pending(stimer, false);
|
|
return 0;
|
|
}
|
|
|
|
trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
|
|
stimer->index,
|
|
time_now, stimer->count);
|
|
|
|
hrtimer_start(&stimer->timer,
|
|
ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
|
|
HRTIMER_MODE_ABS);
|
|
return 0;
|
|
}
|
|
|
|
static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
|
|
bool host)
|
|
{
|
|
union hv_stimer_config new_config = {.as_uint64 = config},
|
|
old_config = {.as_uint64 = stimer->config.as_uint64};
|
|
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
|
|
|
|
if (!synic->active && (!host || config))
|
|
return 1;
|
|
|
|
if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
|
|
!(hv_vcpu->cpuid_cache.features_edx &
|
|
HV_STIMER_DIRECT_MODE_AVAILABLE)))
|
|
return 1;
|
|
|
|
trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
|
|
stimer->index, config, host);
|
|
|
|
stimer_cleanup(stimer);
|
|
if (old_config.enable &&
|
|
!new_config.direct_mode && new_config.sintx == 0)
|
|
new_config.enable = 0;
|
|
stimer->config.as_uint64 = new_config.as_uint64;
|
|
|
|
if (stimer->config.enable)
|
|
stimer_mark_pending(stimer, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
|
|
bool host)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
|
|
struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
|
|
|
|
if (!synic->active && (!host || count))
|
|
return 1;
|
|
|
|
trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
|
|
stimer->index, count, host);
|
|
|
|
stimer_cleanup(stimer);
|
|
stimer->count = count;
|
|
if (!host) {
|
|
if (stimer->count == 0)
|
|
stimer->config.enable = 0;
|
|
else if (stimer->config.auto_enable)
|
|
stimer->config.enable = 1;
|
|
}
|
|
|
|
if (stimer->config.enable)
|
|
stimer_mark_pending(stimer, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
|
|
{
|
|
*pconfig = stimer->config.as_uint64;
|
|
return 0;
|
|
}
|
|
|
|
static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
|
|
{
|
|
*pcount = stimer->count;
|
|
return 0;
|
|
}
|
|
|
|
static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
|
|
struct hv_message *src_msg, bool no_retry)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
|
|
int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
|
|
gfn_t msg_page_gfn;
|
|
struct hv_message_header hv_hdr;
|
|
int r;
|
|
|
|
if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
|
|
return -ENOENT;
|
|
|
|
msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* Strictly following the spec-mandated ordering would assume setting
|
|
* .msg_pending before checking .message_type. However, this function
|
|
* is only called in vcpu context so the entire update is atomic from
|
|
* guest POV and thus the exact order here doesn't matter.
|
|
*/
|
|
r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
|
|
msg_off + offsetof(struct hv_message,
|
|
header.message_type),
|
|
sizeof(hv_hdr.message_type));
|
|
if (r < 0)
|
|
return r;
|
|
|
|
if (hv_hdr.message_type != HVMSG_NONE) {
|
|
if (no_retry)
|
|
return 0;
|
|
|
|
hv_hdr.message_flags.msg_pending = 1;
|
|
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
|
|
&hv_hdr.message_flags,
|
|
msg_off +
|
|
offsetof(struct hv_message,
|
|
header.message_flags),
|
|
sizeof(hv_hdr.message_flags));
|
|
if (r < 0)
|
|
return r;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
|
|
sizeof(src_msg->header) +
|
|
src_msg->header.payload_size);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
r = synic_set_irq(synic, sint);
|
|
if (r < 0)
|
|
return r;
|
|
if (r == 0)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
|
|
struct hv_message *msg = &stimer->msg;
|
|
struct hv_timer_message_payload *payload =
|
|
(struct hv_timer_message_payload *)&msg->u.payload;
|
|
|
|
/*
|
|
* To avoid piling up periodic ticks, don't retry message
|
|
* delivery for them (within "lazy" lost ticks policy).
|
|
*/
|
|
bool no_retry = stimer->config.periodic;
|
|
|
|
payload->expiration_time = stimer->exp_time;
|
|
payload->delivery_time = get_time_ref_counter(vcpu->kvm);
|
|
return synic_deliver_msg(to_hv_synic(vcpu),
|
|
stimer->config.sintx, msg,
|
|
no_retry);
|
|
}
|
|
|
|
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
|
|
{
|
|
struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
|
|
struct kvm_lapic_irq irq = {
|
|
.delivery_mode = APIC_DM_FIXED,
|
|
.vector = stimer->config.apic_vector
|
|
};
|
|
|
|
if (lapic_in_kernel(vcpu))
|
|
return !kvm_apic_set_irq(vcpu, &irq, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
|
|
{
|
|
int r, direct = stimer->config.direct_mode;
|
|
|
|
stimer->msg_pending = true;
|
|
if (!direct)
|
|
r = stimer_send_msg(stimer);
|
|
else
|
|
r = stimer_notify_direct(stimer);
|
|
trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
|
|
stimer->index, direct, r);
|
|
if (!r) {
|
|
stimer->msg_pending = false;
|
|
if (!(stimer->config.periodic))
|
|
stimer->config.enable = 0;
|
|
}
|
|
}
|
|
|
|
void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
struct kvm_vcpu_hv_stimer *stimer;
|
|
u64 time_now, exp_time;
|
|
int i;
|
|
|
|
if (!hv_vcpu)
|
|
return;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
|
|
if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
|
|
stimer = &hv_vcpu->stimer[i];
|
|
if (stimer->config.enable) {
|
|
exp_time = stimer->exp_time;
|
|
|
|
if (exp_time) {
|
|
time_now =
|
|
get_time_ref_counter(vcpu->kvm);
|
|
if (time_now >= exp_time)
|
|
stimer_expiration(stimer);
|
|
}
|
|
|
|
if ((stimer->config.enable) &&
|
|
stimer->count) {
|
|
if (!stimer->msg_pending)
|
|
stimer_start(stimer);
|
|
} else
|
|
stimer_cleanup(stimer);
|
|
}
|
|
}
|
|
}
|
|
|
|
void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
int i;
|
|
|
|
if (!hv_vcpu)
|
|
return;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
|
|
stimer_cleanup(&hv_vcpu->stimer[i]);
|
|
|
|
kfree(hv_vcpu);
|
|
vcpu->arch.hyperv = NULL;
|
|
}
|
|
|
|
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
|
|
if (!hv_vcpu)
|
|
return false;
|
|
|
|
if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
|
|
return false;
|
|
return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
|
|
|
|
int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
|
|
if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
|
|
return -EFAULT;
|
|
|
|
return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
|
|
&hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
|
|
|
|
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
|
|
{
|
|
struct hv_message *msg = &stimer->msg;
|
|
struct hv_timer_message_payload *payload =
|
|
(struct hv_timer_message_payload *)&msg->u.payload;
|
|
|
|
memset(&msg->header, 0, sizeof(msg->header));
|
|
msg->header.message_type = HVMSG_TIMER_EXPIRED;
|
|
msg->header.payload_size = sizeof(*payload);
|
|
|
|
payload->timer_index = stimer->index;
|
|
payload->expiration_time = 0;
|
|
payload->delivery_time = 0;
|
|
}
|
|
|
|
static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
|
|
{
|
|
memset(stimer, 0, sizeof(*stimer));
|
|
stimer->index = timer_index;
|
|
hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
stimer->timer.function = stimer_timer_callback;
|
|
stimer_prepare_msg(stimer);
|
|
}
|
|
|
|
int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
int i;
|
|
|
|
if (hv_vcpu)
|
|
return 0;
|
|
|
|
hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
|
|
if (!hv_vcpu)
|
|
return -ENOMEM;
|
|
|
|
vcpu->arch.hyperv = hv_vcpu;
|
|
hv_vcpu->vcpu = vcpu;
|
|
|
|
synic_init(&hv_vcpu->synic);
|
|
|
|
bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
|
|
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
|
|
stimer_init(&hv_vcpu->stimer[i], i);
|
|
|
|
hv_vcpu->vp_index = vcpu->vcpu_idx;
|
|
|
|
for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
|
|
INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
|
|
spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
|
|
{
|
|
struct kvm_vcpu_hv_synic *synic;
|
|
int r;
|
|
|
|
r = kvm_hv_vcpu_init(vcpu);
|
|
if (r)
|
|
return r;
|
|
|
|
synic = to_hv_synic(vcpu);
|
|
|
|
synic->active = true;
|
|
synic->dont_zero_synic_pages = dont_zero_synic_pages;
|
|
synic->control = HV_SYNIC_CONTROL_ENABLE;
|
|
return 0;
|
|
}
|
|
|
|
static bool kvm_hv_msr_partition_wide(u32 msr)
|
|
{
|
|
bool r = false;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
case HV_X64_MSR_HYPERCALL:
|
|
case HV_X64_MSR_REFERENCE_TSC:
|
|
case HV_X64_MSR_TIME_REF_COUNT:
|
|
case HV_X64_MSR_CRASH_CTL:
|
|
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
|
|
case HV_X64_MSR_RESET:
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_STATUS:
|
|
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
|
|
case HV_X64_MSR_SYNDBG_OPTIONS:
|
|
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
|
|
r = true;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
