0f34802858
This patch adds to support checkpoint error injection in f2fs for testing fatal error tolerance, it will be useful that it can simulate abnormal power off by f2fs itself instead of calling godown ioctl by running apps. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2047 lines
52 KiB
C
2047 lines
52 KiB
C
/*
|
|
* fs/f2fs/super.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/parser.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/random.h>
|
|
#include <linux/exportfs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/sysfs.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "xattr.h"
|
|
#include "gc.h"
|
|
#include "trace.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct proc_dir_entry *f2fs_proc_root;
|
|
static struct kmem_cache *f2fs_inode_cachep;
|
|
static struct kset *f2fs_kset;
|
|
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
|
|
char *fault_name[FAULT_MAX] = {
|
|
[FAULT_KMALLOC] = "kmalloc",
|
|
[FAULT_PAGE_ALLOC] = "page alloc",
|
|
[FAULT_ALLOC_NID] = "alloc nid",
|
|
[FAULT_ORPHAN] = "orphan",
|
|
[FAULT_BLOCK] = "no more block",
|
|
[FAULT_DIR_DEPTH] = "too big dir depth",
|
|
[FAULT_EVICT_INODE] = "evict_inode fail",
|
|
[FAULT_IO] = "IO error",
|
|
[FAULT_CHECKPOINT] = "checkpoint error",
|
|
};
|
|
|
|
static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
|
|
unsigned int rate)
|
|
{
|
|
struct f2fs_fault_info *ffi = &sbi->fault_info;
|
|
|
|
if (rate) {
|
|
atomic_set(&ffi->inject_ops, 0);
|
|
ffi->inject_rate = rate;
|
|
ffi->inject_type = (1 << FAULT_MAX) - 1;
|
|
} else {
|
|
memset(ffi, 0, sizeof(struct f2fs_fault_info));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* f2fs-wide shrinker description */
|
|
static struct shrinker f2fs_shrinker_info = {
|
|
.scan_objects = f2fs_shrink_scan,
|
|
.count_objects = f2fs_shrink_count,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
|
|
enum {
|
|
Opt_gc_background,
|
|
Opt_disable_roll_forward,
|
|
Opt_norecovery,
|
|
Opt_discard,
|
|
Opt_nodiscard,
|
|
Opt_noheap,
|
|
Opt_user_xattr,
|
|
Opt_nouser_xattr,
|
|
Opt_acl,
|
|
Opt_noacl,
|
|
Opt_active_logs,
|
|
Opt_disable_ext_identify,
|
|
Opt_inline_xattr,
|
|
Opt_inline_data,
|
|
Opt_inline_dentry,
|
|
Opt_noinline_dentry,
|
|
Opt_flush_merge,
|
|
Opt_noflush_merge,
|
|
Opt_nobarrier,
|
|
Opt_fastboot,
|
|
Opt_extent_cache,
|
|
Opt_noextent_cache,
|
|
Opt_noinline_data,
|
|
Opt_data_flush,
|
|
Opt_mode,
|
|
Opt_fault_injection,
|
|
Opt_lazytime,
|
|
Opt_nolazytime,
|
|
Opt_err,
|
|
};
|
|
|
|
static match_table_t f2fs_tokens = {
|
|
{Opt_gc_background, "background_gc=%s"},
|
|
{Opt_disable_roll_forward, "disable_roll_forward"},
|
|
{Opt_norecovery, "norecovery"},
|
|
{Opt_discard, "discard"},
|
|
{Opt_nodiscard, "nodiscard"},
|
|
{Opt_noheap, "no_heap"},
|
|
{Opt_user_xattr, "user_xattr"},
|
|
{Opt_nouser_xattr, "nouser_xattr"},
|
|
{Opt_acl, "acl"},
|
|
{Opt_noacl, "noacl"},
|
|
{Opt_active_logs, "active_logs=%u"},
|
|
{Opt_disable_ext_identify, "disable_ext_identify"},
|
|
{Opt_inline_xattr, "inline_xattr"},
|
|
{Opt_inline_data, "inline_data"},
|
|
{Opt_inline_dentry, "inline_dentry"},
|
|
{Opt_noinline_dentry, "noinline_dentry"},
|
|
{Opt_flush_merge, "flush_merge"},
|
|
{Opt_noflush_merge, "noflush_merge"},
|
|
{Opt_nobarrier, "nobarrier"},
|
|
{Opt_fastboot, "fastboot"},
|
|
{Opt_extent_cache, "extent_cache"},
|
|
{Opt_noextent_cache, "noextent_cache"},
|
|
{Opt_noinline_data, "noinline_data"},
|
|
{Opt_data_flush, "data_flush"},
|
|
{Opt_mode, "mode=%s"},
|
|
{Opt_fault_injection, "fault_injection=%u"},
|
|
{Opt_lazytime, "lazytime"},
|
|
{Opt_nolazytime, "nolazytime"},
|
|
{Opt_err, NULL},
|
|
};
|
|
|
|
/* Sysfs support for f2fs */
|
|
enum {
|
|
GC_THREAD, /* struct f2fs_gc_thread */
|
|
SM_INFO, /* struct f2fs_sm_info */
|
|
NM_INFO, /* struct f2fs_nm_info */
|
|
F2FS_SBI, /* struct f2fs_sb_info */
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
FAULT_INFO_RATE, /* struct f2fs_fault_info */
|
|
FAULT_INFO_TYPE, /* struct f2fs_fault_info */
|
|
#endif
|
|
};
|
|
|
|
struct f2fs_attr {
|
|
struct attribute attr;
|
|
ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
|
|
ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
|
|
const char *, size_t);
|
|
int struct_type;
|
|
int offset;
|
|
};
|
|
|
|
static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
|
|
{
|
|
if (struct_type == GC_THREAD)
|
|
return (unsigned char *)sbi->gc_thread;
|
|
else if (struct_type == SM_INFO)
|
|
return (unsigned char *)SM_I(sbi);
|
|
else if (struct_type == NM_INFO)
|
|
return (unsigned char *)NM_I(sbi);
|
|
else if (struct_type == F2FS_SBI)
|
|
return (unsigned char *)sbi;
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
else if (struct_type == FAULT_INFO_RATE ||
|
|
struct_type == FAULT_INFO_TYPE)
|
|
return (unsigned char *)&sbi->fault_info;
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
|
|
struct f2fs_sb_info *sbi, char *buf)
|
|
{
|
|
struct super_block *sb = sbi->sb;
|
|
|
|
if (!sb->s_bdev->bd_part)
|
|
return snprintf(buf, PAGE_SIZE, "0\n");
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%llu\n",
|
|
(unsigned long long)(sbi->kbytes_written +
|
|
BD_PART_WRITTEN(sbi)));
|
|
}
|
|
|
|
static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
|
|
struct f2fs_sb_info *sbi, char *buf)
|
|
{
|
|
unsigned char *ptr = NULL;
|
|
unsigned int *ui;
|
|
|
|
ptr = __struct_ptr(sbi, a->struct_type);
|
|
if (!ptr)
|
|
return -EINVAL;
|
|
|
|
ui = (unsigned int *)(ptr + a->offset);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
|
|
}
|
|
|
|
static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
|
|
struct f2fs_sb_info *sbi,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned char *ptr;
|
|
unsigned long t;
|
|
unsigned int *ui;
|
|
ssize_t ret;
|
|
|
|
ptr = __struct_ptr(sbi, a->struct_type);
|
|
if (!ptr)
|
|
return -EINVAL;
|
|
|
|
ui = (unsigned int *)(ptr + a->offset);
|
|
|
|
ret = kstrtoul(skip_spaces(buf), 0, &t);
|
|
if (ret < 0)
|
|
return ret;
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
|
|
return -EINVAL;
|
|
#endif
|
|
*ui = t;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t f2fs_attr_show(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
|
|
s_kobj);
|
|
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
|
|
|
|
return a->show ? a->show(a, sbi, buf) : 0;
|
|
}
|
|
|
|
static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
|
|
s_kobj);
|
|
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
|
|
|
|
return a->store ? a->store(a, sbi, buf, len) : 0;
|
|
}
|
|
|
|
static void f2fs_sb_release(struct kobject *kobj)
|
|
{
|
|
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
|
|
s_kobj);
|
|
complete(&sbi->s_kobj_unregister);
|
|
}
|
|
|
|
#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
|
|
static struct f2fs_attr f2fs_attr_##_name = { \
|
|
.attr = {.name = __stringify(_name), .mode = _mode }, \
|
|
.show = _show, \
|
|
.store = _store, \
|
|
.struct_type = _struct_type, \
|
|
.offset = _offset \
|
|
}
|
|
|
|
#define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
|
|
F2FS_ATTR_OFFSET(struct_type, name, 0644, \
|
|
f2fs_sbi_show, f2fs_sbi_store, \
|
|
offsetof(struct struct_name, elname))
|
|
|
|
#define F2FS_GENERAL_RO_ATTR(name) \
|
|
static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
|
|
|
|
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
|
|
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
|
|
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
|
|
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
|
|
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
