274cb1ca2e
The pseries join/suspend sequence in its current form was written with
the assumption that it was the only user of H_PROD and that it needn't
handle spurious successful returns from H_JOIN. That's wrong;
powerpc's paravirt spinlock code uses H_PROD, and CPUs entering
do_join() can be woken prematurely from H_JOIN with a status of
H_SUCCESS as a result. This causes all CPUs to exit the sequence
early, preventing suspend from occurring at all.
Add a 'done' boolean flag to the pseries_suspend_info struct, and have
the waking thread set it before waking the other threads. Threads
which receive H_SUCCESS from H_JOIN retry if the 'done' flag is still
unset.
Fixes: 9327dc0aee
("powerpc/pseries/mobility: use stop_machine for join/suspend")
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210315080045.460331-3-nathanl@linux.ibm.com
696 lines
15 KiB
C
696 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Support for Partition Mobility/Migration
|
|
*
|
|
* Copyright (C) 2010 Nathan Fontenot
|
|
* Copyright (C) 2010 IBM Corporation
|
|
*/
|
|
|
|
|
|
#define pr_fmt(fmt) "mobility: " fmt
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stringify.h>
|
|
|
|
#include <asm/machdep.h>
|
|
#include <asm/rtas.h>
|
|
#include "pseries.h"
|
|
#include "../../kernel/cacheinfo.h"
|
|
|
|
static struct kobject *mobility_kobj;
|
|
|
|
struct update_props_workarea {
|
|
__be32 phandle;
|
|
__be32 state;
|
|
__be64 reserved;
|
|
__be32 nprops;
|
|
} __packed;
|
|
|
|
#define NODE_ACTION_MASK 0xff000000
|
|
#define NODE_COUNT_MASK 0x00ffffff
|
|
|
|
#define DELETE_DT_NODE 0x01000000
|
|
#define UPDATE_DT_NODE 0x02000000
|
|
#define ADD_DT_NODE 0x03000000
|
|
|
|
#define MIGRATION_SCOPE (1)
|
|
#define PRRN_SCOPE -2
|
|
|
|
static int mobility_rtas_call(int token, char *buf, s32 scope)
|
|
{
|
|
int rc;
|
|
|
|
spin_lock(&rtas_data_buf_lock);
|
|
|
|
memcpy(rtas_data_buf, buf, RTAS_DATA_BUF_SIZE);
|
|
rc = rtas_call(token, 2, 1, NULL, rtas_data_buf, scope);
|
|
memcpy(buf, rtas_data_buf, RTAS_DATA_BUF_SIZE);
|
|
|
|
spin_unlock(&rtas_data_buf_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int delete_dt_node(struct device_node *dn)
|
|
{
|
|
pr_debug("removing node %pOFfp\n", dn);
|
|
dlpar_detach_node(dn);
|
|
return 0;
|
|
}
|
|
|
|
static int update_dt_property(struct device_node *dn, struct property **prop,
|
|
const char *name, u32 vd, char *value)
|
|
{
|
|
struct property *new_prop = *prop;
|
|
int more = 0;
|
|
|
|
/* A negative 'vd' value indicates that only part of the new property
|
|
* value is contained in the buffer and we need to call
|
|
* ibm,update-properties again to get the rest of the value.
|
|
*
|
|
* A negative value is also the two's compliment of the actual value.
