d379eaa838
Clean up the names of trace events related to MRs so that it's easy to enable these with a glob. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
581 lines
16 KiB
C
581 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2015, 2017 Oracle. All rights reserved.
|
|
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
|
|
*/
|
|
|
|
/* Lightweight memory registration using Fast Registration Work
|
|
* Requests (FRWR).
|
|
*
|
|
* FRWR features ordered asynchronous registration and deregistration
|
|
* of arbitrarily sized memory regions. This is the fastest and safest
|
|
* but most complex memory registration mode.
|
|
*/
|
|
|
|
/* Normal operation
|
|
*
|
|
* A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
|
|
* Work Request (frwr_op_map). When the RDMA operation is finished, this
|
|
* Memory Region is invalidated using a LOCAL_INV Work Request
|
|
* (frwr_op_unmap_sync).
|
|
*
|
|
* Typically these Work Requests are not signaled, and neither are RDMA
|
|
* SEND Work Requests (with the exception of signaling occasionally to
|
|
* prevent provider work queue overflows). This greatly reduces HCA
|
|
* interrupt workload.
|
|
*
|
|
* As an optimization, frwr_op_unmap marks MRs INVALID before the
|
|
* LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
|
|
* rb_mrs immediately so that no work (like managing a linked list
|
|
* under a spinlock) is needed in the completion upcall.
|
|
*
|
|
* But this means that frwr_op_map() can occasionally encounter an MR
|
|
* that is INVALID but the LOCAL_INV WR has not completed. Work Queue
|
|
* ordering prevents a subsequent FAST_REG WR from executing against
|
|
* that MR while it is still being invalidated.
|
|
*/
|
|
|
|
/* Transport recovery
|
|
*
|
|
* ->op_map and the transport connect worker cannot run at the same
|
|
* time, but ->op_unmap can fire while the transport connect worker
|
|
* is running. Thus MR recovery is handled in ->op_map, to guarantee
|
|
* that recovered MRs are owned by a sending RPC, and not one where
|
|
* ->op_unmap could fire at the same time transport reconnect is
|
|
* being done.
|
|
*
|
|
* When the underlying transport disconnects, MRs are left in one of
|
|
* four states:
|
|
*
|
|
* INVALID: The MR was not in use before the QP entered ERROR state.
|
|
*
|
|
* VALID: The MR was registered before the QP entered ERROR state.
|
|
*
|
|
* FLUSHED_FR: The MR was being registered when the QP entered ERROR
|
|
* state, and the pending WR was flushed.
|
|
*
|
|
* FLUSHED_LI: The MR was being invalidated when the QP entered ERROR
|
|
* state, and the pending WR was flushed.
|
|
*
|
|
* When frwr_op_map encounters FLUSHED and VALID MRs, they are recovered
|
|
* with ib_dereg_mr and then are re-initialized. Because MR recovery
|
|
* allocates fresh resources, it is deferred to a workqueue, and the
|
|
* recovered MRs are placed back on the rb_mrs list when recovery is
|
|
* complete. frwr_op_map allocates another MR for the current RPC while
|
|
* the broken MR is reset.
|
|
*
|
|
* To ensure that frwr_op_map doesn't encounter an MR that is marked
|
|
* INVALID but that is about to be flushed due to a previous transport
|
|
* disconnect, the transport connect worker attempts to drain all
|
|
* pending send queue WRs before the transport is reconnected.