size_t size = ARRAY_SIZE(hv->hv_crash_param);
|
|
|
|
if (WARN_ON_ONCE(index >= size))
|
|
return -EINVAL;
|
|
|
|
*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
|
|
*pdata = hv->hv_crash_ctl;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
|
|
hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
size_t size = ARRAY_SIZE(hv->hv_crash_param);
|
|
|
|
if (WARN_ON_ONCE(index >= size))
|
|
return -EINVAL;
|
|
|
|
hv->hv_crash_param[array_index_nospec(index, size)] = data;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The kvmclock and Hyper-V TSC page use similar formulas, and converting
|
|
* between them is possible:
|
|
*
|
|
* kvmclock formula:
|
|
* nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
|
|
* + system_time
|
|
*
|
|
* Hyper-V formula:
|
|
* nsec/100 = ticks * scale / 2^64 + offset
|
|
*
|
|
* When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
|
|
* By dividing the kvmclock formula by 100 and equating what's left we get:
|
|
* ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
|
|
* scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
|
|
* scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
|
|
*
|
|
* Now expand the kvmclock formula and divide by 100:
|
|
* nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
|
|
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
|
|
* + system_time
|
|
* nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
|
|
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
|
|
* + system_time / 100
|
|
*
|
|
* Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
|
|
* nsec/100 = ticks * scale / 2^64
|
|
* - tsc_timestamp * scale / 2^64
|
|
* + system_time / 100
|
|
*
|
|
* Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
|
|
* offset = system_time / 100 - tsc_timestamp * scale / 2^64
|
|
*
|
|
* These two equivalencies are implemented in this function.
|
|
*/
|
|
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
|
|
struct ms_hyperv_tsc_page *tsc_ref)
|
|
{
|
|
u64 max_mul;
|
|
|
|
if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
|
|
return false;
|
|
|
|
/*
|
|
* check if scale would overflow, if so we use the time ref counter
|
|
* tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
|
|
* tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
|
|
* tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
|
|
*/
|
|
max_mul = 100ull << (32 - hv_clock->tsc_shift);
|
|
if (hv_clock->tsc_to_system_mul >= max_mul)
|
|
return false;
|
|
|
|
/*
|
|
* Otherwise compute the scale and offset according to the formulas
|
|
* derived above.
|
|
*/
|
|
tsc_ref->tsc_scale =
|
|
mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
|
|
hv_clock->tsc_to_system_mul,
|
|
100);
|
|
|
|
tsc_ref->tsc_offset = hv_clock->system_time;
|
|
do_div(tsc_ref->tsc_offset, 100);
|
|
tsc_ref->tsc_offset -=
|
|
mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Don't touch TSC page values if the guest has opted for TSC emulation after
|
|
* migration. KVM doesn't fully support reenlightenment notifications and TSC
|
|
* access emulation and Hyper-V is known to expect the values in TSC page to
|
|
* stay constant before TSC access emulation is disabled from guest side
|
|
* (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
|
|
* frequency and guest visible TSC value across migration (and prevent it when
|
|
* TSC scaling is unsupported).
|
|
*/
|
|
static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
|
|
{
|
|
return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
|
|
hv->hv_tsc_emulation_control;
|
|
}
|
|
|
|
void kvm_hv_setup_tsc_page(struct kvm *kvm,
|
|
struct pvclock_vcpu_time_info *hv_clock)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
u32 tsc_seq;
|
|
u64 gfn;
|
|
|
|
BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
|
|
BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
|
|
|
|
mutex_lock(&hv->hv_lock);
|
|
|
|
if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
|
|
hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
|
|
hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
|
|
goto out_unlock;
|
|
|
|
if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
|
|
goto out_unlock;
|
|
|
|
gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
|
|
/*
|
|
* Because the TSC parameters only vary when there is a
|
|
* change in the master clock, do not bother with caching.
|
|
*/
|
|
if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
|
|
&tsc_seq, sizeof(tsc_seq))))
|
|
goto out_err;
|
|
|
|
if (tsc_seq && tsc_page_update_unsafe(hv)) {
|
|
if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
|
|
goto out_err;
|
|
|
|
hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* While we're computing and writing the parameters, force the
|
|
* guest to use the time reference count MSR.
|
|
*/
|
|
hv->tsc_ref.tsc_sequence = 0;
|
|
if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
|
|
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
|
|
goto out_err;
|
|
|
|
if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
|
|
goto out_err;
|
|
|
|
/* Ensure sequence is zero before writing the rest of the struct. */
|
|
smp_wmb();
|
|
if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
|
|
goto out_err;
|
|
|
|
/*
|
|
* Now switch to the TSC page mechanism by writing the sequence.
|
|
*/
|
|
tsc_seq++;
|
|
if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
|
|
tsc_seq = 1;
|
|
|
|
/* Write the struct entirely before the non-zero sequence. */
|
|
smp_wmb();
|
|
|
|
hv->tsc_ref.tsc_sequence = tsc_seq;
|
|
if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
|
|
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
|
|
goto out_err;
|
|
|
|
hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
|
|
goto out_unlock;
|
|
|
|
out_err:
|
|
hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
|
|
out_unlock:
|
|
mutex_unlock(&hv->hv_lock);
|
|
}
|
|
|
|
void kvm_hv_request_tsc_page_update(struct kvm *kvm)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
|
|
mutex_lock(&hv->hv_lock);
|
|
|
|
if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
|
|
!tsc_page_update_unsafe(hv))
|
|
hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
|
|
|
|
mutex_unlock(&hv->hv_lock);
|
|
}
|
|
|
|
static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
|
|
{
|
|
if (!hv_vcpu->enforce_cpuid)
|
|
return true;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
case HV_X64_MSR_HYPERCALL:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_HYPERCALL_AVAILABLE;
|
|
case HV_X64_MSR_VP_RUNTIME:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_VP_RUNTIME_AVAILABLE;
|
|
case HV_X64_MSR_TIME_REF_COUNT:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_TIME_REF_COUNT_AVAILABLE;
|
|
case HV_X64_MSR_VP_INDEX:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_VP_INDEX_AVAILABLE;
|
|
case HV_X64_MSR_RESET:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_RESET_AVAILABLE;
|
|
case HV_X64_MSR_REFERENCE_TSC:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_REFERENCE_TSC_AVAILABLE;
|
|
case HV_X64_MSR_SCONTROL:
|
|
case HV_X64_MSR_SVERSION:
|
|
case HV_X64_MSR_SIEFP:
|
|
case HV_X64_MSR_SIMP:
|
|
case HV_X64_MSR_EOM:
|
|
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_SYNIC_AVAILABLE;
|
|
case HV_X64_MSR_STIMER0_CONFIG:
|
|
case HV_X64_MSR_STIMER1_CONFIG:
|
|
case HV_X64_MSR_STIMER2_CONFIG:
|
|
case HV_X64_MSR_STIMER3_CONFIG:
|
|
case HV_X64_MSR_STIMER0_COUNT:
|
|
case HV_X64_MSR_STIMER1_COUNT:
|
|
case HV_X64_MSR_STIMER2_COUNT:
|
|
case HV_X64_MSR_STIMER3_COUNT:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_SYNTIMER_AVAILABLE;
|
|
case HV_X64_MSR_EOI:
|
|
case HV_X64_MSR_ICR:
|
|
case HV_X64_MSR_TPR:
|
|
case HV_X64_MSR_VP_ASSIST_PAGE:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_MSR_APIC_ACCESS_AVAILABLE;
|
|
case HV_X64_MSR_TSC_FREQUENCY:
|
|
case HV_X64_MSR_APIC_FREQUENCY:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_ACCESS_FREQUENCY_MSRS;
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_STATUS:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_ACCESS_REENLIGHTENMENT;
|
|
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
|
|
return hv_vcpu->cpuid_cache.features_eax &
|
|
HV_ACCESS_TSC_INVARIANT;
|
|
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
|
|
case HV_X64_MSR_CRASH_CTL:
|
|
return hv_vcpu->cpuid_cache.features_edx &
|
|
HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
|
|
case HV_X64_MSR_SYNDBG_OPTIONS:
|
|
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
|
|
return hv_vcpu->cpuid_cache.features_edx &
|
|
HV_FEATURE_DEBUG_MSRS_AVAILABLE;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839
|
|
#define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */
|
|
|
|
/*
|
|
* Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC
|
|
* configuration.