|
|
*/
|
|
if (vd & 0x80000000) {
|
|
vd = ~vd + 1;
|
|
more = 1;
|
|
}
|
|
|
|
if (new_prop) {
|
|
/* partial property fixup */
|
|
char *new_data = kzalloc(new_prop->length + vd, GFP_KERNEL);
|
|
if (!new_data)
|
|
return -ENOMEM;
|
|
|
|
memcpy(new_data, new_prop->value, new_prop->length);
|
|
memcpy(new_data + new_prop->length, value, vd);
|
|
|
|
kfree(new_prop->value);
|
|
new_prop->value = new_data;
|
|
new_prop->length += vd;
|
|
} else {
|
|
new_prop = kzalloc(sizeof(*new_prop), GFP_KERNEL);
|
|
if (!new_prop)
|
|
return -ENOMEM;
|
|
|
|
new_prop->name = kstrdup(name, GFP_KERNEL);
|
|
if (!new_prop->name) {
|
|
kfree(new_prop);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
new_prop->length = vd;
|
|
new_prop->value = kzalloc(new_prop->length, GFP_KERNEL);
|
|
if (!new_prop->value) {
|
|
kfree(new_prop->name);
|
|
kfree(new_prop);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(new_prop->value, value, vd);
|
|
*prop = new_prop;
|
|
}
|
|
|
|
if (!more) {
|
|
pr_debug("updating node %pOF property %s\n", dn, name);
|
|
of_update_property(dn, new_prop);
|
|
*prop = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int update_dt_node(struct device_node *dn, s32 scope)
|
|
{
|
|
struct update_props_workarea *upwa;
|
|
struct property *prop = NULL;
|
|
int i, rc, rtas_rc;
|
|
char *prop_data;
|
|
char *rtas_buf;
|
|
int update_properties_token;
|
|
u32 nprops;
|
|
u32 vd;
|
|
|
|
update_properties_token = rtas_token("ibm,update-properties");
|
|
if (update_properties_token == RTAS_UNKNOWN_SERVICE)
|
|
return -EINVAL;
|
|
|
|
rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
|
|
if (!rtas_buf)
|
|
return -ENOMEM;
|
|
|
|
upwa = (struct update_props_workarea *)&rtas_buf[0];
|
|
upwa->phandle = cpu_to_be32(dn->phandle);
|
|
|
|
do {
|
|
rtas_rc = mobility_rtas_call(update_properties_token, rtas_buf,
|
|
scope);
|
|
if (rtas_rc < 0)
|
|
break;
|
|
|
|
prop_data = rtas_buf + sizeof(*upwa);
|
|
nprops = be32_to_cpu(upwa->nprops);
|
|
|
|
/* On the first call to ibm,update-properties for a node the
|
|
* the first property value descriptor contains an empty
|
|
* property name, the property value length encoded as u32,
|
|
* and the property value is the node path being updated.
|
|
*/
|
|
if (*prop_data == 0) {
|
|
prop_data++;
|
|
vd = be32_to_cpu(*(__be32 *)prop_data);
|
|
prop_data += vd + sizeof(vd);
|
|
nprops--;
|
|
}
|
|
|
|
for (i = 0; i < nprops; i++) {
|
|
char *prop_name;
|
|
|
|
prop_name = prop_data;
|
|
prop_data += strlen(prop_name) + 1;
|
|
vd = be32_to_cpu(*(__be32 *)prop_data);
|
|
prop_data += sizeof(vd);
|
|
|
|
switch (vd) {
|
|
case 0x00000000:
|
|
/* name only property, nothing to do */
|
|
break;
|
|
|
|
case 0x80000000:
|
|
of_remove_property(dn, of_find_property(dn,
|
|
prop_name, NULL));
|
|
prop = NULL;
|
|
break;
|
|
|
|
default:
|
|
rc = update_dt_property(dn, &prop, prop_name,
|
|
vd, prop_data);
|
|
if (rc) {
|
|
pr_err("updating %s property failed: %d\n",
|
|
prop_name, rc);
|
|
}
|
|
|
|
prop_data += vd;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
cond_resched();
|
|
} while (rtas_rc == 1);
|
|
|
|
kfree(rtas_buf);
|
|
return 0;
|
|
}
|
|
|
|
static int add_dt_node(struct device_node *parent_dn, __be32 drc_index)
|
|
{
|
|
struct device_node *dn;
|
|
int rc;
|
|
|
|
dn = dlpar_configure_connector(drc_index, parent_dn);
|
|
if (!dn)
|
|
return -ENOENT;
|
|
|
|
rc = dlpar_attach_node(dn, parent_dn);
|
|
if (rc)
|
|
dlpar_free_cc_nodes(dn);
|
|
|
|
pr_debug("added node %pOFfp\n", dn);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int pseries_devicetree_update(s32 scope)
|
|
{
|
|
char *rtas_buf;
|
|
__be32 *data;
|
|
int update_nodes_token;
|
|
int rc;
|
|
|
|
update_nodes_token = rtas_token("ibm,update-nodes");
|
|
if (update_nodes_token == RTAS_UNKNOWN_SERVICE)
|
|
return 0;
|
|
|
|
rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
|
|
if (!rtas_buf)
|
|
return -ENOMEM;
|
|
|
|
do {
|
|
rc = mobility_rtas_call(update_nodes_token, rtas_buf, scope);
|
|
if (rc && rc != 1)
|
|
break;
|
|
|
|
data = (__be32 *)rtas_buf + 4;
|
|
while (be32_to_cpu(*data) & NODE_ACTION_MASK) {
|
|
int i;
|
|
u32 action = be32_to_cpu(*data) & NODE_ACTION_MASK;
|
|
u32 node_count = be32_to_cpu(*data) & NODE_COUNT_MASK;
|
|
|
|
data++;
|
|
|
|
for (i = 0; i < node_count; i++) {
|
|
struct device_node *np;
|
|
__be32 phandle = *data++;
|
|
__be32 drc_index;
|
|
|
|
np = of_find_node_by_phandle(be32_to_cpu(phandle));
|
|
if (!np) {
|
|
pr_warn("Failed lookup: phandle 0x%x for action 0x%x\n",
|
|
be32_to_cpu(phandle), action);
|
|
continue;
|
|
}
|
|
|
|
switch (action) {
|
|
case DELETE_DT_NODE:
|
|
delete_dt_node(np);
|
|
break;
|
|
case UPDATE_DT_NODE:
|
|
update_dt_node(np, scope);
|
|
break;
|
|
case ADD_DT_NODE:
|
|
drc_index = *data++;
|
|
add_dt_node(np, drc_index);
|
|
break;
|
|
}
|
|
|
|
of_node_put(np);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
cond_resched();
|
|
} while (rc == 1);
|
|
|
|
kfree(rtas_buf);
|
|
return rc;
|
|
}
|
|
|
|
void post_mobility_fixup(void)
|
|
{
|
|
int rc;
|
|
|
|
rtas_activate_firmware();
|
|
|
|
/*
|
|
* We don't want CPUs to go online/offline while the device
|
|
* tree is being updated.
