linux/drivers/clk/x86/clk-cgu.c
Rahul Tanwar a5d49bd369 clk: mxl: Add option to override gate clks
In MxL's LGM SoC, gate clocks can be controlled either from CGU clk driver
i.e. this driver or directly from power management driver/daemon. It is
dependent on the power policy/profile requirements of the end product.

To support such use cases, provide option to override gate clks enable/disable
by adding a flag GATE_CLK_HW which controls if these gate clks are controlled
by HW i.e. this driver or overridden in order to allow it to be controlled
by power profiles instead.

Reviewed-by: Yi xin Zhu <yzhu@maxlinear.com>
Signed-off-by: Rahul Tanwar <rtanwar@maxlinear.com>
Link: https://lore.kernel.org/r/bdc9c89317b5d338a6c4f1d49386b696e947a672.1665642720.git.rtanwar@maxlinear.com
[sboyd@kernel.org: Add braces on many line if-else]
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2022-10-17 15:27:36 -07:00

582 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020-2022 MaxLinear, Inc.
* Copyright (C) 2020 Intel Corporation.
* Zhu Yixin <yzhu@maxlinear.com>
* Rahul Tanwar <rtanwar@maxlinear.com>
*/
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/of.h>
#include "clk-cgu.h"
#define GATE_HW_REG_STAT(reg) ((reg) + 0x0)
#define GATE_HW_REG_EN(reg) ((reg) + 0x4)
#define GATE_HW_REG_DIS(reg) ((reg) + 0x8)
#define MAX_DDIV_REG 8
#define MAX_DIVIDER_VAL 64
#define to_lgm_clk_mux(_hw) container_of(_hw, struct lgm_clk_mux, hw)
#define to_lgm_clk_divider(_hw) container_of(_hw, struct lgm_clk_divider, hw)
#define to_lgm_clk_gate(_hw) container_of(_hw, struct lgm_clk_gate, hw)
#define to_lgm_clk_ddiv(_hw) container_of(_hw, struct lgm_clk_ddiv, hw)
static struct clk_hw *lgm_clk_register_fixed(struct lgm_clk_provider *ctx,
const struct lgm_clk_branch *list)
{
if (list->div_flags & CLOCK_FLAG_VAL_INIT)
lgm_set_clk_val(ctx->membase, list->div_off, list->div_shift,
list->div_width, list->div_val);
return clk_hw_register_fixed_rate(NULL, list->name,
list->parent_data[0].name,
list->flags, list->mux_flags);
}
static u8 lgm_clk_mux_get_parent(struct clk_hw *hw)
{
struct lgm_clk_mux *mux = to_lgm_clk_mux(hw);
u32 val;
if (mux->flags & MUX_CLK_SW)
val = mux->reg;
else
val = lgm_get_clk_val(mux->membase, mux->reg, mux->shift,
mux->width);
return clk_mux_val_to_index(hw, NULL, mux->flags, val);
}
static int lgm_clk_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct lgm_clk_mux *mux = to_lgm_clk_mux(hw);
u32 val;
val = clk_mux_index_to_val(NULL, mux->flags, index);
if (mux->flags & MUX_CLK_SW)
mux->reg = val;
else
lgm_set_clk_val(mux->membase, mux->reg, mux->shift,
mux->width, val);
return 0;
}
static int lgm_clk_mux_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct lgm_clk_mux *mux = to_lgm_clk_mux(hw);
return clk_mux_determine_rate_flags(hw, req, mux->flags);
}
static const struct clk_ops lgm_clk_mux_ops = {
.get_parent = lgm_clk_mux_get_parent,
.set_parent = lgm_clk_mux_set_parent,
.determine_rate = lgm_clk_mux_determine_rate,
};
static struct clk_hw *
lgm_clk_register_mux(struct lgm_clk_provider *ctx,
const struct lgm_clk_branch *list)
{
unsigned long cflags = list->mux_flags;
struct device *dev = ctx->dev;
u8 shift = list->mux_shift;
u8 width = list->mux_width;
struct clk_init_data init = {};
struct lgm_clk_mux *mux;
u32 reg = list->mux_off;
struct clk_hw *hw;
int ret;
mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL);
if (!mux)
return ERR_PTR(-ENOMEM);
init.name = list->name;
init.ops = &lgm_clk_mux_ops;
init.flags = list->flags;