|
|
*/
|
|
|
|
#include <linux/sunrpc/rpc_rdma.h>
|
|
#include <linux/sunrpc/svc_rdma.h>
|
|
|
|
#include "xprt_rdma.h"
|
|
#include <trace/events/rpcrdma.h>
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
# define RPCDBG_FACILITY RPCDBG_TRANS
|
|
#endif
|
|
|
|
bool
|
|
frwr_is_supported(struct rpcrdma_ia *ia)
|
|
{
|
|
struct ib_device_attr *attrs = &ia->ri_device->attrs;
|
|
|
|
if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
|
|
goto out_not_supported;
|
|
if (attrs->max_fast_reg_page_list_len == 0)
|
|
goto out_not_supported;
|
|
return true;
|
|
|
|
out_not_supported:
|
|
pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n",
|
|
ia->ri_device->name);
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
frwr_op_release_mr(struct rpcrdma_mr *mr)
|
|
{
|
|
int rc;
|
|
|
|
rc = ib_dereg_mr(mr->frwr.fr_mr);
|
|
if (rc)
|
|
pr_err("rpcrdma: final ib_dereg_mr for %p returned %i\n",
|
|
mr, rc);
|
|
kfree(mr->mr_sg);
|
|
kfree(mr);
|
|
}
|
|
|
|
/* MRs are dynamically allocated, so simply clean up and release the MR.
|
|
* A replacement MR will subsequently be allocated on demand.
|
|
*/
|
|
static void
|
|
frwr_mr_recycle_worker(struct work_struct *work)
|
|
{
|
|
struct rpcrdma_mr *mr = container_of(work, struct rpcrdma_mr, mr_recycle);
|
|
enum rpcrdma_frwr_state state = mr->frwr.fr_state;
|
|
struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
|
|
|
|
trace_xprtrdma_mr_recycle(mr);
|
|
|
|
if (state != FRWR_FLUSHED_LI) {
|
|
trace_xprtrdma_mr_unmap(mr);
|
|
ib_dma_unmap_sg(r_xprt->rx_ia.ri_device,
|
|
mr->mr_sg, mr->mr_nents, mr->mr_dir);
|
|
}
|
|
|
|
spin_lock(&r_xprt->rx_buf.rb_mrlock);
|
|
list_del(&mr->mr_all);
|
|
r_xprt->rx_stats.mrs_recycled++;
|
|
spin_unlock(&r_xprt->rx_buf.rb_mrlock);
|
|
frwr_op_release_mr(mr);
|
|
}
|
|
|
|
static int
|
|
frwr_op_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr)
|
|
{
|
|
unsigned int depth = ia->ri_max_frwr_depth;
|
|
struct rpcrdma_frwr *frwr = &mr->frwr;
|
|
int rc;
|
|
|
|
frwr->fr_mr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth);
|
|
if (IS_ERR(frwr->fr_mr))
|
|
goto out_mr_err;
|
|
|
|
mr->mr_sg = kcalloc(depth, sizeof(*mr->mr_sg), GFP_KERNEL);
|
|
if (!mr->mr_sg)
|
|
goto out_list_err;
|
|
|
|
INIT_LIST_HEAD(&mr->mr_list);
|
|
INIT_WORK(&mr->mr_recycle, frwr_mr_recycle_worker);
|
|
sg_init_table(mr->mr_sg, depth);
|
|
init_completion(&frwr->fr_linv_done);
|
|
return 0;
|
|
|
|
out_mr_err:
|
|
rc = PTR_ERR(frwr->fr_mr);
|
|
dprintk("RPC: %s: ib_alloc_mr status %i\n",
|
|
__func__, rc);
|
|
return rc;
|
|
|
|
out_list_err:
|
|
rc = -ENOMEM;
|
|
dprintk("RPC: %s: sg allocation failure\n",
|
|
__func__);
|
|
ib_dereg_mr(frwr->fr_mr);
|
|
return rc;
|
|
}
|
|
|
|
/* On success, sets:
|
|
* ep->rep_attr.cap.max_send_wr
|
|
* ep->rep_attr.cap.max_recv_wr
|
|
* cdata->max_requests
|
|
* ia->ri_max_segs
|
|
*
|
|
* And these FRWR-related fields:
|
|
* ia->ri_max_frwr_depth
|
|
* ia->ri_mrtype
|
|
*/
|
|
static int
|
|
frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
|
|
struct rpcrdma_create_data_internal *cdata)
|
|
{
|
|
struct ib_device_attr *attrs = &ia->ri_device->attrs;
|
|
int max_qp_wr, depth, delta;
|
|
|
|
ia->ri_mrtype = IB_MR_TYPE_MEM_REG;
|
|
if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
|
|
ia->ri_mrtype = IB_MR_TYPE_SG_GAPS;
|
|
|
|
ia->ri_max_frwr_depth =
|
|
min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
|
|
attrs->max_fast_reg_page_list_len);
|
|
dprintk("RPC: %s: device's max FR page list len = %u\n",
|
|
__func__, ia->ri_max_frwr_depth);
|
|
|
|
/* Add room for frwr register and invalidate WRs.