|
|
* Such configuration can result from, for example, AMD Erratum 1386 workaround.
|
|
*
|
|
* Print a notice so users aren't left wondering what's suddenly gone wrong.
|
|
*/
|
|
static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
|
|
/* Check again under the hv_lock. */
|
|
if (hv->xsaves_xsavec_checked)
|
|
return;
|
|
|
|
if ((hv->hv_guest_os_id & KVM_HV_WIN2016_GUEST_ID_MASK) !=
|
|
KVM_HV_WIN2016_GUEST_ID)
|
|
return;
|
|
|
|
hv->xsaves_xsavec_checked = true;
|
|
|
|
/* UP configurations aren't affected */
|
|
if (atomic_read(&kvm->online_vcpus) < 2)
|
|
return;
|
|
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_XSAVES) ||
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_XSAVEC))
|
|
return;
|
|
|
|
pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. "
|
|
"If it fails to boot try disabling XSAVEC in the VM config.\n");
|
|
}
|
|
|
|
void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
|
|
|
|
if (!vcpu->arch.hyperv_enabled ||
|
|
hv->xsaves_xsavec_checked)
|
|
return;
|
|
|
|
mutex_lock(&hv->hv_lock);
|
|
__kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
|
|
mutex_unlock(&hv->hv_lock);
|
|
}
|
|
|
|
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
|
|
bool host)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
|
|
if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
|
|
return 1;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
hv->hv_guest_os_id = data;
|
|
/* setting guest os id to zero disables hypercall page */
|
|
if (!hv->hv_guest_os_id)
|
|
hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
|
|
break;
|
|
case HV_X64_MSR_HYPERCALL: {
|
|
u8 instructions[9];
|
|
int i = 0;
|
|
u64 addr;
|
|
|
|
/* if guest os id is not set hypercall should remain disabled */
|
|
if (!hv->hv_guest_os_id)
|
|
break;
|
|
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
|
|
hv->hv_hypercall = data;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If Xen and Hyper-V hypercalls are both enabled, disambiguate
|
|
* the same way Xen itself does, by setting the bit 31 of EAX
|
|
* which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
|
|
* going to be clobbered on 64-bit.
|
|
*/
|
|
if (kvm_xen_hypercall_enabled(kvm)) {
|
|
/* orl $0x80000000, %eax */
|
|
instructions[i++] = 0x0d;
|
|
instructions[i++] = 0x00;
|
|
instructions[i++] = 0x00;
|
|
instructions[i++] = 0x00;
|
|
instructions[i++] = 0x80;
|
|
}
|
|
|
|
/* vmcall/vmmcall */
|
|
static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
|
|
i += 3;
|
|
|
|
/* ret */
|
|
((unsigned char *)instructions)[i++] = 0xc3;
|
|
|
|
addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
|
|
if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
|
|
return 1;
|
|
hv->hv_hypercall = data;
|
|
break;
|
|
}
|
|
case HV_X64_MSR_REFERENCE_TSC:
|
|
hv->hv_tsc_page = data;
|
|
if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
|
|
if (!host)
|
|
hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
|
|
else
|
|
hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
|
|
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
|
|
} else {
|
|
hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
|
|
}
|
|
break;
|
|
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
|
|
return kvm_hv_msr_set_crash_data(kvm,
|
|
msr - HV_X64_MSR_CRASH_P0,
|
|
data);
|
|
case HV_X64_MSR_CRASH_CTL:
|
|
if (host)
|
|
return kvm_hv_msr_set_crash_ctl(kvm, data);
|
|
|
|
if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
|
|
vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
|
|
hv->hv_crash_param[0],
|
|
hv->hv_crash_param[1],
|
|
hv->hv_crash_param[2],
|
|
hv->hv_crash_param[3],
|
|
hv->hv_crash_param[4]);
|
|
|
|
/* Send notification about crash to user space */
|
|
kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
|
|
}
|
|
break;
|
|
case HV_X64_MSR_RESET:
|
|
if (data == 1) {
|
|
vcpu_debug(vcpu, "hyper-v reset requested\n");
|
|
kvm_make_request(KVM_REQ_HV_RESET, vcpu);
|
|
}
|
|
break;
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
hv->hv_reenlightenment_control = data;
|
|
break;
|
|
case HV_X64_MSR_TSC_EMULATION_CONTROL:
|
|
hv->hv_tsc_emulation_control = data;
|
|
break;
|
|
case HV_X64_MSR_TSC_EMULATION_STATUS:
|
|
if (data && !host)
|
|
return 1;
|
|
|
|
hv->hv_tsc_emulation_status = data;
|
|
break;
|
|
case HV_X64_MSR_TIME_REF_COUNT:
|
|
/* read-only, but still ignore it if host-initiated */
|
|
if (!host)
|
|
return 1;
|
|
break;
|
|
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
|
|
/* Only bit 0 is supported */
|
|
if (data & ~HV_EXPOSE_INVARIANT_TSC)
|
|
return 1;
|
|
|
|
/* The feature can't be disabled from the guest */
|
|
if (!host && hv->hv_invtsc_control && !data)
|
|
return 1;
|
|
|
|
hv->hv_invtsc_control = data;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_OPTIONS:
|
|
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
|
|
return syndbg_set_msr(vcpu, msr, data, host);
|
|
default:
|
|
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate cpu time spent by current task in 100ns units */
|
|
static u64 current_task_runtime_100ns(void)
|
|
{
|
|
u64 utime, stime;
|
|
|
|
task_cputime_adjusted(current, &utime, &stime);
|
|
|
|
return div_u64(utime + stime, 100);
|
|
}
|
|
|
|
static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
|
|
if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
|
|
return 1;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_VP_INDEX: {
|
|
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
|
|
u32 new_vp_index = (u32)data;
|
|
|
|
if (!host || new_vp_index >= KVM_MAX_VCPUS)
|
|
return 1;
|
|
|
|
if (new_vp_index == hv_vcpu->vp_index)
|
|
return 0;
|
|
|
|
/*
|
|
* The VP index is initialized to vcpu_index by
|
|
* kvm_hv_vcpu_postcreate so they initially match. Now the
|
|
* VP index is changing, adjust num_mismatched_vp_indexes if
|
|
* it now matches or no longer matches vcpu_idx.