init.parent_data = list->parent_data;
init.num_parents = list->num_parents;
mux->membase = ctx->membase;
mux->reg = reg;
mux->shift = shift;
mux->width = width;
mux->flags = cflags;
mux->hw.init = &init;
hw = &mux->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
if (cflags & CLOCK_FLAG_VAL_INIT)
lgm_set_clk_val(mux->membase, reg, shift, width, list->mux_val);
return hw;
}
static unsigned long
lgm_clk_divider_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct lgm_clk_divider *divider = to_lgm_clk_divider(hw);
unsigned int val;
val = lgm_get_clk_val(divider->membase, divider->reg,
divider->shift, divider->width);
return divider_recalc_rate(hw, parent_rate, val, divider->table,
divider->flags, divider->width);
}
static long
lgm_clk_divider_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct lgm_clk_divider *divider = to_lgm_clk_divider(hw);
return divider_round_rate(hw, rate, prate, divider->table,
divider->width, divider->flags);
}
static int
lgm_clk_divider_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct lgm_clk_divider *divider = to_lgm_clk_divider(hw);
int value;
value = divider_get_val(rate, prate, divider->table,
divider->width, divider->flags);
if (value < 0)
return value;
lgm_set_clk_val(divider->membase, divider->reg,
divider->shift, divider->width, value);
return 0;
}
static int lgm_clk_divider_enable_disable(struct clk_hw *hw, int enable)
{
struct lgm_clk_divider *div = to_lgm_clk_divider(hw);
lgm_set_clk_val(div->membase, div->reg, div->shift_gate,
div->width_gate, enable);
return 0;
}
static int lgm_clk_divider_enable(struct clk_hw *hw)
{
return lgm_clk_divider_enable_disable(hw, 1);
}
static void lgm_clk_divider_disable(struct clk_hw *hw)
{
lgm_clk_divider_enable_disable(hw, 0);
}
static const struct clk_ops lgm_clk_divider_ops = {
.recalc_rate = lgm_clk_divider_recalc_rate,
.round_rate = lgm_clk_divider_round_rate,
.set_rate = lgm_clk_divider_set_rate,
.enable = lgm_clk_divider_enable,
.disable = lgm_clk_divider_disable,
};
static struct clk_hw *
lgm_clk_register_divider(struct lgm_clk_provider *ctx,
const struct lgm_clk_branch *list)
{
unsigned long cflags = list->div_flags;
struct device *dev = ctx->dev;
struct lgm_clk_divider *div;
struct clk_init_data init = {};
u8 shift = list->div_shift;
u8 width = list->div_width;
u8 shift_gate = list->div_shift_gate;
u8 width_gate = list->div_width_gate;
u32 reg = list->div_off;
struct clk_hw *hw;
int ret;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
init.name = list->name;
init.ops = &lgm_clk_divider_ops;
init.flags = list->flags;
init.parent_data = list->parent_data;
init.num_parents = 1;
div->membase = ctx->membase;
div->reg = reg;
div->shift = shift;
div->width = width;
div->shift_gate = shift_gate;
div->width_gate = width_gate;
div->flags = cflags;
div->table = list->div_table;
div->hw.init = &init;
hw = &div->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
if (cflags & CLOCK_FLAG_VAL_INIT)
lgm_set_clk_val(div->membase, reg, shift, width, list->div_val);
return hw;
}
static struct clk_hw *
lgm_clk_register_fixed_factor(struct lgm_clk_provider *ctx,
const struct lgm_clk_branch *list)
{
struct clk_hw *hw;
hw = clk_hw_register_fixed_factor(ctx->dev, list->name,
list->parent_data[0].name, list->flags,
list->mult, list->div);
if (IS_ERR(hw))
return ERR_CAST(hw);
if (list->div_flags & CLOCK_FLAG_VAL_INIT)
lgm_set_clk_val(ctx->membase, list->div_off, list->div_shift,
list->div_width, list->div_val);
return hw;
}