|
|
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
|
|
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
|
|
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
|
|
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
|
|
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
|
|
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
|
|
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
|
|
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
|
|
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
|
|
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
|
|
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
|
|
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
|
|
F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
|
|
#endif
|
|
F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
|
|
|
|
#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
|
|
static struct attribute *f2fs_attrs[] = {
|
|
ATTR_LIST(gc_min_sleep_time),
|
|
ATTR_LIST(gc_max_sleep_time),
|
|
ATTR_LIST(gc_no_gc_sleep_time),
|
|
ATTR_LIST(gc_idle),
|
|
ATTR_LIST(reclaim_segments),
|
|
ATTR_LIST(max_small_discards),
|
|
ATTR_LIST(batched_trim_sections),
|
|
ATTR_LIST(ipu_policy),
|
|
ATTR_LIST(min_ipu_util),
|
|
ATTR_LIST(min_fsync_blocks),
|
|
ATTR_LIST(max_victim_search),
|
|
ATTR_LIST(dir_level),
|
|
ATTR_LIST(ram_thresh),
|
|
ATTR_LIST(ra_nid_pages),
|
|
ATTR_LIST(dirty_nats_ratio),
|
|
ATTR_LIST(cp_interval),
|
|
ATTR_LIST(idle_interval),
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
ATTR_LIST(inject_rate),
|
|
ATTR_LIST(inject_type),
|
|
#endif
|
|
ATTR_LIST(lifetime_write_kbytes),
|
|
NULL,
|
|
};
|
|
|
|
static const struct sysfs_ops f2fs_attr_ops = {
|
|
.show = f2fs_attr_show,
|
|
.store = f2fs_attr_store,
|
|
};
|
|
|
|
static struct kobj_type f2fs_ktype = {
|
|
.default_attrs = f2fs_attrs,
|
|
.sysfs_ops = &f2fs_attr_ops,
|
|
.release = f2fs_sb_release,
|
|
};
|
|
|
|
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
|
|
|
|
inode_init_once(&fi->vfs_inode);
|
|
}
|
|
|
|
static int parse_options(struct super_block *sb, char *options)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct request_queue *q;
|
|
substring_t args[MAX_OPT_ARGS];
|
|
char *p, *name;
|
|
int arg = 0;
|
|
|
|
if (!options)
|
|
return 0;
|
|
|
|
while ((p = strsep(&options, ",")) != NULL) {
|
|
int token;
|
|
if (!*p)
|
|
continue;
|
|
/*
|
|
* Initialize args struct so we know whether arg was
|
|
* found; some options take optional arguments.
|
|
*/
|
|
args[0].to = args[0].from = NULL;
|
|
token = match_token(p, f2fs_tokens, args);
|
|
|
|
switch (token) {
|
|
case Opt_gc_background:
|
|
name = match_strdup(&args[0]);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
|
|
set_opt(sbi, BG_GC);
|
|
clear_opt(sbi, FORCE_FG_GC);
|
|
} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
|
|
clear_opt(sbi, BG_GC);
|
|
clear_opt(sbi, FORCE_FG_GC);
|
|
} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
|
|
set_opt(sbi, BG_GC);
|
|
set_opt(sbi, FORCE_FG_GC);
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_disable_roll_forward:
|
|
set_opt(sbi, DISABLE_ROLL_FORWARD);
|
|
break;
|
|
case Opt_norecovery:
|
|
/* this option mounts f2fs with ro */
|
|
set_opt(sbi, DISABLE_ROLL_FORWARD);
|
|
if (!f2fs_readonly(sb))
|
|
return -EINVAL;
|
|
break;
|
|
case Opt_discard:
|
|
q = bdev_get_queue(sb->s_bdev);
|
|
if (blk_queue_discard(q)) {
|
|
set_opt(sbi, DISCARD);
|
|
} else {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"mounting with \"discard\" option, but "
|
|
"the device does not support discard");
|
|
}
|
|
break;
|
|
case Opt_nodiscard:
|
|
clear_opt(sbi, DISCARD);
|
|
case Opt_noheap:
|
|
set_opt(sbi, NOHEAP);
|
|
break;
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
case Opt_user_xattr:
|
|
set_opt(sbi, XATTR_USER);
|
|
break;
|
|
case Opt_nouser_xattr:
|
|
clear_opt(sbi, XATTR_USER);
|
|
break;
|
|
case Opt_inline_xattr:
|
|
set_opt(sbi, INLINE_XATTR);
|
|
break;
|
|
#else
|
|
case Opt_user_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"user_xattr options not supported");
|
|
break;
|
|
case Opt_nouser_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"nouser_xattr options not supported");
|
|
break;
|
|
case Opt_inline_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"inline_xattr options not supported");
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
case Opt_acl:
|
|
set_opt(sbi, POSIX_ACL);
|
|
break;
|
|
case Opt_noacl:
|
|
clear_opt(sbi, POSIX_ACL);
|
|
break;
|
|
#else
|
|
case Opt_acl:
|
|
f2fs_msg(sb, KERN_INFO, "acl options not supported");
|
|
break;
|
|
case Opt_noacl:
|
|
f2fs_msg(sb, KERN_INFO, "noacl options not supported");
|
|
break;
|
|
#endif
|
|
case Opt_active_logs:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
|
|
return -EINVAL;
|
|
sbi->active_logs = arg;
|
|
break;
|
|
case Opt_disable_ext_identify:
|
|
set_opt(sbi, DISABLE_EXT_IDENTIFY);
|
|
break;
|
|
case Opt_inline_data:
|
|
set_opt(sbi, INLINE_DATA);
|
|
break;
|
|
case Opt_inline_dentry:
|
|
set_opt(sbi, INLINE_DENTRY);
|
|
break;
|
|
case Opt_noinline_dentry:
|
|
clear_opt(sbi, INLINE_DENTRY);
|
|
break;
|
|
case Opt_flush_merge:
|
|
set_opt(sbi, FLUSH_MERGE);
|
|
break;
|
|
case Opt_noflush_merge:
|
|
clear_opt(sbi, FLUSH_MERGE);
|
|
break;
|
|
case Opt_nobarrier:
|
|
set_opt(sbi, NOBARRIER);
|
|
break;
|
|
case Opt_fastboot:
|
|
set_opt(sbi, FASTBOOT);
|
|
break;
|
|
case Opt_extent_cache:
|
|
set_opt(sbi, EXTENT_CACHE);
|
|
break;
|
|
case Opt_noextent_cache:
|
|
clear_opt(sbi, EXTENT_CACHE);
|
|
break;
|
|
case Opt_noinline_data:
|
|
clear_opt(sbi, INLINE_DATA);
|
|
break;
|
|
case Opt_data_flush:
|
|
set_opt(sbi, DATA_FLUSH);
|
|
break;
|
|
case Opt_mode:
|
|
name = match_strdup(&args[0]);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 8 &&
|
|
!strncmp(name, "adaptive", 8)) {
|
|
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
|
|
} else if (strlen(name) == 3 &&
|
|
!strncmp(name, "lfs", 3)) {
|
|
set_opt_mode(sbi, F2FS_MOUNT_LFS);
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_fault_injection:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
f2fs_build_fault_attr(sbi, arg);
|
|
#else
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"FAULT_INJECTION was not selected");
|
|
#endif
|
|
break;
|
|
case Opt_lazytime:
|
|
sb->s_flags |= MS_LAZYTIME;
|
|
break;
|
|
case Opt_nolazytime:
|
|
sb->s_flags &= ~MS_LAZYTIME;
|
|
break;
|
|
default:
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Unrecognized mount option \"%s\" or missing value",
|
|
p);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct inode *f2fs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct f2fs_inode_info *fi;
|
|
|
|
fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
|
|
if (!fi)
|
|
return NULL;
|
|
|
|
init_once((void *) fi);
|
|
|
|
if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
|
|
kmem_cache_free(f2fs_inode_cachep, fi);
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize f2fs-specific inode info */
|
|
fi->vfs_inode.i_version = 1;
|
|
fi->i_current_depth = 1;
|
|
fi->i_advise = 0;
|
|
init_rwsem(&fi->i_sem);
|
|
INIT_LIST_HEAD(&fi->dirty_list);
|
|
INIT_LIST_HEAD(&fi->gdirty_list);
|
|
INIT_LIST_HEAD(&fi->inmem_pages);
|
|
mutex_init(&fi->inmem_lock);
|
|
init_rwsem(&fi->dio_rwsem[READ]);
|
|
init_rwsem(&fi->dio_rwsem[WRITE]);
|
|
|
|
/* Will be used by directory only */
|
|
fi->i_dir_level = F2FS_SB(sb)->dir_level;
|
|
return &fi->vfs_inode;
|
|
}
|
|
|
|
static int f2fs_drop_inode(struct inode *inode)
|
|
{
|
|
/*
|
|
* This is to avoid a deadlock condition like below.