|
|
*/
|
|
if (hv_vcpu->vp_index == vcpu->vcpu_idx)
|
|
atomic_inc(&hv->num_mismatched_vp_indexes);
|
|
else if (new_vp_index == vcpu->vcpu_idx)
|
|
atomic_dec(&hv->num_mismatched_vp_indexes);
|
|
|
|
hv_vcpu->vp_index = new_vp_index;
|
|
break;
|
|
}
|
|
case HV_X64_MSR_VP_ASSIST_PAGE: {
|
|
u64 gfn;
|
|
unsigned long addr;
|
|
|
|
if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
|
|
hv_vcpu->hv_vapic = data;
|
|
if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
|
|
return 1;
|
|
break;
|
|
}
|
|
gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
|
|
addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return 1;
|
|
|
|
/*
|
|
* Clear apic_assist portion of struct hv_vp_assist_page
|
|
* only, there can be valuable data in the rest which needs
|
|
* to be preserved e.g. on migration.
|
|
*/
|
|
if (__put_user(0, (u32 __user *)addr))
|
|
return 1;
|
|
hv_vcpu->hv_vapic = data;
|
|
kvm_vcpu_mark_page_dirty(vcpu, gfn);
|
|
if (kvm_lapic_set_pv_eoi(vcpu,
|
|
gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
|
|
sizeof(struct hv_vp_assist_page)))
|
|
return 1;
|
|
break;
|
|
}
|
|
case HV_X64_MSR_EOI:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
|
|
case HV_X64_MSR_ICR:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
|
|
case HV_X64_MSR_TPR:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
|
|
case HV_X64_MSR_VP_RUNTIME:
|
|
if (!host)
|
|
return 1;
|
|
hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
|
|
break;
|
|
case HV_X64_MSR_SCONTROL:
|
|
case HV_X64_MSR_SVERSION:
|
|
case HV_X64_MSR_SIEFP:
|
|
case HV_X64_MSR_SIMP:
|
|
case HV_X64_MSR_EOM:
|
|
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
|
|
return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
|
|
case HV_X64_MSR_STIMER0_CONFIG:
|
|
case HV_X64_MSR_STIMER1_CONFIG:
|
|
case HV_X64_MSR_STIMER2_CONFIG:
|
|
case HV_X64_MSR_STIMER3_CONFIG: {
|
|
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
|
|
|
|
return stimer_set_config(to_hv_stimer(vcpu, timer_index),
|
|
data, host);
|
|
}
|
|
case HV_X64_MSR_STIMER0_COUNT:
|
|
case HV_X64_MSR_STIMER1_COUNT:
|
|
case HV_X64_MSR_STIMER2_COUNT:
|
|
case HV_X64_MSR_STIMER3_COUNT: {
|
|
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
|
|
|
|
return stimer_set_count(to_hv_stimer(vcpu, timer_index),
|
|
data, host);
|
|
}
|
|
case HV_X64_MSR_TSC_FREQUENCY:
|
|
case HV_X64_MSR_APIC_FREQUENCY:
|
|
/* read-only, but still ignore it if host-initiated */
|
|
if (!host)
|
|
return 1;
|
|
break;
|
|
default:
|
|
kvm_pr_unimpl_wrmsr(vcpu, msr, data);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
|
|
bool host)
|
|
{
|
|
u64 data = 0;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
|
|
if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
|
|
return 1;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
data = hv->hv_guest_os_id;
|
|
break;
|
|
case HV_X64_MSR_HYPERCALL:
|
|
data = hv->hv_hypercall;
|
|
break;
|
|
case HV_X64_MSR_TIME_REF_COUNT:
|
|
data = get_time_ref_counter(kvm);
|
|
break;
|
|
case HV_X64_MSR_REFERENCE_TSC:
|
|
data = hv->hv_tsc_page;
|
|
break;
|
|
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
|
|
return kvm_hv_msr_get_crash_data(kvm,
|
|
msr - HV_X64_MSR_CRASH_P0,
|
|
pdata);
|
|
case HV_X64_MSR_CRASH_CTL:
|
|
return kvm_hv_msr_get_crash_ctl(kvm, pdata);
|
|
case HV_X64_MSR_RESET:
|
|
data = 0;
|
|
break;
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
data = hv->hv_reenlightenment_control;
|
|
break;
|
|
case HV_X64_MSR_TSC_EMULATION_CONTROL:
|
|
data = hv->hv_tsc_emulation_control;
|
|
break;
|
|
case HV_X64_MSR_TSC_EMULATION_STATUS:
|
|
data = hv->hv_tsc_emulation_status;
|
|
break;
|
|
case HV_X64_MSR_TSC_INVARIANT_CONTROL:
|
|
data = hv->hv_invtsc_control;
|
|
break;
|
|
case HV_X64_MSR_SYNDBG_OPTIONS:
|
|
case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
|
|
return syndbg_get_msr(vcpu, msr, pdata, host);
|
|
default:
|
|
kvm_pr_unimpl_rdmsr(vcpu, msr);
|
|
return 1;
|
|
}
|
|
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
|
|
bool host)
|
|
{
|
|
u64 data = 0;
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
|
|
if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
|
|
return 1;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_VP_INDEX:
|
|
data = hv_vcpu->vp_index;
|
|
break;
|
|
case HV_X64_MSR_EOI:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
|
|
case HV_X64_MSR_ICR:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
|
|
case HV_X64_MSR_TPR:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
|
|
case HV_X64_MSR_VP_ASSIST_PAGE:
|
|
data = hv_vcpu->hv_vapic;
|
|
break;
|
|
case HV_X64_MSR_VP_RUNTIME:
|
|
data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
|
|
break;
|
|
case HV_X64_MSR_SCONTROL:
|
|
case HV_X64_MSR_SVERSION:
|
|
case HV_X64_MSR_SIEFP:
|
|
case HV_X64_MSR_SIMP:
|
|
case HV_X64_MSR_EOM:
|
|
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
|
|
return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
|
|
case HV_X64_MSR_STIMER0_CONFIG:
|
|
case HV_X64_MSR_STIMER1_CONFIG:
|
|
case HV_X64_MSR_STIMER2_CONFIG:
|
|
case HV_X64_MSR_STIMER3_CONFIG: {
|
|
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
|
|
|
|
return stimer_get_config(to_hv_stimer(vcpu, timer_index),
|
|
pdata);
|
|
}
|
|
case HV_X64_MSR_STIMER0_COUNT:
|
|
case HV_X64_MSR_STIMER1_COUNT:
|
|
case HV_X64_MSR_STIMER2_COUNT:
|
|
case HV_X64_MSR_STIMER3_COUNT: {
|
|
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
|
|
|
|
return stimer_get_count(to_hv_stimer(vcpu, timer_index),
|
|
pdata);
|
|
}
|
|
case HV_X64_MSR_TSC_FREQUENCY:
|
|
data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
|
|
break;
|
|
case HV_X64_MSR_APIC_FREQUENCY:
|
|
data = APIC_BUS_FREQUENCY;
|
|
break;
|
|
default:
|
|
kvm_pr_unimpl_rdmsr(vcpu, msr);
|
|
return 1;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
|
|
|
|
if (!host && !vcpu->arch.hyperv_enabled)
|
|
return 1;
|
|
|
|
if (kvm_hv_vcpu_init(vcpu))
|
|
return 1;
|
|
|
|
if (kvm_hv_msr_partition_wide(msr)) {
|
|
int r;
|
|
|
|
mutex_lock(&hv->hv_lock);
|
|
r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
|
|
mutex_unlock(&hv->hv_lock);
|
|
return r;
|
|
} else
|
|
return kvm_hv_set_msr(vcpu, msr, data, host);
|
|
}
|
|
|
|
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
|
|
|
|
if (!host && !vcpu->arch.hyperv_enabled)
|
|
return 1;
|
|
|
|
if (kvm_hv_vcpu_init(vcpu))
|
|
return 1;
|
|
|
|
if (kvm_hv_msr_partition_wide(msr)) {
|
|
int r;
|
|
|
|
mutex_lock(&hv->hv_lock);
|
|
r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
|
|
mutex_unlock(&hv->hv_lock);
|
|
return r;
|
|
} else
|
|
return kvm_hv_get_msr(vcpu, msr, pdata, host);
|
|
}
|
|
|
|
static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
|
|
u64 valid_bank_mask, unsigned long *vcpu_mask)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
|
|
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
|
|
struct kvm_vcpu *vcpu;
|
|
int bank, sbank = 0;
|
|
unsigned long i;
|
|
u64 *bitmap;
|
|
|
|
BUILD_BUG_ON(sizeof(vp_bitmap) >
|
|
sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
|
|
|
|
/*
|
|
* If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
|
|
* fill a temporary buffer and manually test each vCPU's VP index.