|
|
*/
|
|
cpus_read_lock();
|
|
|
|
/*
|
|
* It's common for the destination firmware to replace cache
|
|
* nodes. Release all of the cacheinfo hierarchy's references
|
|
* before updating the device tree.
|
|
*/
|
|
cacheinfo_teardown();
|
|
|
|
rc = pseries_devicetree_update(MIGRATION_SCOPE);
|
|
if (rc)
|
|
pr_err("device tree update failed: %d\n", rc);
|
|
|
|
cacheinfo_rebuild();
|
|
|
|
cpus_read_unlock();
|
|
|
|
/* Possibly switch to a new L1 flush type */
|
|
pseries_setup_security_mitigations();
|
|
|
|
/* Reinitialise system information for hv-24x7 */
|
|
read_24x7_sys_info();
|
|
|
|
return;
|
|
}
|
|
|
|
static int poll_vasi_state(u64 handle, unsigned long *res)
|
|
{
|
|
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
|
|
long hvrc;
|
|
int ret;
|
|
|
|
hvrc = plpar_hcall(H_VASI_STATE, retbuf, handle);
|
|
switch (hvrc) {
|
|
case H_SUCCESS:
|
|
ret = 0;
|
|
*res = retbuf[0];
|
|
break;
|
|
case H_PARAMETER:
|
|
ret = -EINVAL;
|
|
break;
|
|
case H_FUNCTION:
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
case H_HARDWARE:
|
|
default:
|
|
pr_err("unexpected H_VASI_STATE result %ld\n", hvrc);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int wait_for_vasi_session_suspending(u64 handle)
|
|
{
|
|
unsigned long state;
|
|
int ret;
|
|
|
|
/*
|
|
* Wait for transition from H_VASI_ENABLED to
|
|
* H_VASI_SUSPENDING. Treat anything else as an error.
|
|
*/
|
|
while (true) {
|
|
ret = poll_vasi_state(handle, &state);
|
|
|
|
if (ret != 0 || state == H_VASI_SUSPENDING) {
|
|
break;
|
|
} else if (state == H_VASI_ENABLED) {
|
|
ssleep(1);
|
|
} else {
|
|
pr_err("unexpected H_VASI_STATE result %lu\n", state);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Proceed even if H_VASI_STATE is unavailable. If H_JOIN or
|
|
* ibm,suspend-me are also unimplemented, we'll recover then.
|
|
*/
|
|
if (ret == -EOPNOTSUPP)
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void prod_single(unsigned int target_cpu)
|
|
{
|
|
long hvrc;
|
|
int hwid;
|
|
|
|
hwid = get_hard_smp_processor_id(target_cpu);
|
|
hvrc = plpar_hcall_norets(H_PROD, hwid);
|
|
if (hvrc == H_SUCCESS)
|
|
return;
|
|
pr_err_ratelimited("H_PROD of CPU %u (hwid %d) error: %ld\n",
|
|
target_cpu, hwid, hvrc);
|
|
}
|
|
|
|
static void prod_others(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu != smp_processor_id())
|
|
prod_single(cpu);
|
|
}
|
|
}
|
|
|
|
static u16 clamp_slb_size(void)
|
|
{
|
|
u16 prev = mmu_slb_size;
|
|
|
|
slb_set_size(SLB_MIN_SIZE);
|
|
|
|
return prev;
|
|
}
|
|
|
|
static int do_suspend(void)
|
|
{
|
|
u16 saved_slb_size;
|
|
int status;
|
|
int ret;
|
|
|
|
pr_info("calling ibm,suspend-me on CPU %i\n", smp_processor_id());
|
|
|
|
/*
|
|
* The destination processor model may have fewer SLB entries
|
|
* than the source. We reduce mmu_slb_size to a safe minimum
|
|
* before suspending in order to minimize the possibility of
|
|
* programming non-existent entries on the destination. If
|
|
* suspend fails, we restore it before returning. On success
|
|
* the OF reconfig path will update it from the new device
|
|
* tree after resuming on the destination.