static int lgm_clk_gate_enable(struct clk_hw *hw)
{
struct lgm_clk_gate *gate = to_lgm_clk_gate(hw);
unsigned int reg;
reg = GATE_HW_REG_EN(gate->reg);
lgm_set_clk_val(gate->membase, reg, gate->shift, 1, 1);
return 0;
}
static void lgm_clk_gate_disable(struct clk_hw *hw)
{
struct lgm_clk_gate *gate = to_lgm_clk_gate(hw);
unsigned int reg;
reg = GATE_HW_REG_DIS(gate->reg);
lgm_set_clk_val(gate->membase, reg, gate->shift, 1, 1);
}
static int lgm_clk_gate_is_enabled(struct clk_hw *hw)
{
struct lgm_clk_gate *gate = to_lgm_clk_gate(hw);
unsigned int reg, ret;
reg = GATE_HW_REG_STAT(gate->reg);
ret = lgm_get_clk_val(gate->membase, reg, gate->shift, 1);
return ret;
}
static const struct clk_ops lgm_clk_gate_ops = {
.enable = lgm_clk_gate_enable,
.disable = lgm_clk_gate_disable,
.is_enabled = lgm_clk_gate_is_enabled,
};
static struct clk_hw *
lgm_clk_register_gate(struct lgm_clk_provider *ctx,
const struct lgm_clk_branch *list)
{
unsigned long cflags = list->gate_flags;
const char *pname = list->parent_data[0].name;
struct device *dev = ctx->dev;
u8 shift = list->gate_shift;
struct clk_init_data init = {};
struct lgm_clk_gate *gate;
u32 reg = list->gate_off;
struct clk_hw *hw;
int ret;
gate = devm_kzalloc(dev, sizeof(*gate), GFP_KERNEL);
if (!gate)
return ERR_PTR(-ENOMEM);
init.name = list->name;
init.ops = &lgm_clk_gate_ops;
init.flags = list->flags;
init.parent_names = pname ? &pname : NULL;
init.num_parents = pname ? 1 : 0;
gate->membase = ctx->membase;
gate->reg = reg;
gate->shift = shift;
gate->flags = cflags;
gate->hw.init = &init;
hw = &gate->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
if (cflags & CLOCK_FLAG_VAL_INIT) {
lgm_set_clk_val(gate->membase, reg, shift, 1, list->gate_val);
}
return hw;
}
int lgm_clk_register_branches(struct lgm_clk_provider *ctx,
const struct lgm_clk_branch *list,
unsigned int nr_clk)
{
struct clk_hw *hw;
unsigned int idx;
for (idx = 0; idx < nr_clk; idx++, list++) {
switch (list->type) {
case CLK_TYPE_FIXED:
hw = lgm_clk_register_fixed(ctx, list);
break;
case CLK_TYPE_MUX:
hw = lgm_clk_register_mux(ctx, list);
break;
case CLK_TYPE_DIVIDER:
hw = lgm_clk_register_divider(ctx, list);
break;
case CLK_TYPE_FIXED_FACTOR:
hw = lgm_clk_register_fixed_factor(ctx, list);
break;
case CLK_TYPE_GATE:
if (list->gate_flags & GATE_CLK_HW) {
hw = lgm_clk_register_gate(ctx, list);
} else {
/*
* GATE_CLKs can be controlled either from
* CGU clk driver i.e. this driver or directly
* from power management driver/daemon. It is
* dependent on the power policy/profile requirements
* of the end product. To override control of gate
* clks from this driver, provide NULL for this index
* of gate clk provider.
*/
hw = NULL;
}
break;
default:
dev_err(ctx->dev, "invalid clk type\n");
return -EINVAL;
}
if (IS_ERR(hw)) {
dev_err(ctx->dev,
"register clk: %s, type: %u failed!\n",
list->name, list->type);
return -EIO;
}
ctx->clk_data.hws[list->id] = hw;
}
return 0;
}
static unsigned long
lgm_clk_ddiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct lgm_clk_ddiv *ddiv = to_lgm_clk_ddiv(hw);
unsigned int div0, div1, exdiv;
u64 prate;
div0 = lgm_get_clk_val(ddiv->membase, ddiv->reg,
ddiv->shift0, ddiv->width0) + 1;
div1 = lgm_get_clk_val(ddiv->membase, ddiv->reg,
ddiv->shift1, ddiv->width1) + 1;
exdiv = lgm_get_clk_val(ddiv->membase, ddiv->reg,
ddiv->shift2, ddiv->width2);
prate = (u64)parent_rate;
do_div(prate, div0);
do_div(prate, div1);
if (exdiv) {
do_div(prate, ddiv->div);
prate *= ddiv->mult;
}
return prate;
}
static int lgm_clk_ddiv_enable(struct clk_hw *hw)