|
|
* writeback_single_inode(inode)
|
|
* - f2fs_write_data_page
|
|
* - f2fs_gc -> iput -> evict
|
|
* - inode_wait_for_writeback(inode)
|
|
*/
|
|
if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
|
|
if (!inode->i_nlink && !is_bad_inode(inode)) {
|
|
/* to avoid evict_inode call simultaneously */
|
|
atomic_inc(&inode->i_count);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
/* some remained atomic pages should discarded */
|
|
if (f2fs_is_atomic_file(inode))
|
|
drop_inmem_pages(inode);
|
|
|
|
/* should remain fi->extent_tree for writepage */
|
|
f2fs_destroy_extent_node(inode);
|
|
|
|
sb_start_intwrite(inode->i_sb);
|
|
f2fs_i_size_write(inode, 0);
|
|
|
|
if (F2FS_HAS_BLOCKS(inode))
|
|
f2fs_truncate(inode);
|
|
|
|
sb_end_intwrite(inode->i_sb);
|
|
|
|
fscrypt_put_encryption_info(inode, NULL);
|
|
spin_lock(&inode->i_lock);
|
|
atomic_dec(&inode->i_count);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return generic_drop_inode(inode);
|
|
}
|
|
|
|
int f2fs_inode_dirtied(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return 1;
|
|
}
|
|
|
|
set_inode_flag(inode, FI_DIRTY_INODE);
|
|
list_add_tail(&F2FS_I(inode)->gdirty_list,
|
|
&sbi->inode_list[DIRTY_META]);
|
|
inc_page_count(sbi, F2FS_DIRTY_IMETA);
|
|
stat_inc_dirty_inode(sbi, DIRTY_META);
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_inode_synced(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return;
|
|
}
|
|
list_del_init(&F2FS_I(inode)->gdirty_list);
|
|
clear_inode_flag(inode, FI_DIRTY_INODE);
|
|
clear_inode_flag(inode, FI_AUTO_RECOVER);
|
|
dec_page_count(sbi, F2FS_DIRTY_IMETA);
|
|
stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
}
|
|
|
|
/*
|
|
* f2fs_dirty_inode() is called from __mark_inode_dirty()
|
|
*
|
|
* We should call set_dirty_inode to write the dirty inode through write_inode.
|
|
*/
|
|
static void f2fs_dirty_inode(struct inode *inode, int flags)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
|
|
inode->i_ino == F2FS_META_INO(sbi))
|
|
return;
|
|
|
|
if (flags == I_DIRTY_TIME)
|
|
return;
|
|
|
|
if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
|
|
clear_inode_flag(inode, FI_AUTO_RECOVER);
|
|
|
|
f2fs_inode_dirtied(inode);
|
|
}
|
|
|
|
static void f2fs_i_callback(struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
|
|
}
|
|
|
|
static void f2fs_destroy_inode(struct inode *inode)
|
|
{
|
|
percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
|
|
call_rcu(&inode->i_rcu, f2fs_i_callback);
|
|
}
|
|
|
|
static void destroy_percpu_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NR_COUNT_TYPE; i++)
|
|
percpu_counter_destroy(&sbi->nr_pages[i]);
|
|
percpu_counter_destroy(&sbi->alloc_valid_block_count);
|
|
percpu_counter_destroy(&sbi->total_valid_inode_count);
|
|
}
|
|
|
|
static void f2fs_put_super(struct super_block *sb)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
if (sbi->s_proc) {
|
|
remove_proc_entry("segment_info", sbi->s_proc);
|
|
remove_proc_entry("segment_bits", sbi->s_proc);
|
|
remove_proc_entry(sb->s_id, f2fs_proc_root);
|
|
}
|
|
kobject_del(&sbi->s_kobj);
|
|
|
|
stop_gc_thread(sbi);
|
|
|
|
/* prevent remaining shrinker jobs */
|
|
mutex_lock(&sbi->umount_mutex);
|
|
|
|
/*
|
|
* We don't need to do checkpoint when superblock is clean.
|
|
* But, the previous checkpoint was not done by umount, it needs to do
|
|
* clean checkpoint again.
|
|
*/
|
|
if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
|
|
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
|
|
struct cp_control cpc = {
|
|
.reason = CP_UMOUNT,
|
|
};
|
|
write_checkpoint(sbi, &cpc);
|
|
}
|
|
|
|
/* write_checkpoint can update stat informaion */
|
|
f2fs_destroy_stats(sbi);
|
|
|
|
/*
|
|
* normally superblock is clean, so we need to release this.
|
|
* In addition, EIO will skip do checkpoint, we need this as well.