|
|
* 1. FRWR reg WR for head
|
|
* 2. FRWR invalidate WR for head
|
|
* 3. N FRWR reg WRs for pagelist
|
|
* 4. N FRWR invalidate WRs for pagelist
|
|
* 5. FRWR reg WR for tail
|
|
* 6. FRWR invalidate WR for tail
|
|
* 7. The RDMA_SEND WR
|
|
*/
|
|
depth = 7;
|
|
|
|
/* Calculate N if the device max FRWR depth is smaller than
|
|
* RPCRDMA_MAX_DATA_SEGS.
|
|
*/
|
|
if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) {
|
|
delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth;
|
|
do {
|
|
depth += 2; /* FRWR reg + invalidate */
|
|
delta -= ia->ri_max_frwr_depth;
|
|
} while (delta > 0);
|
|
}
|
|
|
|
max_qp_wr = ia->ri_device->attrs.max_qp_wr;
|
|
max_qp_wr -= RPCRDMA_BACKWARD_WRS;
|
|
max_qp_wr -= 1;
|
|
if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
|
|
return -ENOMEM;
|
|
if (cdata->max_requests > max_qp_wr)
|
|
cdata->max_requests = max_qp_wr;
|
|
ep->rep_attr.cap.max_send_wr = cdata->max_requests * depth;
|
|
if (ep->rep_attr.cap.max_send_wr > max_qp_wr) {
|
|
cdata->max_requests = max_qp_wr / depth;
|
|
if (!cdata->max_requests)
|
|
return -EINVAL;
|
|
ep->rep_attr.cap.max_send_wr = cdata->max_requests *
|
|
depth;
|
|
}
|
|
ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
|
|
ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
|
|
ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
|
|
ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
|
|
ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
|
|
|
|
ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS /
|
|
ia->ri_max_frwr_depth);
|
|
ia->ri_max_segs += 2; /* segments for head and tail buffers */
|
|
return 0;
|
|
}
|
|
|
|
/* FRWR mode conveys a list of pages per chunk segment. The
|
|
* maximum length of that list is the FRWR page list depth.
|
|
*/
|
|
static size_t
|
|
frwr_op_maxpages(struct rpcrdma_xprt *r_xprt)
|
|
{
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
|
|
return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
|
|
RPCRDMA_MAX_HDR_SEGS * ia->ri_max_frwr_depth);
|
|
}
|
|
|
|
static void
|
|
__frwr_sendcompletion_flush(struct ib_wc *wc, const char *wr)
|
|
{
|
|
if (wc->status != IB_WC_WR_FLUSH_ERR)
|
|
pr_err("rpcrdma: %s: %s (%u/0x%x)\n",
|
|
wr, ib_wc_status_msg(wc->status),
|
|
wc->status, wc->vendor_err);
|
|
}
|
|
|
|
/**
|
|
* frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
|
|
* @cq: completion queue (ignored)
|
|
* @wc: completed WR
|
|
*
|
|
*/
|
|
static void
|
|
frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct ib_cqe *cqe = wc->wr_cqe;
|
|
struct rpcrdma_frwr *frwr =
|
|
container_of(cqe, struct rpcrdma_frwr, fr_cqe);
|
|
|
|
/* WARNING: Only wr_cqe and status are reliable at this point */
|
|
if (wc->status != IB_WC_SUCCESS) {
|
|
frwr->fr_state = FRWR_FLUSHED_FR;
|
|
__frwr_sendcompletion_flush(wc, "fastreg");
|