|
|
*/
|
|
if (likely(!has_mismatch))
|
|
bitmap = (u64 *)vcpu_mask;
|
|
else
|
|
bitmap = vp_bitmap;
|
|
|
|
/*
|
|
* Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
|
|
* having a '1' for each bank that exists in sparse_banks. Sets must
|
|
* be in ascending order, i.e. bank0..bankN.
|
|
*/
|
|
memset(bitmap, 0, sizeof(vp_bitmap));
|
|
for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
|
|
KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
|
|
bitmap[bank] = sparse_banks[sbank++];
|
|
|
|
if (likely(!has_mismatch))
|
|
return;
|
|
|
|
bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
|
|
__set_bit(i, vcpu_mask);
|
|
}
|
|
}
|
|
|
|
static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
|
|
{
|
|
int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
|
|
unsigned long sbank;
|
|
|
|
if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
|
|
return false;
|
|
|
|
/*
|
|
* The index into the sparse bank is the number of preceding bits in
|
|
* the valid mask. Optimize for VMs with <64 vCPUs by skipping the
|
|
* fancy math if there can't possibly be preceding bits.
|
|
*/
|
|
if (valid_bit_nr)
|
|
sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
|
|
else
|
|
sbank = 0;
|
|
|
|
return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
|
|
(unsigned long *)&sparse_banks[sbank]);
|
|
}
|
|
|
|
struct kvm_hv_hcall {
|
|
/* Hypercall input data */
|
|
u64 param;
|
|
u64 ingpa;
|
|
u64 outgpa;
|
|
u16 code;
|
|
u16 var_cnt;
|
|
u16 rep_cnt;
|
|
u16 rep_idx;
|
|
bool fast;
|
|
bool rep;
|
|
sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
|
|
|
|
/*
|
|
* Current read offset when KVM reads hypercall input data gradually,
|
|
* either offset in bytes from 'ingpa' for regular hypercalls or the
|
|
* number of already consumed 'XMM halves' for 'fast' hypercalls.
|
|
*/
|
|
union {
|
|
gpa_t data_offset;
|
|
int consumed_xmm_halves;
|
|
};
|
|
};
|
|
|
|
|
|
static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
|
|
u16 orig_cnt, u16 cnt_cap, u64 *data)
|
|
{
|
|
/*
|
|
* Preserve the original count when ignoring entries via a "cap", KVM
|
|
* still needs to validate the guest input (though the non-XMM path
|
|
* punts on the checks).
|
|
*/
|
|
u16 cnt = min(orig_cnt, cnt_cap);
|
|
int i, j;
|
|
|
|
if (hc->fast) {
|
|
/*
|
|
* Each XMM holds two sparse banks, but do not count halves that
|
|
* have already been consumed for hypercall parameters.
|
|
*/
|
|
if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
j = i + hc->consumed_xmm_halves;
|
|
if (j % 2)
|
|
data[i] = sse128_hi(hc->xmm[j / 2]);
|
|
else
|
|
data[i] = sse128_lo(hc->xmm[j / 2]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
|
|
cnt * sizeof(*data));
|
|
}
|
|
|
|
static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
|
|
u64 *sparse_banks)
|
|
{
|
|
if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
|
|
return -EINVAL;
|
|
|
|
/* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
|
|
return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
|
|
sparse_banks);
|
|
}
|
|
|
|
static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
|
|
{
|
|
return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
|
|
}
|
|
|
|
static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
|
|
u64 *entries, int count)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
|
|
|
|
if (!hv_vcpu)
|
|
return;
|
|
|
|
spin_lock(&tlb_flush_fifo->write_lock);
|
|
|
|
/*
|
|
* All entries should fit on the fifo leaving one free for 'flush all'
|
|
* entry in case another request comes in. In case there's not enough
|
|
* space, just put 'flush all' entry there.
|
|
*/
|
|
if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
|
|
WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Note: full fifo always contains 'flush all' entry, no need to check the
|
|
* return value.
|
|
*/
|
|
kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
|
|
|
|
out_unlock:
|
|
spin_unlock(&tlb_flush_fifo->write_lock);
|
|
}
|
|
|
|
int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
|
|
int i, j, count;
|
|
gva_t gva;
|
|
|
|
if (!tdp_enabled || !hv_vcpu)
|
|
return -EINVAL;
|
|
|
|
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
|
|
|
|
count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
|
|
goto out_flush_all;
|
|
|
|
/*
|
|
* Lower 12 bits of 'address' encode the number of additional
|
|
* pages to flush.
|
|
*/
|
|
gva = entries[i] & PAGE_MASK;
|
|
for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
|
|
static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
|
|
|
|
++vcpu->stat.tlb_flush;
|
|
}
|
|
return 0;
|
|
|
|
out_flush_all:
|
|
kfifo_reset_out(&tlb_flush_fifo->entries);
|
|
|
|
/* Fall back to full flush. */
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
u64 *sparse_banks = hv_vcpu->sparse_banks;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct hv_tlb_flush_ex flush_ex;
|
|
struct hv_tlb_flush flush;
|
|
DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
|
|
struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
|
|
/*
|
|
* Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
|
|
* entries on the TLB flush fifo. The last entry, however, needs to be
|
|
* always left free for 'flush all' entry which gets placed when
|
|
* there is not enough space to put all the requested entries.
|
|
*/
|
|
u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
|
|
u64 *tlb_flush_entries;
|
|
u64 valid_bank_mask;
|
|
struct kvm_vcpu *v;
|
|
unsigned long i;
|
|
bool all_cpus;
|
|
|
|
/*
|
|
* The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
|
|
* sparse banks. Fail the build if KVM's max allowed number of
|
|
* vCPUs (>4096) exceeds this limit.
|
|
*/
|
|
BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
|
|
|
|
/*
|
|
* 'Slow' hypercall's first parameter is the address in guest's memory
|
|
* where hypercall parameters are placed. This is either a GPA or a
|
|
* nested GPA when KVM is handling the call from L2 ('direct' TLB
|
|
* flush). Translate the address here so the memory can be uniformly
|
|
* read with kvm_read_guest().
|
|
*/
|
|
if (!hc->fast && is_guest_mode(vcpu)) {
|
|
hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
|
|
if (unlikely(hc->ingpa == INVALID_GPA))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
}
|
|
|
|
if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
|
|
hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
|
|
if (hc->fast) {
|
|
flush.address_space = hc->ingpa;
|
|
flush.flags = hc->outgpa;
|
|
flush.processor_mask = sse128_lo(hc->xmm[0]);
|
|
hc->consumed_xmm_halves = 1;
|
|
} else {
|
|
if (unlikely(kvm_read_guest(kvm, hc->ingpa,
|
|
&flush, sizeof(flush))))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
hc->data_offset = sizeof(flush);
|
|
}
|
|
|
|
trace_kvm_hv_flush_tlb(flush.processor_mask,
|
|
flush.address_space, flush.flags,
|
|
is_guest_mode(vcpu));
|
|
|
|
valid_bank_mask = BIT_ULL(0);
|
|
sparse_banks[0] = flush.processor_mask;
|
|
|
|
/*
|
|
* Work around possible WS2012 bug: it sends hypercalls
|
|
* with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
|
|
* while also expecting us to flush something and crashing if
|
|
* we don't. Let's treat processor_mask == 0 same as
|
|
* HV_FLUSH_ALL_PROCESSORS.
