linux/arch/x86/kvm/pmu.c
Like Xu a33095f493 KVM: x86/pmu: Update comments for AMD gp counters
The obsolete comment could more accurately state that AMD platforms
have two base MSR addresses and two different maximum numbers
for gp counters, depending on the X86_FEATURE_PERFCTR_CORE feature.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:43 -04:00

656 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine -- Performance Monitoring Unit support
*
* Copyright 2015 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@redhat.com>
* Gleb Natapov <gleb@redhat.com>
* Wei Huang <wei@redhat.com>
*/
#include <linux/types.h>
#include <linux/kvm_host.h>
#include <linux/perf_event.h>
#include <linux/bsearch.h>
#include <linux/sort.h>
#include <asm/perf_event.h>
#include <asm/cpu_device_id.h>
#include "x86.h"
#include "cpuid.h"
#include "lapic.h"
#include "pmu.h"
/* This is enough to filter the vast majority of currently defined events. */
#define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
struct x86_pmu_capability __read_mostly kvm_pmu_cap;
EXPORT_SYMBOL_GPL(kvm_pmu_cap);
static const struct x86_cpu_id vmx_icl_pebs_cpu[] = {
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
{}
};
/* NOTE:
* - Each perf counter is defined as "struct kvm_pmc";
* - There are two types of perf counters: general purpose (gp) and fixed.
* gp counters are stored in gp_counters[] and fixed counters are stored
* in fixed_counters[] respectively. Both of them are part of "struct
* kvm_pmu";
* - pmu.c understands the difference between gp counters and fixed counters.
* However AMD doesn't support fixed-counters;
* - There are three types of index to access perf counters (PMC):
* 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
* has MSR_K7_PERFCTRn and, for families 15H and later,
* MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
* aliased to MSR_K7_PERFCTRn.
* 2. MSR Index (named idx): This normally is used by RDPMC instruction.
* For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
* C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
* that it also supports fixed counters. idx can be used to as index to
* gp and fixed counters.
* 3. Global PMC Index (named pmc): pmc is an index specific to PMU
* code. Each pmc, stored in kvm_pmc.idx field, is unique across
* all perf counters (both gp and fixed). The mapping relationship
* between pmc and perf counters is as the following:
* * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
* [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
* * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
* and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
*/
static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
#define KVM_X86_PMU_OP(func) \
DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
*(((struct kvm_pmu_ops *)0)->func));
#define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
#include <asm/kvm-x86-pmu-ops.h>
void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
{
memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
#define __KVM_X86_PMU_OP(func) \
static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
#define KVM_X86_PMU_OP(func) \
WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
#define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
#include <asm/kvm-x86-pmu-ops.h>
#undef __KVM_X86_PMU_OP
}
static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
{
return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
}
static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
{
struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
kvm_pmu_deliver_pmi(vcpu);
}
static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
{
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
bool skip_pmi = false;
/* Ignore counters that have been reprogrammed already. */
if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi))
return;
if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
/* Indicate PEBS overflow PMI to guest. */
skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
(unsigned long *)&pmu->global_status);
} else {
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
}
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
if (!pmc->intr || skip_pmi)
return;
/*
* Inject PMI. If vcpu was in a guest mode during NMI PMI
* can be ejected on a guest mode re-entry. Otherwise we can't
* be sure that vcpu wasn't executing hlt instruction at the
* time of vmexit and is not going to re-enter guest mode until
* woken up. So we should wake it, but this is impossible from
* NMI context. Do it from irq work instead.
*/
if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
else
kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
}
static void kvm_perf_overflow(struct perf_event *perf_event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
__kvm_perf_overflow(pmc, true);
}
static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
u64 config, bool exclude_user,
bool exclude_kernel, bool intr)
{
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
struct perf_event *event;
struct perf_event_attr attr = {
.type = type,
.size = sizeof(attr),
.pinned = true,
.exclude_idle = true,
.exclude_host = 1,
.exclude_user = exclude_user,
.exclude_kernel = exclude_kernel,
.config = config,
};
bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
if (type == PERF_TYPE_HARDWARE && config >= PERF_COUNT_HW_MAX)
return;
attr.sample_period = get_sample_period(pmc, pmc->counter);
if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
guest_cpuid_is_intel(pmc->vcpu)) {
/*
* HSW_IN_TX_CHECKPOINTED is not supported with nonzero
* period. Just clear the sample period so at least
* allocating the counter doesn't fail.
*/
attr.sample_period = 0;
}
if (pebs) {
/*
* The non-zero precision level of guest event makes the ordinary
* guest event becomes a guest PEBS event and triggers the host
* PEBS PMI handler to determine whether the PEBS overflow PMI
* comes from the host counters or the guest.
*
* For most PEBS hardware events, the difference in the software
* precision levels of guest and host PEBS events will not affect
* the accuracy of the PEBS profiling result, because the "event IP"
* in the PEBS record is calibrated on the guest side.