|
|
*/
|
|
saved_slb_size = clamp_slb_size();
|
|
|
|
ret = rtas_ibm_suspend_me(&status);
|
|
if (ret != 0) {
|
|
pr_err("ibm,suspend-me error: %d\n", status);
|
|
slb_set_size(saved_slb_size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* struct pseries_suspend_info - State shared between CPUs for join/suspend.
|
|
* @counter: Threads are to increment this upon resuming from suspend
|
|
* or if an error is received from H_JOIN. The thread which performs
|
|
* the first increment (i.e. sets it to 1) is responsible for
|
|
* waking the other threads.
|
|
* @done: False if join/suspend is in progress. True if the operation is
|
|
* complete (successful or not).
|
|
*/
|
|
struct pseries_suspend_info {
|
|
atomic_t counter;
|
|
bool done;
|
|
};
|
|
|
|
static int do_join(void *arg)
|
|
{
|
|
struct pseries_suspend_info *info = arg;
|
|
atomic_t *counter = &info->counter;
|
|
long hvrc;
|
|
int ret;
|
|
|
|
retry:
|
|
/* Must ensure MSR.EE off for H_JOIN. */
|
|
hard_irq_disable();
|
|
hvrc = plpar_hcall_norets(H_JOIN);
|
|
|
|
switch (hvrc) {
|
|
case H_CONTINUE:
|
|
/*
|
|
* All other CPUs are offline or in H_JOIN. This CPU
|
|
* attempts the suspend.
|
|
*/
|
|
ret = do_suspend();
|
|
break;
|
|
case H_SUCCESS:
|
|
/*
|
|
* The suspend is complete and this cpu has received a
|
|
* prod, or we've received a stray prod from unrelated
|
|
* code (e.g. paravirt spinlocks) and we need to join
|
|
* again.
|
|
*
|
|
* This barrier orders the return from H_JOIN above vs
|
|
* the load of info->done. It pairs with the barrier
|
|
* in the wakeup/prod path below.
|
|
*/
|
|
smp_mb();
|
|
if (READ_ONCE(info->done) == false) {
|
|
pr_info_ratelimited("premature return from H_JOIN on CPU %i, retrying",
|
|
smp_processor_id());
|
|
goto retry;
|
|
}
|
|
ret = 0;
|
|
break;
|
|
case H_BAD_MODE:
|
|
case H_HARDWARE:
|
|
default:
|
|
ret = -EIO;
|
|
pr_err_ratelimited("H_JOIN error %ld on CPU %i\n",
|
|
hvrc, smp_processor_id());
|
|
break;
|
|
}
|
|
|
|
if (atomic_inc_return(counter) == 1) {
|
|
pr_info("CPU %u waking all threads\n", smp_processor_id());
|
|
WRITE_ONCE(info->done, true);
|
|
/*
|
|
* This barrier orders the store to info->done vs subsequent
|
|
* H_PRODs to wake the other CPUs. It pairs with the barrier
|
|
* in the H_SUCCESS case above.
|
|
*/
|
|
smp_mb();
|
|
prod_others();
|
|
}
|
|
/*
|
|
* Execution may have been suspended for several seconds, so
|
|
* reset the watchdog.
|
|
*/
|
|
touch_nmi_watchdog();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Abort reason code byte 0. We use only the 'Migrating partition' value.