|
|
*/
|
|
release_ino_entry(sbi, true);
|
|
release_discard_addrs(sbi);
|
|
|
|
f2fs_leave_shrinker(sbi);
|
|
mutex_unlock(&sbi->umount_mutex);
|
|
|
|
/* our cp_error case, we can wait for any writeback page */
|
|
f2fs_flush_merged_bios(sbi);
|
|
|
|
iput(sbi->node_inode);
|
|
iput(sbi->meta_inode);
|
|
|
|
/* destroy f2fs internal modules */
|
|
destroy_node_manager(sbi);
|
|
destroy_segment_manager(sbi);
|
|
|
|
kfree(sbi->ckpt);
|
|
kobject_put(&sbi->s_kobj);
|
|
wait_for_completion(&sbi->s_kobj_unregister);
|
|
|
|
sb->s_fs_info = NULL;
|
|
if (sbi->s_chksum_driver)
|
|
crypto_free_shash(sbi->s_chksum_driver);
|
|
kfree(sbi->raw_super);
|
|
|
|
destroy_percpu_info(sbi);
|
|
kfree(sbi);
|
|
}
|
|
|
|
int f2fs_sync_fs(struct super_block *sb, int sync)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
int err = 0;
|
|
|
|
trace_f2fs_sync_fs(sb, sync);
|
|
|
|
if (sync) {
|
|
struct cp_control cpc;
|
|
|
|
cpc.reason = __get_cp_reason(sbi);
|
|
|
|
mutex_lock(&sbi->gc_mutex);
|
|
err = write_checkpoint(sbi, &cpc);
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
}
|
|
f2fs_trace_ios(NULL, 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_freeze(struct super_block *sb)
|
|
{
|
|
int err;
|
|
|
|
if (f2fs_readonly(sb))
|
|
return 0;
|
|
|
|
err = f2fs_sync_fs(sb, 1);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_unfreeze(struct super_block *sb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct super_block *sb = dentry->d_sb;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
|
|
block_t total_count, user_block_count, start_count, ovp_count;
|
|
|
|
total_count = le64_to_cpu(sbi->raw_super->block_count);
|
|
user_block_count = sbi->user_block_count;
|
|
start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
|
|
ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
|
|
buf->f_type = F2FS_SUPER_MAGIC;
|
|
buf->f_bsize = sbi->blocksize;
|
|
|
|
buf->f_blocks = total_count - start_count;
|
|
buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
|
|
buf->f_bavail = user_block_count - valid_user_blocks(sbi);
|
|
|
|
buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
|
|
buf->f_ffree = buf->f_files - valid_inode_count(sbi);
|
|
|
|
buf->f_namelen = F2FS_NAME_LEN;
|
|
buf->f_fsid.val[0] = (u32)id;
|
|
buf->f_fsid.val[1] = (u32)(id >> 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
|
|
|
|
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
|
|
if (test_opt(sbi, FORCE_FG_GC))
|
|
seq_printf(seq, ",background_gc=%s", "sync");
|
|
else
|
|
seq_printf(seq, ",background_gc=%s", "on");
|
|
} else {
|
|
seq_printf(seq, ",background_gc=%s", "off");
|
|
}
|
|
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
|
|
seq_puts(seq, ",disable_roll_forward");
|
|
if (test_opt(sbi, DISCARD))
|
|
seq_puts(seq, ",discard");
|
|
if (test_opt(sbi, NOHEAP))
|
|
seq_puts(seq, ",no_heap_alloc");
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
if (test_opt(sbi, XATTR_USER))
|
|
seq_puts(seq, ",user_xattr");
|
|
else
|
|
seq_puts(seq, ",nouser_xattr");
|
|
if (test_opt(sbi, INLINE_XATTR))
|
|
seq_puts(seq, ",inline_xattr");
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
if (test_opt(sbi, POSIX_ACL))
|
|
seq_puts(seq, ",acl");
|
|
else
|
|
seq_puts(seq, ",noacl");
|
|
#endif
|
|
if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
|
|
seq_puts(seq, ",disable_ext_identify");
|
|
if (test_opt(sbi, INLINE_DATA))
|
|
seq_puts(seq, ",inline_data");
|
|
else
|
|
seq_puts(seq, ",noinline_data");
|
|
if (test_opt(sbi, INLINE_DENTRY))
|
|
seq_puts(seq, ",inline_dentry");
|
|
else
|
|
seq_puts(seq, ",noinline_dentry");
|
|
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
|
|
seq_puts(seq, ",flush_merge");
|
|
if (test_opt(sbi, NOBARRIER))
|
|
seq_puts(seq, ",nobarrier");
|
|
if (test_opt(sbi, FASTBOOT))
|
|
seq_puts(seq, ",fastboot");
|
|
if (test_opt(sbi, EXTENT_CACHE))
|
|
seq_puts(seq, ",extent_cache");
|
|
else
|
|
seq_puts(seq, ",noextent_cache");
|
|
if (test_opt(sbi, DATA_FLUSH))
|
|
seq_puts(seq, ",data_flush");
|
|
|
|
seq_puts(seq, ",mode=");
|
|
if (test_opt(sbi, ADAPTIVE))
|
|
seq_puts(seq, "adaptive");
|
|
else if (test_opt(sbi, LFS))
|
|
seq_puts(seq, "lfs");
|
|
seq_printf(seq, ",active_logs=%u", sbi->active_logs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int segment_info_seq_show(struct seq_file *seq, void *offset)
|
|
{
|
|
struct super_block *sb = seq->private;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
unsigned int total_segs =
|
|
le32_to_cpu(sbi->raw_super->segment_count_main);
|
|
int i;
|
|
|
|
seq_puts(seq, "format: segment_type|valid_blocks\n"
|
|
"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
|
|
|
|
for (i = 0; i < total_segs; i++) {
|
|
struct seg_entry *se = get_seg_entry(sbi, i);
|
|
|
|
if ((i % 10) == 0)
|
|
seq_printf(seq, "%-10d", i);
|
|
seq_printf(seq, "%d|%-3u", se->type,
|
|
get_valid_blocks(sbi, i, 1));
|
|
if ((i % 10) == 9 || i == (total_segs - 1))
|
|
seq_putc(seq, '\n');
|
|
else
|
|
seq_putc(seq, ' ');
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int segment_bits_seq_show(struct seq_file *seq, void *offset)
|
|
{
|
|
struct super_block *sb = seq->private;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
unsigned int total_segs =
|
|
le32_to_cpu(sbi->raw_super->segment_count_main);
|
|
int i, j;
|
|
|
|
seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
|
|
"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
|
|
|
|
for (i = 0; i < total_segs; i++) {
|
|
struct seg_entry *se = get_seg_entry(sbi, i);
|
|
|
|
seq_printf(seq, "%-10d", i);
|
|
seq_printf(seq, "%d|%-3u|", se->type,
|
|
get_valid_blocks(sbi, i, 1));
|
|
for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
|
|
seq_printf(seq, " %.2x", se->cur_valid_map[j]);
|
|
seq_putc(seq, '\n');
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define F2FS_PROC_FILE_DEF(_name) \
|
|
static int _name##_open_fs(struct inode *inode, struct file *file) \
|
|
{ \
|
|
return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
|
|
} \
|
|
\
|
|
static const struct file_operations f2fs_seq_##_name##_fops = { \
|
|
.open = _name##_open_fs, \
|
|
.read = seq_read, \
|
|
.llseek = seq_lseek, \
|
|
.release = single_release, \
|
|
};
|
|
|
|
F2FS_PROC_FILE_DEF(segment_info);
|
|
F2FS_PROC_FILE_DEF(segment_bits);
|
|
|
|
static void default_options(struct f2fs_sb_info *sbi)
|
|
{
|
|
/* init some FS parameters */
|
|
sbi->active_logs = NR_CURSEG_TYPE;
|
|
|
|
set_opt(sbi, BG_GC);
|
|
set_opt(sbi, INLINE_DATA);
|
|
set_opt(sbi, INLINE_DENTRY);
|
|
set_opt(sbi, EXTENT_CACHE);
|
|
sbi->sb->s_flags |= MS_LAZYTIME;
|
|
set_opt(sbi, FLUSH_MERGE);
|
|
if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
|
|
set_opt_mode(sbi, F2FS_MOUNT_LFS);
|
|
set_opt(sbi, DISCARD);
|
|
} else {
|
|
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
set_opt(sbi, XATTR_USER);
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
set_opt(sbi, POSIX_ACL);
|
|
#endif
|
|
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
f2fs_build_fault_attr(sbi, 0);
|
|
#endif
|
|
}
|
|
|
|
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct f2fs_mount_info org_mount_opt;
|
|
int err, active_logs;
|
|
bool need_restart_gc = false;
|
|
bool need_stop_gc = false;
|
|
bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
struct f2fs_fault_info ffi = sbi->fault_info;
|
|
#endif
|
|
|
|
/*
|
|
* Save the old mount options in case we
|
|
* need to restore them.