|
|
*/
|
|
all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
|
|
flush.processor_mask == 0;
|
|
} else {
|
|
if (hc->fast) {
|
|
flush_ex.address_space = hc->ingpa;
|
|
flush_ex.flags = hc->outgpa;
|
|
memcpy(&flush_ex.hv_vp_set,
|
|
&hc->xmm[0], sizeof(hc->xmm[0]));
|
|
hc->consumed_xmm_halves = 2;
|
|
} else {
|
|
if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
|
|
sizeof(flush_ex))))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
hc->data_offset = sizeof(flush_ex);
|
|
}
|
|
|
|
trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
|
|
flush_ex.hv_vp_set.format,
|
|
flush_ex.address_space,
|
|
flush_ex.flags, is_guest_mode(vcpu));
|
|
|
|
valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
|
|
all_cpus = flush_ex.hv_vp_set.format !=
|
|
HV_GENERIC_SET_SPARSE_4K;
|
|
|
|
if (hc->var_cnt != hweight64(valid_bank_mask))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
|
|
if (!all_cpus) {
|
|
if (!hc->var_cnt)
|
|
goto ret_success;
|
|
|
|
if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
}
|
|
|
|
/*
|
|
* Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
|
|
* banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
|
|
* case (HV_GENERIC_SET_ALL). Always adjust data_offset and
|
|
* consumed_xmm_halves to make sure TLB flush entries are read
|
|
* from the correct offset.
|
|
*/
|
|
if (hc->fast)
|
|
hc->consumed_xmm_halves += hc->var_cnt;
|
|
else
|
|
hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
|
|
}
|
|
|
|
if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
|
|
hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
|
|
hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
|
|
tlb_flush_entries = NULL;
|
|
} else {
|
|
if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
tlb_flush_entries = __tlb_flush_entries;
|
|
}
|
|
|
|
/*
|
|
* vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
|
|
* analyze it here, flush TLB regardless of the specified address space.
|
|
*/
|
|
if (all_cpus && !is_guest_mode(vcpu)) {
|
|
kvm_for_each_vcpu(i, v, kvm) {
|
|
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
|
|
hv_tlb_flush_enqueue(v, tlb_flush_fifo,
|
|
tlb_flush_entries, hc->rep_cnt);
|
|
}
|
|
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
|
|
} else if (!is_guest_mode(vcpu)) {
|
|
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
|
|
|
|
for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
|
|
v = kvm_get_vcpu(kvm, i);
|
|
if (!v)
|
|
continue;
|
|
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
|
|
hv_tlb_flush_enqueue(v, tlb_flush_fifo,
|
|
tlb_flush_entries, hc->rep_cnt);
|
|
}
|
|
|
|
kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
|
|
} else {
|
|
struct kvm_vcpu_hv *hv_v;
|
|
|
|
bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
|
|
|
|
kvm_for_each_vcpu(i, v, kvm) {
|
|
hv_v = to_hv_vcpu(v);
|
|
|
|
/*
|
|
* The following check races with nested vCPUs entering/exiting
|
|
* and/or migrating between L1's vCPUs, however the only case when
|
|
* KVM *must* flush the TLB is when the target L2 vCPU keeps
|
|
* running on the same L1 vCPU from the moment of the request until
|
|
* kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
|
|
* cases, e.g. when the target L2 vCPU migrates to a different L1
|
|
* vCPU or when the corresponding L1 vCPU temporary switches to a
|
|
* different L2 vCPU while the request is being processed.
|
|
*/
|
|
if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
|
|
continue;
|
|
|
|
if (!all_cpus &&
|
|
!hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
|
|
sparse_banks))
|
|
continue;
|
|
|
|
__set_bit(i, vcpu_mask);
|
|
tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
|
|
hv_tlb_flush_enqueue(v, tlb_flush_fifo,
|
|
tlb_flush_entries, hc->rep_cnt);
|
|
}
|
|
|
|
kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
|
|
}
|
|
|
|
ret_success:
|
|
/* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
|
|
return (u64)HV_STATUS_SUCCESS |
|
|
((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
|
|
}
|
|
|
|
static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
|
|
u64 *sparse_banks, u64 valid_bank_mask)
|
|
{
|
|
struct kvm_lapic_irq irq = {
|
|
.delivery_mode = APIC_DM_FIXED,
|
|
.vector = vector
|
|
};
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long i;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (sparse_banks &&
|
|
!hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
|
|
valid_bank_mask, sparse_banks))
|
|
continue;
|
|
|
|
/* We fail only when APIC is disabled */
|
|
kvm_apic_set_irq(vcpu, &irq, NULL);
|
|
}
|
|
}
|
|
|
|
static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
u64 *sparse_banks = hv_vcpu->sparse_banks;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct hv_send_ipi_ex send_ipi_ex;
|
|
struct hv_send_ipi send_ipi;
|
|
u64 valid_bank_mask;
|
|
u32 vector;
|
|
bool all_cpus;
|
|
|
|
if (hc->code == HVCALL_SEND_IPI) {
|
|
if (!hc->fast) {
|
|
if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
|
|
sizeof(send_ipi))))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
sparse_banks[0] = send_ipi.cpu_mask;
|
|
vector = send_ipi.vector;
|
|
} else {
|
|
/* 'reserved' part of hv_send_ipi should be 0 */
|
|
if (unlikely(hc->ingpa >> 32 != 0))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
sparse_banks[0] = hc->outgpa;
|
|
vector = (u32)hc->ingpa;
|
|
}
|
|
all_cpus = false;
|
|
valid_bank_mask = BIT_ULL(0);
|
|
|
|
trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
|
|
} else {
|
|
if (!hc->fast) {
|
|
if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
|
|
sizeof(send_ipi_ex))))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
} else {
|
|
send_ipi_ex.vector = (u32)hc->ingpa;
|
|
send_ipi_ex.vp_set.format = hc->outgpa;
|
|
send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
|
|
}
|
|
|
|
trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
|
|
send_ipi_ex.vp_set.format,
|
|
send_ipi_ex.vp_set.valid_bank_mask);
|
|
|
|
vector = send_ipi_ex.vector;
|
|
valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
|
|
all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
|
|
|
|
if (hc->var_cnt != hweight64(valid_bank_mask))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
|
|
if (all_cpus)
|
|
goto check_and_send_ipi;
|
|
|
|
if (!hc->var_cnt)
|
|
goto ret_success;
|
|
|
|
if (!hc->fast)
|
|
hc->data_offset = offsetof(struct hv_send_ipi_ex,
|
|
vp_set.bank_contents);
|
|
else
|
|
hc->consumed_xmm_halves = 1;
|
|
|
|
if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
}
|
|
|
|
check_and_send_ipi:
|
|
if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
|
|
if (all_cpus)
|
|
kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
|
|
else
|
|
kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
|
|
|
|
ret_success:
|
|
return HV_STATUS_SUCCESS;
|
|
}
|
|
|
|
void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
vcpu->arch.hyperv_enabled = hyperv_enabled;
|
|
|
|
if (!hv_vcpu) {
|
|
/*
|
|
* KVM should have already allocated kvm_vcpu_hv if Hyper-V is
|
|
* enabled in CPUID.