{
struct lgm_clk_ddiv *ddiv = to_lgm_clk_ddiv(hw);
lgm_set_clk_val(ddiv->membase, ddiv->reg, ddiv->shift_gate,
ddiv->width_gate, 1);
return 0;
}
static void lgm_clk_ddiv_disable(struct clk_hw *hw)
{
struct lgm_clk_ddiv *ddiv = to_lgm_clk_ddiv(hw);
lgm_set_clk_val(ddiv->membase, ddiv->reg, ddiv->shift_gate,
ddiv->width_gate, 0);
}
static int
lgm_clk_get_ddiv_val(u32 div, u32 *ddiv1, u32 *ddiv2)
{
u32 idx, temp;
*ddiv1 = 1;
*ddiv2 = 1;
if (div > MAX_DIVIDER_VAL)
div = MAX_DIVIDER_VAL;
if (div > 1) {
for (idx = 2; idx <= MAX_DDIV_REG; idx++) {
temp = DIV_ROUND_UP_ULL((u64)div, idx);
if (div % idx == 0 && temp <= MAX_DDIV_REG)
break;
}
if (idx > MAX_DDIV_REG)
return -EINVAL;
*ddiv1 = temp;
*ddiv2 = idx;
}
return 0;
}
static int
lgm_clk_ddiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct lgm_clk_ddiv *ddiv = to_lgm_clk_ddiv(hw);
u32 div, ddiv1, ddiv2;
div = DIV_ROUND_CLOSEST_ULL((u64)prate, rate);
if (lgm_get_clk_val(ddiv->membase, ddiv->reg, ddiv->shift2, 1)) {
div = DIV_ROUND_CLOSEST_ULL((u64)div, 5);
div = div * 2;
}
if (div <= 0)
return -EINVAL;
if (lgm_clk_get_ddiv_val(div, &ddiv1, &ddiv2))
return -EINVAL;
lgm_set_clk_val(ddiv->membase, ddiv->reg, ddiv->shift0, ddiv->width0,
ddiv1 - 1);
lgm_set_clk_val(ddiv->membase, ddiv->reg, ddiv->shift1, ddiv->width1,
ddiv2 - 1);
return 0;
}
static long
lgm_clk_ddiv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct lgm_clk_ddiv *ddiv = to_lgm_clk_ddiv(hw);
u32 div, ddiv1, ddiv2;
u64 rate64;
div = DIV_ROUND_CLOSEST_ULL((u64)*prate, rate);
/* if predivide bit is enabled, modify div by factor of 2.5 */
if (lgm_get_clk_val(ddiv->membase, ddiv->reg, ddiv->shift2, 1)) {
div = div * 2;
div = DIV_ROUND_CLOSEST_ULL((u64)div, 5);
}
if (div <= 0)
return *prate;
if (lgm_clk_get_ddiv_val(div, &ddiv1, &ddiv2) != 0)
if (lgm_clk_get_ddiv_val(div + 1, &ddiv1, &ddiv2) != 0)
return -EINVAL;
rate64 = *prate;
do_div(rate64, ddiv1);
do_div(rate64, ddiv2);
/* if predivide bit is enabled, modify rounded rate by factor of 2.5 */
if (lgm_get_clk_val(ddiv->membase, ddiv->reg, ddiv->shift2, 1)) {
rate64 = rate64 * 2;
rate64 = DIV_ROUND_CLOSEST_ULL(rate64, 5);
}
return rate64;
}
static const struct clk_ops lgm_clk_ddiv_ops = {
.recalc_rate = lgm_clk_ddiv_recalc_rate,
.enable = lgm_clk_ddiv_enable,
.disable = lgm_clk_ddiv_disable,
.set_rate = lgm_clk_ddiv_set_rate,
.round_rate = lgm_clk_ddiv_round_rate,
};
int lgm_clk_register_ddiv(struct lgm_clk_provider *ctx,
const struct lgm_clk_ddiv_data *list,
unsigned int nr_clk)
{
struct device *dev = ctx->dev;
struct clk_hw *hw;
unsigned int idx;
int ret;
for (idx = 0; idx < nr_clk; idx++, list++) {
struct clk_init_data init = {};
struct lgm_clk_ddiv *ddiv;
ddiv = devm_kzalloc(dev, sizeof(*ddiv), GFP_KERNEL);
if (!ddiv)
return -ENOMEM;
init.name = list->name;
init.ops = &lgm_clk_ddiv_ops;
init.flags = list->flags;
init.parent_data = list->parent_data;
init.num_parents = 1;
ddiv->membase = ctx->membase;
ddiv->reg = list->reg;
ddiv->shift0 = list->shift0;
ddiv->width0 = list->width0;
ddiv->shift1 = list->shift1;
ddiv->width1 = list->width1;
ddiv->shift_gate = list->shift_gate;
ddiv->width_gate = list->width_gate;
ddiv->shift2 = list->ex_shift;
ddiv->width2 = list->ex_width;
ddiv->flags = list->div_flags;
ddiv->mult = 2;
ddiv->div = 5;
ddiv->hw.init = &init;
hw = &ddiv->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret) {
dev_err(dev, "register clk: %s failed!\n", list->name);
return ret;
}
ctx->clk_data.hws[list->id] = hw;
}
return 0;
}