|
|
*/
|
|
org_mount_opt = sbi->mount_opt;
|
|
active_logs = sbi->active_logs;
|
|
|
|
/* recover superblocks we couldn't write due to previous RO mount */
|
|
if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
|
|
err = f2fs_commit_super(sbi, false);
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Try to recover all the superblocks, ret: %d", err);
|
|
if (!err)
|
|
clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
}
|
|
|
|
sbi->mount_opt.opt = 0;
|
|
default_options(sbi);
|
|
|
|
/* parse mount options */
|
|
err = parse_options(sb, data);
|
|
if (err)
|
|
goto restore_opts;
|
|
|
|
/*
|
|
* Previous and new state of filesystem is RO,
|
|
* so skip checking GC and FLUSH_MERGE conditions.
|
|
*/
|
|
if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
|
|
goto skip;
|
|
|
|
/* disallow enable/disable extent_cache dynamically */
|
|
if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
|
|
err = -EINVAL;
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"switch extent_cache option is not allowed");
|
|
goto restore_opts;
|
|
}
|
|
|
|
/*
|
|
* We stop the GC thread if FS is mounted as RO
|
|
* or if background_gc = off is passed in mount
|
|
* option. Also sync the filesystem.
|
|
*/
|
|
if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
|
|
if (sbi->gc_thread) {
|
|
stop_gc_thread(sbi);
|
|
need_restart_gc = true;
|
|
}
|
|
} else if (!sbi->gc_thread) {
|
|
err = start_gc_thread(sbi);
|
|
if (err)
|
|
goto restore_opts;
|
|
need_stop_gc = true;
|
|
}
|
|
|
|
if (*flags & MS_RDONLY) {
|
|
writeback_inodes_sb(sb, WB_REASON_SYNC);
|
|
sync_inodes_sb(sb);
|
|
|
|
set_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
set_sbi_flag(sbi, SBI_IS_CLOSE);
|
|
f2fs_sync_fs(sb, 1);
|
|
clear_sbi_flag(sbi, SBI_IS_CLOSE);
|
|
}
|
|
|
|
/*
|
|
* We stop issue flush thread if FS is mounted as RO
|
|
* or if flush_merge is not passed in mount option.
|
|
*/
|
|
if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
|
|
destroy_flush_cmd_control(sbi);
|
|
} else if (!SM_I(sbi)->cmd_control_info) {
|
|
err = create_flush_cmd_control(sbi);
|
|
if (err)
|
|
goto restore_gc;
|
|
}
|
|
skip:
|
|
/* Update the POSIXACL Flag */
|
|
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
|
|
(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
|
|
|
|
return 0;
|
|
restore_gc:
|
|
if (need_restart_gc) {
|
|
if (start_gc_thread(sbi))
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"background gc thread has stopped");
|
|
} else if (need_stop_gc) {
|
|
stop_gc_thread(sbi);
|
|
}
|
|
restore_opts:
|
|
sbi->mount_opt = org_mount_opt;
|
|
sbi->active_logs = active_logs;
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
sbi->fault_info = ffi;
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
static struct super_operations f2fs_sops = {
|
|
.alloc_inode = f2fs_alloc_inode,
|
|
.drop_inode = f2fs_drop_inode,
|
|
.destroy_inode = f2fs_destroy_inode,
|
|
.write_inode = f2fs_write_inode,
|
|
.dirty_inode = f2fs_dirty_inode,
|
|
.show_options = f2fs_show_options,
|
|
.evict_inode = f2fs_evict_inode,
|
|
.put_super = f2fs_put_super,
|
|
.sync_fs = f2fs_sync_fs,
|
|
.freeze_fs = f2fs_freeze,
|
|
.unfreeze_fs = f2fs_unfreeze,
|
|
.statfs = f2fs_statfs,
|
|
.remount_fs = f2fs_remount,
|
|
};
|
|
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
|
|
{
|
|
return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
|
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
|
ctx, len, NULL);
|
|
}
|
|
|
|
static int f2fs_key_prefix(struct inode *inode, u8 **key)
|
|
{
|
|
*key = F2FS_I_SB(inode)->key_prefix;
|
|
return F2FS_I_SB(inode)->key_prefix_size;
|
|
}
|
|
|
|
static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
|
|
void *fs_data)
|
|
{
|
|
return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
|
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
|
ctx, len, fs_data, XATTR_CREATE);
|
|
}
|
|
|
|
static unsigned f2fs_max_namelen(struct inode *inode)
|
|
{
|
|
return S_ISLNK(inode->i_mode) ?
|
|
inode->i_sb->s_blocksize : F2FS_NAME_LEN;
|
|
}
|
|
|
|
static struct fscrypt_operations f2fs_cryptops = {
|
|
.get_context = f2fs_get_context,
|
|
.key_prefix = f2fs_key_prefix,
|
|
.set_context = f2fs_set_context,
|
|
.is_encrypted = f2fs_encrypted_inode,
|
|
.empty_dir = f2fs_empty_dir,
|
|
.max_namelen = f2fs_max_namelen,
|
|
};
|
|
#else
|
|
static struct fscrypt_operations f2fs_cryptops = {
|
|
.is_encrypted = f2fs_encrypted_inode,
|
|
};
|
|
#endif
|
|
|
|
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
|
|
u64 ino, u32 generation)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct inode *inode;
|
|
|
|
if (check_nid_range(sbi, ino))
|
|
return ERR_PTR(-ESTALE);
|
|
|
|
/*
|
|
* f2fs_iget isn't quite right if the inode is currently unallocated!
|
|
* However f2fs_iget currently does appropriate checks to handle stale
|
|
* inodes so everything is OK.