|
|
*/
|
|
WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
|
|
return;
|
|
}
|
|
|
|
memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
|
|
|
|
if (!vcpu->arch.hyperv_enabled)
|
|
return;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
|
|
if (entry) {
|
|
hv_vcpu->cpuid_cache.features_eax = entry->eax;
|
|
hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
|
|
hv_vcpu->cpuid_cache.features_edx = entry->edx;
|
|
}
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
|
|
if (entry) {
|
|
hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
|
|
hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
|
|
}
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
|
|
if (entry)
|
|
hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
|
|
if (entry) {
|
|
hv_vcpu->cpuid_cache.nested_eax = entry->eax;
|
|
hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
|
|
}
|
|
}
|
|
|
|
int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu;
|
|
int ret = 0;
|
|
|
|
if (!to_hv_vcpu(vcpu)) {
|
|
if (enforce) {
|
|
ret = kvm_hv_vcpu_init(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
hv_vcpu = to_hv_vcpu(vcpu);
|
|
hv_vcpu->enforce_cpuid = enforce;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
|
|
{
|
|
bool longmode;
|
|
|
|
longmode = is_64_bit_hypercall(vcpu);
|
|
if (longmode)
|
|
kvm_rax_write(vcpu, result);
|
|
else {
|
|
kvm_rdx_write(vcpu, result >> 32);
|
|
kvm_rax_write(vcpu, result & 0xffffffff);
|
|
}
|
|
}
|
|
|
|
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
|
|
{
|
|
u32 tlb_lock_count = 0;
|
|
int ret;
|
|
|
|
if (hv_result_success(result) && is_guest_mode(vcpu) &&
|
|
kvm_hv_is_tlb_flush_hcall(vcpu) &&
|
|
kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
|
|
&tlb_lock_count, sizeof(tlb_lock_count)))
|
|
result = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
|
|
trace_kvm_hv_hypercall_done(result);
|
|
kvm_hv_hypercall_set_result(vcpu, result);
|
|
++vcpu->stat.hypercalls;
|
|
|
|
ret = kvm_skip_emulated_instruction(vcpu);
|
|
|
|
if (tlb_lock_count)
|
|
kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
|
|
}
|
|
|
|
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
|
|
struct eventfd_ctx *eventfd;
|
|
|
|
if (unlikely(!hc->fast)) {
|
|
int ret;
|
|
gpa_t gpa = hc->ingpa;
|
|
|
|
if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
|
|
offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
|
|
return HV_STATUS_INVALID_ALIGNMENT;
|
|
|
|
ret = kvm_vcpu_read_guest(vcpu, gpa,
|
|
&hc->ingpa, sizeof(hc->ingpa));
|
|
if (ret < 0)
|
|
return HV_STATUS_INVALID_ALIGNMENT;
|
|
}
|
|
|
|
/*
|
|
* Per spec, bits 32-47 contain the extra "flag number". However, we
|
|
* have no use for it, and in all known usecases it is zero, so just
|
|
* report lookup failure if it isn't.
|
|
*/
|
|
if (hc->ingpa & 0xffff00000000ULL)
|
|
return HV_STATUS_INVALID_PORT_ID;
|
|
/* remaining bits are reserved-zero */
|
|
if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
|
|
return HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
|
|
/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
|
|
rcu_read_lock();
|
|
eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
|
|
rcu_read_unlock();
|
|
if (!eventfd)
|
|
return HV_STATUS_INVALID_PORT_ID;
|
|
|
|
eventfd_signal(eventfd);
|
|
return HV_STATUS_SUCCESS;
|
|
}
|
|
|
|
static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
|
|
{
|
|
switch (hc->code) {
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
|
|
case HVCALL_SEND_IPI_EX:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
|
|
{
|
|
int reg;
|
|
|
|
kvm_fpu_get();
|
|
for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
|
|
_kvm_read_sse_reg(reg, &hc->xmm[reg]);
|
|
kvm_fpu_put();
|
|
}
|
|
|
|
static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
|
|
{
|
|
if (!hv_vcpu->enforce_cpuid)
|
|
return true;
|
|
|
|
switch (code) {
|
|
case HVCALL_NOTIFY_LONG_SPIN_WAIT:
|
|
return hv_vcpu->cpuid_cache.enlightenments_ebx &&
|
|
hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
|
|
case HVCALL_POST_MESSAGE:
|
|
return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
|
|
case HVCALL_SIGNAL_EVENT:
|
|
return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
|
|
case HVCALL_POST_DEBUG_DATA:
|
|
case HVCALL_RETRIEVE_DEBUG_DATA:
|
|
case HVCALL_RESET_DEBUG_SESSION:
|
|
/*
|
|
* Return 'true' when SynDBG is disabled so the resulting code
|
|
* will be HV_STATUS_INVALID_HYPERCALL_CODE.
|
|
*/
|
|
return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
|
|
hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
|
|
if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
|
|
HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
|
|
return false;
|
|
fallthrough;
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
|
|
return hv_vcpu->cpuid_cache.enlightenments_eax &
|
|
HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
|
|
case HVCALL_SEND_IPI_EX:
|
|
if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
|
|
HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
|
|
return false;
|
|
fallthrough;
|
|
case HVCALL_SEND_IPI:
|
|
return hv_vcpu->cpuid_cache.enlightenments_eax &
|
|
HV_X64_CLUSTER_IPI_RECOMMENDED;
|
|
case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
|
|
return hv_vcpu->cpuid_cache.features_ebx &
|
|
HV_ENABLE_EXTENDED_HYPERCALLS;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
|
|
struct kvm_hv_hcall hc;
|
|
u64 ret = HV_STATUS_SUCCESS;
|
|
|
|
/*
|
|
* hypercall generates UD from non zero cpl and real mode
|
|
* per HYPER-V spec
|
|
*/
|
|
if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (is_64_bit_hypercall(vcpu)) {
|
|
hc.param = kvm_rcx_read(vcpu);
|
|
hc.ingpa = kvm_rdx_read(vcpu);
|
|
hc.outgpa = kvm_r8_read(vcpu);
|
|
} else
|
|
#endif
|
|
{
|
|
hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
|
|
(kvm_rax_read(vcpu) & 0xffffffff);
|
|
hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
|
|
(kvm_rcx_read(vcpu) & 0xffffffff);
|
|
hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
|
|
(kvm_rsi_read(vcpu) & 0xffffffff);
|
|
}
|
|
|
|
hc.code = hc.param & 0xffff;
|
|
hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
|
|
hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
|
|
hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
|
|
hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
|
|
hc.rep = !!(hc.rep_cnt || hc.rep_idx);
|
|
|
|
trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
|
|
hc.rep_idx, hc.ingpa, hc.outgpa);
|
|
|
|
if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
|
|
ret = HV_STATUS_ACCESS_DENIED;
|
|
goto hypercall_complete;
|
|
}
|
|
|
|
if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
goto hypercall_complete;
|
|
}
|
|
|
|
if (hc.fast && is_xmm_fast_hypercall(&hc)) {
|
|
if (unlikely(hv_vcpu->enforce_cpuid &&
|
|
!(hv_vcpu->cpuid_cache.features_edx &
|
|
HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
kvm_hv_hypercall_read_xmm(&hc);
|
|
}
|
|
|
|
switch (hc.code) {
|
|
case HVCALL_NOTIFY_LONG_SPIN_WAIT:
|
|
if (unlikely(hc.rep || hc.var_cnt)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
kvm_vcpu_on_spin(vcpu, true);
|
|
break;
|
|
case HVCALL_SIGNAL_EVENT:
|
|
if (unlikely(hc.rep || hc.var_cnt)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
ret = kvm_hvcall_signal_event(vcpu, &hc);
|
|
if (ret != HV_STATUS_INVALID_PORT_ID)
|
|
break;
|
|
fallthrough; /* maybe userspace knows this conn_id */
|
|
case HVCALL_POST_MESSAGE:
|
|
/* don't bother userspace if it has no way to handle it */
|
|
if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
goto hypercall_userspace_exit;
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
|
|
if (unlikely(hc.var_cnt)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
|
|
if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
ret = kvm_hv_flush_tlb(vcpu, &hc);
|
|
break;
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
|
|
if (unlikely(hc.var_cnt)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
|
|
if (unlikely(hc.rep)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