|
|
*/
|
|
enum vasi_aborting_entity {
|
|
ORCHESTRATOR = 1,
|
|
VSP_SOURCE = 2,
|
|
PARTITION_FIRMWARE = 3,
|
|
PLATFORM_FIRMWARE = 4,
|
|
VSP_TARGET = 5,
|
|
MIGRATING_PARTITION = 6,
|
|
};
|
|
|
|
static void pseries_cancel_migration(u64 handle, int err)
|
|
{
|
|
u32 reason_code;
|
|
u32 detail;
|
|
u8 entity;
|
|
long hvrc;
|
|
|
|
entity = MIGRATING_PARTITION;
|
|
detail = abs(err) & 0xffffff;
|
|
reason_code = (entity << 24) | detail;
|
|
|
|
hvrc = plpar_hcall_norets(H_VASI_SIGNAL, handle,
|
|
H_VASI_SIGNAL_CANCEL, reason_code);
|
|
if (hvrc)
|
|
pr_err("H_VASI_SIGNAL error: %ld\n", hvrc);
|
|
}
|
|
|
|
static int pseries_suspend(u64 handle)
|
|
{
|
|
const unsigned int max_attempts = 5;
|
|
unsigned int retry_interval_ms = 1;
|
|
unsigned int attempt = 1;
|
|
int ret;
|
|
|
|
while (true) {
|
|
struct pseries_suspend_info info;
|
|
unsigned long vasi_state;
|
|
int vasi_err;
|
|
|
|
info = (struct pseries_suspend_info) {
|
|
.counter = ATOMIC_INIT(0),
|
|
.done = false,
|
|
};
|
|
|
|
ret = stop_machine(do_join, &info, cpu_online_mask);
|
|
if (ret == 0)
|
|
break;
|
|
/*
|
|
* Encountered an error. If the VASI stream is still
|
|
* in Suspending state, it's likely a transient
|
|
* condition related to some device in the partition
|
|
* and we can retry in the hope that the cause has
|
|
* cleared after some delay.
|
|
*
|
|
* A better design would allow drivers etc to prepare
|
|
* for the suspend and avoid conditions which prevent
|
|
* the suspend from succeeding. For now, we have this
|
|
* mitigation.
|
|
*/
|
|
pr_notice("Partition suspend attempt %u of %u error: %d\n",
|
|
attempt, max_attempts, ret);
|
|
|
|
if (attempt == max_attempts)
|
|
break;
|
|
|
|
vasi_err = poll_vasi_state(handle, &vasi_state);
|
|
if (vasi_err == 0) {
|
|
if (vasi_state != H_VASI_SUSPENDING) {
|
|
pr_notice("VASI state %lu after failed suspend\n",
|
|
vasi_state);
|
|
break;
|
|
}
|
|
} else if (vasi_err != -EOPNOTSUPP) {
|
|
pr_err("VASI state poll error: %d", vasi_err);
|
|
break;
|
|
}
|
|
|
|
pr_notice("Will retry partition suspend after %u ms\n",
|
|
retry_interval_ms);
|
|
|
|
msleep(retry_interval_ms);
|
|
retry_interval_ms *= 10;
|
|
attempt++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pseries_migrate_partition(u64 handle)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for_vasi_session_suspending(handle);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pseries_suspend(handle);
|
|
if (ret == 0)
|
|
post_mobility_fixup();
|
|
else
|
|
pseries_cancel_migration(handle, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int rtas_syscall_dispatch_ibm_suspend_me(u64 handle)
|
|
{
|
|
return pseries_migrate_partition(handle);
|
|
}
|
|
|
|
static ssize_t migration_store(struct class *class,
|
|
struct class_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
u64 streamid;
|
|
int rc;
|
|
|
|
rc = kstrtou64(buf, 0, &streamid);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = pseries_migrate_partition(streamid);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Used by drmgr to determine the kernel behavior of the migration interface.
|
|
*
|
|
* Version 1: Performs all PAPR requirements for migration including
|
|
* firmware activation and device tree update.
|
|
*/
|
|
#define MIGRATION_API_VERSION 1
|
|
|
|
static CLASS_ATTR_WO(migration);
|
|
static CLASS_ATTR_STRING(api_version, 0444, __stringify(MIGRATION_API_VERSION));
|
|
|
|
static int __init mobility_sysfs_init(void)
|
|
{
|
|
int rc;
|
|
|
|
mobility_kobj = kobject_create_and_add("mobility", kernel_kobj);
|
|
if (!mobility_kobj)
|
|
return -ENOMEM;
|
|
|
|
rc = sysfs_create_file(mobility_kobj, &class_attr_migration.attr);
|
|
if (rc)
|
|
pr_err("unable to create migration sysfs file (%d)\n", rc);
|
|
|
|
rc = sysfs_create_file(mobility_kobj, &class_attr_api_version.attr.attr);
|
|
if (rc)
|
|
pr_err("unable to create api_version sysfs file (%d)\n", rc);
|
|
|
|
return 0;
|
|
}
|
|
machine_device_initcall(pseries, mobility_sysfs_init);
|