|
|
*/
|
|
inode = f2fs_iget(sb, ino);
|
|
if (IS_ERR(inode))
|
|
return ERR_CAST(inode);
|
|
if (unlikely(generation && inode->i_generation != generation)) {
|
|
/* we didn't find the right inode.. */
|
|
iput(inode);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
|
|
f2fs_nfs_get_inode);
|
|
}
|
|
|
|
static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
|
|
f2fs_nfs_get_inode);
|
|
}
|
|
|
|
static const struct export_operations f2fs_export_ops = {
|
|
.fh_to_dentry = f2fs_fh_to_dentry,
|
|
.fh_to_parent = f2fs_fh_to_parent,
|
|
.get_parent = f2fs_get_parent,
|
|
};
|
|
|
|
static loff_t max_file_blocks(void)
|
|
{
|
|
loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
|
|
loff_t leaf_count = ADDRS_PER_BLOCK;
|
|
|
|
/* two direct node blocks */
|
|
result += (leaf_count * 2);
|
|
|
|
/* two indirect node blocks */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += (leaf_count * 2);
|
|
|
|
/* one double indirect node block */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += leaf_count;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int __f2fs_commit_super(struct buffer_head *bh,
|
|
struct f2fs_super_block *super)
|
|
{
|
|
lock_buffer(bh);
|
|
if (super)
|
|
memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
|
|
set_buffer_uptodate(bh);
|
|
set_buffer_dirty(bh);
|
|
unlock_buffer(bh);
|
|
|
|
/* it's rare case, we can do fua all the time */
|
|
return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
|
|
}
|
|
|
|
static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
|
|
struct buffer_head *bh)
|
|
{
|
|
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
|
|
(bh->b_data + F2FS_SUPER_OFFSET);
|
|
struct super_block *sb = sbi->sb;
|
|
u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
|
|
u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
|
|
u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
|
|
u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
|
|
u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
|
|
u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
|
|
u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
|
|
u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
|
|
u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
|
|
u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
|
|
u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
|
|
u32 segment_count = le32_to_cpu(raw_super->segment_count);
|
|
u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
u64 main_end_blkaddr = main_blkaddr +
|
|
(segment_count_main << log_blocks_per_seg);
|
|
u64 seg_end_blkaddr = segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg);
|
|
|
|
if (segment0_blkaddr != cp_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
|
|
segment0_blkaddr, cp_blkaddr);
|
|
return true;
|
|
}
|
|
|
|
if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
|
|
sit_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
|
|
cp_blkaddr, sit_blkaddr,
|
|
segment_count_ckpt << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
|
|
nat_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
|
|
sit_blkaddr, nat_blkaddr,
|
|
segment_count_sit << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
|
|
ssa_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
|
|
nat_blkaddr, ssa_blkaddr,
|
|
segment_count_nat << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
|
|
main_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
|
|
ssa_blkaddr, main_blkaddr,
|
|
segment_count_ssa << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (main_end_blkaddr > seg_end_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
|
|
main_blkaddr,
|
|
segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg),
|
|
segment_count_main << log_blocks_per_seg);
|
|
return true;
|
|
} else if (main_end_blkaddr < seg_end_blkaddr) {
|
|
int err = 0;
|
|
char *res;
|
|
|
|
/* fix in-memory information all the time */
|
|
raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
|
|
segment0_blkaddr) >> log_blocks_per_seg);
|
|
|
|
if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
|
|
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
res = "internally";
|
|
} else {
|
|
err = __f2fs_commit_super(bh, NULL);
|
|
res = err ? "failed" : "done";
|
|
}
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Fix alignment : %s, start(%u) end(%u) block(%u)",
|
|
res, main_blkaddr,
|
|
segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg),
|
|
segment_count_main << log_blocks_per_seg);
|
|
if (err)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
|
|
struct buffer_head *bh)
|
|
{
|
|
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
|
|
(bh->b_data + F2FS_SUPER_OFFSET);
|
|
struct super_block *sb = sbi->sb;
|
|
unsigned int blocksize;
|
|
|
|
if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Magic Mismatch, valid(0x%x) - read(0x%x)",
|
|
F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support only 4KB page cache size */
|
|
if (F2FS_BLKSIZE != PAGE_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid page_cache_size (%lu), supports only 4KB\n",
|
|
PAGE_SIZE);
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support only 4KB block size */
|
|
blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
|
|
if (blocksize != F2FS_BLKSIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid blocksize (%u), supports only 4KB\n",
|
|
blocksize);
|
|
return 1;
|
|
}
|
|
|
|
/* check log blocks per segment */
|
|
if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid log blocks per segment (%u)\n",
|
|
le32_to_cpu(raw_super->log_blocks_per_seg));
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support 512/1024/2048/4096 bytes sector size */
|
|
if (le32_to_cpu(raw_super->log_sectorsize) >
|
|
F2FS_MAX_LOG_SECTOR_SIZE ||
|
|
le32_to_cpu(raw_super->log_sectorsize) <
|
|
F2FS_MIN_LOG_SECTOR_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
|
|
le32_to_cpu(raw_super->log_sectorsize));
|
|
return 1;
|
|
}
|
|
if (le32_to_cpu(raw_super->log_sectors_per_block) +
|
|
le32_to_cpu(raw_super->log_sectorsize) !=
|
|
F2FS_MAX_LOG_SECTOR_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid log sectors per block(%u) log sectorsize(%u)",
|
|
le32_to_cpu(raw_super->log_sectors_per_block),
|
|
le32_to_cpu(raw_super->log_sectorsize));
|
|
return 1;
|
|
}
|
|
|
|
/* check reserved ino info */
|
|
if (le32_to_cpu(raw_super->node_ino) != 1 ||
|
|
le32_to_cpu(raw_super->meta_ino) != 2 ||
|
|
le32_to_cpu(raw_super->root_ino) != 3) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
|
|
le32_to_cpu(raw_super->node_ino),
|
|
le32_to_cpu(raw_super->meta_ino),
|
|
le32_to_cpu(raw_super->root_ino));
|
|
return 1;
|
|
}
|
|
|
|
/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
|
|
if (sanity_check_area_boundary(sbi, bh))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sanity_check_ckpt(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int total, fsmeta;
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
|
|
total = le32_to_cpu(raw_super->segment_count);
|
|
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
|
|
fsmeta += le32_to_cpu(raw_super->segment_count_sit);
|
|
fsmeta += le32_to_cpu(raw_super->segment_count_nat);
|
|
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
|
|
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
|
|
|
|
if (unlikely(fsmeta >= total))
|
|
return 1;
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void init_sb_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = sbi->raw_super;
|
|
|
|
sbi->log_sectors_per_block =
|
|
le32_to_cpu(raw_super->log_sectors_per_block);
|
|
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
|
|
sbi->blocksize = 1 << sbi->log_blocksize;
|
|
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
|
|
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
|
|
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
|
|
sbi->total_sections = le32_to_cpu(raw_super->section_count);
|
|
sbi->total_node_count =
|
|
(le32_to_cpu(raw_super->segment_count_nat) / 2)
|
|
* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
|
|
sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
|
|
sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
|
|
sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
|
|
sbi->cur_victim_sec = NULL_SECNO;
|
|
sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
|
|
|
|
sbi->dir_level = DEF_DIR_LEVEL;
|
|
sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
|
|
sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
|
|
clear_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
|
|
INIT_LIST_HEAD(&sbi->s_list);
|
|
mutex_init(&sbi->umount_mutex);
|
|
mutex_init(&sbi->wio_mutex[NODE]);
|
|
mutex_init(&sbi->wio_mutex[DATA]);
|
|
spin_lock_init(&sbi->cp_lock);
|
|
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
|
|
F2FS_KEY_DESC_PREFIX_SIZE);
|
|
sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
|
|
#endif
|
|
}
|
|
|
|
static int init_percpu_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i, err;
|
|
|
|
for (i = 0; i < NR_COUNT_TYPE; i++) {
|
|
err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
|
|
if (err)
|
|
return err;
|
|
|
|
return percpu_counter_init(&sbi->total_valid_inode_count, 0,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
/*
|
|
* Read f2fs raw super block.
|
|
* Because we have two copies of super block, so read both of them
|
|
* to get the first valid one. If any one of them is broken, we pass
|
|
* them recovery flag back to the caller.