ret = kvm_hv_flush_tlb(vcpu, &hc);
|
|
break;
|
|
case HVCALL_SEND_IPI:
|
|
if (unlikely(hc.var_cnt)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case HVCALL_SEND_IPI_EX:
|
|
if (unlikely(hc.rep)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
|
|
break;
|
|
}
|
|
ret = kvm_hv_send_ipi(vcpu, &hc);
|
|
break;
|
|
case HVCALL_POST_DEBUG_DATA:
|
|
case HVCALL_RETRIEVE_DEBUG_DATA:
|
|
if (unlikely(hc.fast)) {
|
|
ret = HV_STATUS_INVALID_PARAMETER;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case HVCALL_RESET_DEBUG_SESSION: {
|
|
struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
|
|
|
|
if (!kvm_hv_is_syndbg_enabled(vcpu)) {
|
|
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
|
|
break;
|
|
}
|
|
|
|
if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
|
|
ret = HV_STATUS_OPERATION_DENIED;
|
|
break;
|
|
}
|
|
goto hypercall_userspace_exit;
|
|
}
|
|
case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
|
|
if (unlikely(hc.fast)) {
|
|
ret = HV_STATUS_INVALID_PARAMETER;
|
|
break;
|
|
}
|
|
goto hypercall_userspace_exit;
|
|
default:
|
|
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
|
|
break;
|
|
}
|
|
|
|
hypercall_complete:
|
|
return kvm_hv_hypercall_complete(vcpu, ret);
|
|
|
|
hypercall_userspace_exit:
|
|
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
|
|
vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
|
|
vcpu->run->hyperv.u.hcall.input = hc.param;
|
|
vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
|
|
vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
|
|
vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_hv_init_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
|
|
mutex_init(&hv->hv_lock);
|
|
idr_init(&hv->conn_to_evt);
|
|
}
|
|
|
|
void kvm_hv_destroy_vm(struct kvm *kvm)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
struct eventfd_ctx *eventfd;
|
|
int i;
|
|
|
|
idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
|
|
eventfd_ctx_put(eventfd);
|
|
idr_destroy(&hv->conn_to_evt);
|
|
}
|
|
|
|
static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
struct eventfd_ctx *eventfd;
|
|
int ret;
|
|
|
|
eventfd = eventfd_ctx_fdget(fd);
|
|
if (IS_ERR(eventfd))
|
|
return PTR_ERR(eventfd);
|
|
|
|
mutex_lock(&hv->hv_lock);
|
|
ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
|
|
GFP_KERNEL_ACCOUNT);
|
|
mutex_unlock(&hv->hv_lock);
|
|
|
|
if (ret >= 0)
|
|
return 0;
|
|
|
|
if (ret == -ENOSPC)
|
|
ret = -EEXIST;
|
|
eventfd_ctx_put(eventfd);
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
|
|
{
|
|
struct kvm_hv *hv = to_kvm_hv(kvm);
|
|
struct eventfd_ctx *eventfd;
|
|
|
|
mutex_lock(&hv->hv_lock);
|
|
eventfd = idr_remove(&hv->conn_to_evt, conn_id);
|
|
mutex_unlock(&hv->hv_lock);
|
|
|
|
if (!eventfd)
|
|
return -ENOENT;
|
|
|
|
synchronize_srcu(&kvm->srcu);
|
|
eventfd_ctx_put(eventfd);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
|
|
{
|
|
if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
|
|
(args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
|
|
return -EINVAL;
|
|
|
|
if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
|
|
return kvm_hv_eventfd_deassign(kvm, args->conn_id);
|
|
return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
|
|
}
|
|
|
|
int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
uint16_t evmcs_ver = 0;
|
|
struct kvm_cpuid_entry2 cpuid_entries[] = {
|
|
{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
|
|
{ .function = HYPERV_CPUID_INTERFACE },
|
|
{ .function = HYPERV_CPUID_VERSION },
|
|
{ .function = HYPERV_CPUID_FEATURES },
|
|
{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
|
|
{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
|
|
{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
|
|
{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
|
|
{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
|
|
{ .function = HYPERV_CPUID_NESTED_FEATURES },
|
|
};
|
|
int i, nent = ARRAY_SIZE(cpuid_entries);
|
|
|
|
if (kvm_x86_ops.nested_ops->get_evmcs_version)
|
|
evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
|
|
|
|
if (cpuid->nent < nent)
|
|
return -E2BIG;
|
|
|
|
if (cpuid->nent > nent)
|
|
cpuid->nent = nent;
|
|
|
|
for (i = 0; i < nent; i++) {
|
|
struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
|
|
u32 signature[3];
|
|
|
|
switch (ent->function) {
|
|
case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
|
|
memcpy(signature, "Linux KVM Hv", 12);
|
|
|
|
ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
|
|
ent->ebx = signature[0];
|
|
ent->ecx = signature[1];
|
|
ent->edx = signature[2];
|
|
break;
|
|
|
|
case HYPERV_CPUID_INTERFACE:
|
|
ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
|
|
break;
|
|
|
|
case HYPERV_CPUID_VERSION:
|
|
/*
|
|
* We implement some Hyper-V 2016 functions so let's use
|
|
* this version.
|
|
*/
|
|
ent->eax = 0x00003839;
|
|
ent->ebx = 0x000A0000;
|
|
break;
|
|
|
|
case HYPERV_CPUID_FEATURES:
|
|
ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
|
|
ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
|
|
ent->eax |= HV_MSR_SYNIC_AVAILABLE;
|
|
ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
|
|
ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
|
|
ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
|
|
ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
|
|
ent->eax |= HV_MSR_RESET_AVAILABLE;
|
|
ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
|
|
ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
|
|
ent->eax |= HV_ACCESS_REENLIGHTENMENT;
|
|
ent->eax |= HV_ACCESS_TSC_INVARIANT;
|
|
|
|
ent->ebx |= HV_POST_MESSAGES;
|
|
ent->ebx |= HV_SIGNAL_EVENTS;
|
|
ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
|
|
|
|
ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
|
|
ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
|
|
ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
|
|
|
|
ent->ebx |= HV_DEBUGGING;
|
|
ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
|
|
ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
|
|
ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
|
|
|
|
/*
|
|
* Direct Synthetic timers only make sense with in-kernel
|
|
* LAPIC
|
|
*/
|
|
if (!vcpu || lapic_in_kernel(vcpu))
|
|
ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
|
|
|
|
break;
|
|
|
|
case HYPERV_CPUID_ENLIGHTMENT_INFO:
|
|
ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
|
|
ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
|
|
ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
|
|
ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
|
|
ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
|
|
if (evmcs_ver)
|
|
ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
|
|
if (!cpu_smt_possible())
|
|
ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
|
|
|
|
ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
|
|
/*
|
|
* Default number of spinlock retry attempts, matches
|
|
* HyperV 2016.
|
|
*/
|
|
ent->ebx = 0x00000FFF;
|
|
|
|
break;
|
|
|
|
case HYPERV_CPUID_IMPLEMENT_LIMITS:
|
|
/* Maximum number of virtual processors */
|
|
ent->eax = KVM_MAX_VCPUS;
|
|
/*
|
|
* Maximum number of logical processors, matches
|
|
* HyperV 2016.
|
|
*/
|
|
ent->ebx = 64;
|
|
|
|
break;
|
|
|
|
case HYPERV_CPUID_NESTED_FEATURES:
|
|
ent->eax = evmcs_ver;
|
|
ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
|
|
ent->eax |= HV_X64_NESTED_MSR_BITMAP;
|
|
ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
|
|
break;
|
|
|
|
case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
|
|
memcpy(signature, "Linux KVM Hv", 12);
|
|
|
|
ent->eax = 0;
|
|
ent->ebx = signature[0];
|
|
ent->ecx = signature[1];
|
|
ent->edx = signature[2];
|
|
break;
|
|
|
|
case HYPERV_CPUID_SYNDBG_INTERFACE:
|
|
memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
|
|
ent->eax = signature[0];
|
|
break;
|
|
|
|
case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
|
|
ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (copy_to_user(entries, cpuid_entries,
|
|
nent * sizeof(struct kvm_cpuid_entry2)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|