*
* On Icelake everything is fine. Other hardware (GLC+, TNT+) that
* could possibly care here is unsupported and needs changes.
*/
attr.precise_ip = 1;
if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32)
attr.precise_ip = 3;
}
event = perf_event_create_kernel_counter(&attr, -1, current,
kvm_perf_overflow, pmc);
if (IS_ERR(event)) {
pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
PTR_ERR(event), pmc->idx);
return;
}
pmc->perf_event = event;
pmc_to_pmu(pmc)->event_count++;
clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
pmc->is_paused = false;
pmc->intr = intr || pebs;
}
static void pmc_pause_counter(struct kvm_pmc *pmc)
{
u64 counter = pmc->counter;
if (!pmc->perf_event || pmc->is_paused)
return;
/* update counter, reset event value to avoid redundant accumulation */
counter += perf_event_pause(pmc->perf_event, true);
pmc->counter = counter & pmc_bitmask(pmc);
pmc->is_paused = true;
}
static bool pmc_resume_counter(struct kvm_pmc *pmc)
{
if (!pmc->perf_event)
return false;
/* recalibrate sample period and check if it's accepted by perf core */
if (perf_event_period(pmc->perf_event,
get_sample_period(pmc, pmc->counter)))
return false;
if (!test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) &&
pmc->perf_event->attr.precise_ip)
return false;
/* reuse perf_event to serve as pmc_reprogram_counter() does*/
perf_event_enable(pmc->perf_event);
pmc->is_paused = false;
clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
return true;
}
static int cmp_u64(const void *pa, const void *pb)
{
u64 a = *(u64 *)pa;
u64 b = *(u64 *)pb;
return (a > b) - (a < b);
}
void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
{
u64 config;
u32 type = PERF_TYPE_RAW;
struct kvm *kvm = pmc->vcpu->kvm;
struct kvm_pmu_event_filter *filter;
struct kvm_pmu *pmu = vcpu_to_pmu(pmc->vcpu);
bool allow_event = true;
if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
printk_once("kvm pmu: pin control bit is ignored\n");
pmc->eventsel = eventsel;
pmc_pause_counter(pmc);
if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
return;
filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
if (filter) {
__u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB;
if (bsearch(&key, filter->events, filter->nevents,
sizeof(__u64), cmp_u64))
allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
else
allow_event = filter->action == KVM_PMU_EVENT_DENY;
}
if (!allow_event)
return;
if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
ARCH_PERFMON_EVENTSEL_INV |
ARCH_PERFMON_EVENTSEL_CMASK |
HSW_IN_TX |
HSW_IN_TX_CHECKPOINTED))) {
config = static_call(kvm_x86_pmu_pmc_perf_hw_id)(pmc);
if (config != PERF_COUNT_HW_MAX)
type = PERF_TYPE_HARDWARE;
}
if (type == PERF_TYPE_RAW)
config = eventsel & pmu->raw_event_mask;
if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
return;
pmc_release_perf_event(pmc);
pmc->current_config = eventsel;
pmc_reprogram_counter(pmc, type, config,
!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
eventsel & ARCH_PERFMON_EVENTSEL_INT);
}
EXPORT_SYMBOL_GPL(reprogram_gp_counter);
void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
{
unsigned en_field = ctrl & 0x3;
bool pmi = ctrl & 0x8;
struct kvm_pmu_event_filter *filter;
struct kvm *kvm = pmc->vcpu->kvm;
pmc_pause_counter(pmc);
if (!en_field || !pmc_is_enabled(pmc))
return;
filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
if (filter) {
if (filter->action == KVM_PMU_EVENT_DENY &&
test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
return;
if (filter->action == KVM_PMU_EVENT_ALLOW &&
!test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
return;
}
if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
return;
pmc_release_perf_event(pmc);
pmc->current_config = (u64)ctrl;
pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
static_call(kvm_x86_pmu_pmc_perf_hw_id)(pmc),
!(en_field & 0x2), /* exclude user */
!(en_field & 0x1), /* exclude kernel */
pmi);
}
EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
{
struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, pmc_idx);
if (!pmc)
return;
if (pmc_is_gp(pmc))
reprogram_gp_counter(pmc, pmc->eventsel);
else {
int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
reprogram_fixed_counter(pmc, ctrl, idx);
}
}
EXPORT_SYMBOL_GPL(reprogram_counter);
void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
int bit;
for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
if (unlikely(!pmc || !pmc->perf_event)) {
clear_bit(bit, pmu->reprogram_pmi);
continue;
}
reprogram_counter(pmu, bit);
}
/*
* Unused perf_events are only released if the corresponding MSRs
* weren't accessed during the last vCPU time slice. kvm_arch_sched_in
* triggers KVM_REQ_PMU if cleanup is needed.