|
|
*/
|
|
static int read_raw_super_block(struct f2fs_sb_info *sbi,
|
|
struct f2fs_super_block **raw_super,
|
|
int *valid_super_block, int *recovery)
|
|
{
|
|
struct super_block *sb = sbi->sb;
|
|
int block;
|
|
struct buffer_head *bh;
|
|
struct f2fs_super_block *super;
|
|
int err = 0;
|
|
|
|
super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
|
|
if (!super)
|
|
return -ENOMEM;
|
|
|
|
for (block = 0; block < 2; block++) {
|
|
bh = sb_bread(sb, block);
|
|
if (!bh) {
|
|
f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
|
|
block + 1);
|
|
err = -EIO;
|
|
continue;
|
|
}
|
|
|
|
/* sanity checking of raw super */
|
|
if (sanity_check_raw_super(sbi, bh)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Can't find valid F2FS filesystem in %dth superblock",
|
|
block + 1);
|
|
err = -EINVAL;
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
if (!*raw_super) {
|
|
memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
|
|
sizeof(*super));
|
|
*valid_super_block = block;
|
|
*raw_super = super;
|
|
}
|
|
brelse(bh);
|
|
}
|
|
|
|
/* Fail to read any one of the superblocks*/
|
|
if (err < 0)
|
|
*recovery = 1;
|
|
|
|
/* No valid superblock */
|
|
if (!*raw_super)
|
|
kfree(super);
|
|
else
|
|
err = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
|
|
{
|
|
struct buffer_head *bh;
|
|
int err;
|
|
|
|
if ((recover && f2fs_readonly(sbi->sb)) ||
|
|
bdev_read_only(sbi->sb->s_bdev)) {
|
|
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
return -EROFS;
|
|
}
|
|
|
|
/* write back-up superblock first */
|
|
bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
|
|
if (!bh)
|
|
return -EIO;
|
|
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
|
|
brelse(bh);
|
|
|
|
/* if we are in recovery path, skip writing valid superblock */
|
|
if (recover || err)
|
|
return err;
|
|
|
|
/* write current valid superblock */
|
|
bh = sb_getblk(sbi->sb, sbi->valid_super_block);
|
|
if (!bh)
|
|
return -EIO;
|
|
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
|
|
brelse(bh);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
|
|
{
|
|
struct f2fs_sb_info *sbi;
|
|
struct f2fs_super_block *raw_super;
|
|
struct inode *root;
|
|
int err;
|
|
bool retry = true, need_fsck = false;
|
|
char *options = NULL;
|
|
int recovery, i, valid_super_block;
|
|
struct curseg_info *seg_i;
|
|
|
|
try_onemore:
|
|
err = -EINVAL;
|
|
raw_super = NULL;
|
|
valid_super_block = -1;
|
|
recovery = 0;
|
|
|
|
/* allocate memory for f2fs-specific super block info */
|
|
sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
|
|
if (!sbi)
|
|
return -ENOMEM;
|
|
|
|
sbi->sb = sb;
|
|
|
|
/* Load the checksum driver */
|
|
sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
|
|
if (IS_ERR(sbi->s_chksum_driver)) {
|
|
f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
|
|
err = PTR_ERR(sbi->s_chksum_driver);
|
|
sbi->s_chksum_driver = NULL;
|
|
goto free_sbi;
|
|
}
|
|
|
|
/* set a block size */
|
|
if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
|
|
f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
|
|
goto free_sbi;
|
|
}
|
|
|
|
err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
|
|
&recovery);
|
|
if (err)
|
|
goto free_sbi;
|
|
|
|
sb->s_fs_info = sbi;
|
|
sbi->raw_super = raw_super;
|
|
|
|
default_options(sbi);
|
|
/* parse mount options */
|
|
options = kstrdup((const char *)data, GFP_KERNEL);
|
|
if (data && !options) {
|
|
err = -ENOMEM;
|
|
goto free_sb_buf;
|
|
}
|
|
|
|
err = parse_options(sb, options);
|
|
if (err)
|
|
goto free_options;
|
|
|
|
sbi->max_file_blocks = max_file_blocks();
|
|
sb->s_maxbytes = sbi->max_file_blocks <<
|
|
le32_to_cpu(raw_super->log_blocksize);
|
|
sb->s_max_links = F2FS_LINK_MAX;
|
|
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
|
|
|
|
sb->s_op = &f2fs_sops;
|
|
sb->s_cop = &f2fs_cryptops;
|
|
sb->s_xattr = f2fs_xattr_handlers;
|
|
sb->s_export_op = &f2fs_export_ops;
|
|
sb->s_magic = F2FS_SUPER_MAGIC;
|
|
sb->s_time_gran = 1;
|
|
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
|
|
(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
|
|
memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
|
|
|
|
/* init f2fs-specific super block info */
|
|
sbi->valid_super_block = valid_super_block;
|
|
mutex_init(&sbi->gc_mutex);
|
|
mutex_init(&sbi->cp_mutex);
|
|
init_rwsem(&sbi->node_write);
|
|
|
|
/* disallow all the data/node/meta page writes */
|
|
set_sbi_flag(sbi, SBI_POR_DOING);
|
|
spin_lock_init(&sbi->stat_lock);
|
|
|
|
init_rwsem(&sbi->read_io.io_rwsem);
|
|
sbi->read_io.sbi = sbi;
|
|
sbi->read_io.bio = NULL;
|
|
for (i = 0; i < NR_PAGE_TYPE; i++) {
|
|
init_rwsem(&sbi->write_io[i].io_rwsem);
|
|
sbi->write_io[i].sbi = sbi;
|
|
sbi->write_io[i].bio = NULL;
|
|
}
|
|
|
|
init_rwsem(&sbi->cp_rwsem);
|
|
init_waitqueue_head(&sbi->cp_wait);
|
|
init_sb_info(sbi);
|
|
|
|
err = init_percpu_info(sbi);
|
|
if (err)
|
|
goto free_options;
|
|
|
|
/* get an inode for meta space */
|
|
sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
|
|
if (IS_ERR(sbi->meta_inode)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
|
|
err = PTR_ERR(sbi->meta_inode);
|
|
goto free_options;
|
|
}
|
|
|
|
err = get_valid_checkpoint(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
|
|
goto free_meta_inode;
|
|
}
|
|
|
|
sbi->total_valid_node_count =
|
|
le32_to_cpu(sbi->ckpt->valid_node_count);
|
|
percpu_counter_set(&sbi->total_valid_inode_count,
|
|
le32_to_cpu(sbi->ckpt->valid_inode_count));
|
|
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
|
|
sbi->total_valid_block_count =
|
|
le64_to_cpu(sbi->ckpt->valid_block_count);
|
|
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
|
|
|
for (i = 0; i < NR_INODE_TYPE; i++) {
|
|
INIT_LIST_HEAD(&sbi->inode_list[i]);
|
|
spin_lock_init(&sbi->inode_lock[i]);
|
|
}
|
|
|
|
init_extent_cache_info(sbi);
|
|
|
|
init_ino_entry_info(sbi);
|
|
|
|
/* setup f2fs internal modules */
|
|
err = build_segment_manager(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Failed to initialize F2FS segment manager");
|
|
goto free_sm;
|
|
}
|
|
err = build_node_manager(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Failed to initialize F2FS node manager");
|
|
goto free_nm;
|
|
}
|
|
|
|
/* For write statistics */
|
|
if (sb->s_bdev->bd_part)
|
|
sbi->sectors_written_start =
|
|
(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
|
|
|
|
/* Read accumulated write IO statistics if exists */
|
|
seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
|
|
if (__exist_node_summaries(sbi))
|
|
sbi->kbytes_written =
|
|
le64_to_cpu(seg_i->journal->info.kbytes_written);
|
|
|
|
build_gc_manager(sbi);
|
|
|
|
/* get an inode for node space */
|
|
sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
|
|
if (IS_ERR(sbi->node_inode)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
|
|
err = PTR_ERR(sbi->node_inode);
|
|
goto free_nm;
|
|
}
|
|
|
|
f2fs_join_shrinker(sbi);
|
|
|
|
/* if there are nt orphan nodes free them */
|
|
err = recover_orphan_inodes(sbi);
|
|
if (err)
|
|
goto free_node_inode;
|
|
|
|
/* read root inode and dentry */
|
|
root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
|
|
if (IS_ERR(root)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
|
|
err = PTR_ERR(root);
|
|
goto free_node_inode;
|
|
}
|
|
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
|
|
iput(root);
|
|
err = -EINVAL;
|
|
goto free_node_inode;
|
|
}
|
|
|
|
sb->s_root = d_make_root(root); /* allocate root dentry */
|
|
if (!sb->s_root) {
|
|
err = -ENOMEM;
|
|
goto free_root_inode;
|
|
}
|
|
|
|
err = f2fs_build_stats(sbi);
|
|
if (err)
|
|
goto free_root_inode;
|
|
|
|
if (f2fs_proc_root)
|
|
sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
|
|
|
|
if (sbi->s_proc) {
|
|
proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
|
|
&f2fs_seq_segment_info_fops, sb);
|
|
proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
|
|
&f2fs_seq_segment_bits_fops, sb);
|
|
}
|
|
|
|
sbi->s_kobj.kset = f2fs_kset;
|
|
init_completion(&sbi->s_kobj_unregister);
|
|
err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
|
|
"%s", sb->s_id);
|
|
if (err)
|
|
goto free_proc;
|
|
|
|
/* recover fsynced data */
|
|
if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
|
|
/*
|
|
* mount should be failed, when device has readonly mode, and
|
|
* previous checkpoint was not done by clean system shutdown.
|
|
*/
|
|
if (bdev_read_only(sb->s_bdev) &&
|
|
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
|
|
err = -EROFS;
|
|
goto free_kobj;
|
|
}
|
|
|
|
if (need_fsck)
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
|
|
if (!retry)
|
|
goto skip_recovery;
|
|
|
|
err = recover_fsync_data(sbi, false);
|
|
if (err < 0) {
|
|
need_fsck = true;
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Cannot recover all fsync data errno=%d", err);
|
|
goto free_kobj;
|
|
}
|
|
} else {
|
|
err = recover_fsync_data(sbi, true);
|
|
|
|
if (!f2fs_readonly(sb) && err > 0) {
|
|
err = -EINVAL;
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Need to recover fsync data");
|
|
goto free_kobj;
|
|
}
|
|
}
|
|
skip_recovery:
|
|
/* recover_fsync_data() cleared this already */
|
|
clear_sbi_flag(sbi, SBI_POR_DOING);
|
|
|
|
/*
|
|
* If filesystem is not mounted as read-only then
|
|
* do start the gc_thread.
|
|
*/
|
|
if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
|
|
/* After POR, we can run background GC thread.*/
|
|
err = start_gc_thread(sbi);
|
|
if (err)
|
|
goto free_kobj;
|
|
}
|
|
kfree(options);
|
|
|
|
/* recover broken superblock */
|
|
if (recovery) {
|
|
err = f2fs_commit_super(sbi, true);
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Try to recover %dth superblock, ret: %d",
|
|
sbi->valid_super_block ? 1 : 2, err);
|
|
}
|
|
|
|
f2fs_update_time(sbi, CP_TIME);
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
return 0;
|
|
|
|
free_kobj:
|
|
f2fs_sync_inode_meta(sbi);
|
|
kobject_del(&sbi->s_kobj);
|
|
kobject_put(&sbi->s_kobj);
|
|
wait_for_completion(&sbi->s_kobj_unregister);
|
|
free_proc:
|
|
if (sbi->s_proc) {
|
|
remove_proc_entry("segment_info", sbi->s_proc);
|
|
remove_proc_entry("segment_bits", sbi->s_proc);
|
|
remove_proc_entry(sb->s_id, f2fs_proc_root);
|
|
}
|
|
f2fs_destroy_stats(sbi);
|
|
free_root_inode:
|
|
dput(sb->s_root);
|
|
sb->s_root = NULL;
|
|
free_node_inode:
|
|
truncate_inode_pages_final(NODE_MAPPING(sbi));
|
|
mutex_lock(&sbi->umount_mutex);
|
|
release_ino_entry(sbi, true);
|
|
f2fs_leave_shrinker(sbi);
|
|
iput(sbi->node_inode);
|
|
mutex_unlock(&sbi->umount_mutex);
|
|
free_nm:
|
|
destroy_node_manager(sbi);
|
|
free_sm:
|
|
destroy_segment_manager(sbi);
|
|
kfree(sbi->ckpt);
|
|
free_meta_inode:
|
|
make_bad_inode(sbi->meta_inode);
|
|
iput(sbi->meta_inode);
|
|
free_options:
|
|
destroy_percpu_info(sbi);
|
|
kfree(options);
|
|
free_sb_buf:
|
|
kfree(raw_super);
|
|
free_sbi:
|
|
if (sbi->s_chksum_driver)
|
|
crypto_free_shash(sbi->s_chksum_driver);
|
|
kfree(sbi);
|
|
|
|
/* give only one another chance */
|
|
if (retry) {
|
|
retry = false;
|
|
shrink_dcache_sb(sb);
|
|
goto try_onemore;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
|
|
const char *dev_name, void *data)
|
|
{
|
|
return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
|
|
}
|
|
|
|
static void kill_f2fs_super(struct super_block *sb)
|
|
{
|
|
if (sb->s_root)
|
|
set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
|
|
kill_block_super(sb);
|
|
}
|
|
|
|
static struct file_system_type f2fs_fs_type = {
|
|
.owner = THIS_MODULE,
|
|
.name = "f2fs",
|
|
.mount = f2fs_mount,
|
|
.kill_sb = kill_f2fs_super,
|
|
.fs_flags = FS_REQUIRES_DEV,
|
|
};
|
|
MODULE_ALIAS_FS("f2fs");
|
|
|
|
static int __init init_inodecache(void)
|
|
{
|
|
f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
|
|
sizeof(struct f2fs_inode_info), 0,
|
|
SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
|
|
if (!f2fs_inode_cachep)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_inodecache(void)
|
|
{
|
|
/*
|
|
* Make sure all delayed rcu free inodes are flushed before we
|
|
* destroy cache.
|
|
*/
|
|
rcu_barrier();
|
|
kmem_cache_destroy(f2fs_inode_cachep);
|
|
}
|
|
|
|
static int __init init_f2fs_fs(void)
|
|
{
|
|
int err;
|
|
|
|
f2fs_build_trace_ios();
|
|
|
|
err = init_inodecache();
|
|
if (err)
|
|
goto fail;
|
|
err = create_node_manager_caches();
|
|
if (err)
|
|
goto free_inodecache;
|
|
err = create_segment_manager_caches();
|
|
if (err)
|
|
goto free_node_manager_caches;
|
|
err = create_checkpoint_caches();
|
|
if (err)
|
|
goto free_segment_manager_caches;
|
|
err = create_extent_cache();
|
|
if (err)
|
|
goto free_checkpoint_caches;
|
|
f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
|
|
if (!f2fs_kset) {
|
|
err = -ENOMEM;
|
|
goto free_extent_cache;
|
|
}
|
|
err = register_shrinker(&f2fs_shrinker_info);
|
|
if (err)
|
|
goto free_kset;
|
|
|
|
err = register_filesystem(&f2fs_fs_type);
|
|
if (err)
|
|
goto free_shrinker;
|
|
err = f2fs_create_root_stats();
|
|
if (err)
|
|
goto free_filesystem;
|
|
f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
|
|
return 0;
|
|
|
|
free_filesystem:
|
|
unregister_filesystem(&f2fs_fs_type);
|
|
free_shrinker:
|
|
unregister_shrinker(&f2fs_shrinker_info);
|
|
free_kset:
|
|
kset_unregister(f2fs_kset);
|
|
free_extent_cache:
|
|
destroy_extent_cache();
|
|
free_checkpoint_caches:
|
|
destroy_checkpoint_caches();
|
|
free_segment_manager_caches:
|
|
destroy_segment_manager_caches();
|
|
free_node_manager_caches:
|
|
destroy_node_manager_caches();
|
|
free_inodecache:
|
|
destroy_inodecache();
|
|
fail:
|
|
return err;
|
|
}
|
|
|
|
static void __exit exit_f2fs_fs(void)
|
|
{
|
|
remove_proc_entry("fs/f2fs", NULL);
|
|
f2fs_destroy_root_stats();
|
|
unregister_filesystem(&f2fs_fs_type);
|
|
unregister_shrinker(&f2fs_shrinker_info);
|
|
kset_unregister(f2fs_kset);
|
|
destroy_extent_cache();
|
|
destroy_checkpoint_caches();
|
|
destroy_segment_manager_caches();
|
|
destroy_node_manager_caches();
|
|
destroy_inodecache();
|
|
f2fs_destroy_trace_ios();
|
|
}
|
|
|
|
module_init(init_f2fs_fs)
|
|
module_exit(exit_f2fs_fs)
|
|
|
|
MODULE_AUTHOR("Samsung Electronics's Praesto Team");
|
|
MODULE_DESCRIPTION("Flash Friendly File System");
|
|
MODULE_LICENSE("GPL");
|