*/
if (unlikely(pmu->need_cleanup))
kvm_pmu_cleanup(vcpu);
}
/* check if idx is a valid index to access PMU */
bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
{
return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
}
bool is_vmware_backdoor_pmc(u32 pmc_idx)
{
switch (pmc_idx) {
case VMWARE_BACKDOOR_PMC_HOST_TSC:
case VMWARE_BACKDOOR_PMC_REAL_TIME:
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
return true;
}
return false;
}
static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
{
u64 ctr_val;
switch (idx) {
case VMWARE_BACKDOOR_PMC_HOST_TSC:
ctr_val = rdtsc();
break;
case VMWARE_BACKDOOR_PMC_REAL_TIME:
ctr_val = ktime_get_boottime_ns();
break;
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
ctr_val = ktime_get_boottime_ns() +
vcpu->kvm->arch.kvmclock_offset;
break;
default:
return 1;
}
*data = ctr_val;
return 0;
}
int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
{
bool fast_mode = idx & (1u << 31);
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
struct kvm_pmc *pmc;
u64 mask = fast_mode ? ~0u : ~0ull;
if (!pmu->version)
return 1;
if (is_vmware_backdoor_pmc(idx))
return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
if (!pmc)
return 1;
if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
(static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
(kvm_read_cr0(vcpu) & X86_CR0_PE))
return 1;
*data = pmc_read_counter(pmc) & mask;
return 0;
}
void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
{
if (lapic_in_kernel(vcpu)) {
static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
}
}
bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr, bool host_initiated)
{
return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr, host_initiated);
}
static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
if (pmc)
__set_bit(pmc->idx, pmu->pmc_in_use);
}
int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
}
int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
}
/* refresh PMU settings. This function generally is called when underlying
* settings are changed (such as changes of PMU CPUID by guest VMs), which
* should rarely happen.
*/
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
{
static_call(kvm_x86_pmu_refresh)(vcpu);
}
void kvm_pmu_reset(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
irq_work_sync(&pmu->irq_work);
static_call(kvm_x86_pmu_reset)(vcpu);
}
void kvm_pmu_init(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
memset(pmu, 0, sizeof(*pmu));
static_call(kvm_x86_pmu_init)(vcpu);
init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
pmu->event_count = 0;
pmu->need_cleanup = false;
kvm_pmu_refresh(vcpu);
}
/* Release perf_events for vPMCs that have been unused for a full time slice. */
void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
struct kvm_pmc *pmc = NULL;
DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
int i;
pmu->need_cleanup = false;
bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
pmu->pmc_in_use, X86_PMC_IDX_MAX);
for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
pmc_stop_counter(pmc);
}
static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
}
void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
{
kvm_pmu_reset(vcpu);
}
static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
{
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
u64 prev_count;
prev_count = pmc->counter;
pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
reprogram_counter(pmu, pmc->idx);
if (pmc->counter < prev_count)
__kvm_perf_overflow(pmc, false);
}
static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
unsigned int perf_hw_id)
{
u64 old_eventsel = pmc->eventsel;
unsigned int config;
pmc->eventsel &= (ARCH_PERFMON_EVENTSEL_EVENT | ARCH_PERFMON_EVENTSEL_UMASK);
config = static_call(kvm_x86_pmu_pmc_perf_hw_id)(pmc);
pmc->eventsel = old_eventsel;
return config == perf_hw_id;
}
static inline bool cpl_is_matched(struct kvm_pmc *pmc)
{
bool select_os, select_user;
u64 config = pmc->current_config;
if (pmc_is_gp(pmc)) {
select_os = config & ARCH_PERFMON_EVENTSEL_OS;
select_user = config & ARCH_PERFMON_EVENTSEL_USR;
} else {
select_os = config & 0x1;
select_user = config & 0x2;
}
return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
}
void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
{
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
struct kvm_pmc *pmc;
int i;
for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
continue;
/* Ignore checks for edge detect, pin control, invert and CMASK bits */
if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
kvm_pmu_incr_counter(pmc);
}
}
EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
{
struct kvm_pmu_event_filter tmp, *filter;
size_t size;
int r;
if (copy_from_user(&tmp, argp, sizeof(tmp)))
return -EFAULT;
if (tmp.action != KVM_PMU_EVENT_ALLOW &&
tmp.action != KVM_PMU_EVENT_DENY)
return -EINVAL;
if (tmp.flags != 0)
return -EINVAL;
if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
return -E2BIG;
size = struct_size(filter, events, tmp.nevents);
filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
if (!filter)
return -ENOMEM;
r = -EFAULT;
if (copy_from_user(filter, argp, size))
goto cleanup;
/* Ensure nevents can't be changed between the user copies. */
*filter = tmp;
/*
* Sort the in-kernel list so that we can search it with bsearch.
*/
sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
mutex_lock(&kvm->lock);
filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
mutex_is_locked(&kvm->lock));
mutex_unlock(&kvm->lock);
synchronize_srcu_expedited(&kvm->srcu);
r = 0;
cleanup:
kfree(filter);
return r;
}