|
}
|
|
trace_xprtrdma_wc_fastreg(wc, frwr);
|
|
}
|
|
|
|
/**
|
|
* frwr_wc_localinv - Invoked by RDMA provider for a flushed LocalInv WC
|
|
* @cq: completion queue (ignored)
|
|
* @wc: completed WR
|
|
*
|
|
*/
|
|
static void
|
|
frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct ib_cqe *cqe = wc->wr_cqe;
|
|
struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr,
|
|
fr_cqe);
|
|
|
|
/* WARNING: Only wr_cqe and status are reliable at this point */
|
|
if (wc->status != IB_WC_SUCCESS) {
|
|
frwr->fr_state = FRWR_FLUSHED_LI;
|
|
__frwr_sendcompletion_flush(wc, "localinv");
|
|
}
|
|
trace_xprtrdma_wc_li(wc, frwr);
|
|
}
|
|
|
|
/**
|
|
* frwr_wc_localinv_wake - Invoked by RDMA provider for a signaled LocalInv WC
|
|
* @cq: completion queue (ignored)
|
|
* @wc: completed WR
|
|
*
|
|
* Awaken anyone waiting for an MR to finish being fenced.
|
|
*/
|
|
static void
|
|
frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
|
|
{
|
|
struct ib_cqe *cqe = wc->wr_cqe;
|
|
struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr,
|
|
fr_cqe);
|
|
|
|
/* WARNING: Only wr_cqe and status are reliable at this point */
|
|
if (wc->status != IB_WC_SUCCESS) {
|
|
frwr->fr_state = FRWR_FLUSHED_LI;
|
|
__frwr_sendcompletion_flush(wc, "localinv");
|
|
}
|
|
complete(&frwr->fr_linv_done);
|
|
trace_xprtrdma_wc_li_wake(wc, frwr);
|
|
}
|
|
|
|
/* Post a REG_MR Work Request to register a memory region
|
|
* for remote access via RDMA READ or RDMA WRITE.
|
|
*/
|
|
static struct rpcrdma_mr_seg *
|
|
frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
|
|
int nsegs, bool writing, struct rpcrdma_mr **out)
|
|
{
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
bool holes_ok = ia->ri_mrtype == IB_MR_TYPE_SG_GAPS;
|
|
struct rpcrdma_frwr *frwr;
|
|
struct rpcrdma_mr *mr;
|
|
struct ib_mr *ibmr;
|
|
struct ib_reg_wr *reg_wr;
|
|
int i, n;
|
|
u8 key;
|
|
|
|
mr = NULL;
|
|
do {
|
|
if (mr)
|
|
rpcrdma_mr_recycle(mr);
|
|
mr = rpcrdma_mr_get(r_xprt);
|
|
if (!mr)
|
|
return ERR_PTR(-EAGAIN);
|
|
} while (mr->frwr.fr_state != FRWR_IS_INVALID);
|
|
frwr = &mr->frwr;
|
|
frwr->fr_state = FRWR_IS_VALID;
|
|
|
|
if (nsegs > ia->ri_max_frwr_depth)
|
|
nsegs = ia->ri_max_frwr_depth;
|
|
for (i = 0; i < nsegs;) {
|
|
if (seg->mr_page)
|
|
sg_set_page(&mr->mr_sg[i],
|
|
seg->mr_page,
|
|
seg->mr_len,
|
|
offset_in_page(seg->mr_offset));
|
|
else
|
|
sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
|
|
seg->mr_len);
|
|
|
|
++seg;
|
|
++i;
|
|
if (holes_ok)
|
|
continue;
|
|
if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
|
|
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
|
|
break;
|
|
}
|
|
mr->mr_dir = rpcrdma_data_dir(writing);
|
|
|
|
mr->mr_nents = ib_dma_map_sg(ia->ri_device, mr->mr_sg, i, mr->mr_dir);
|
|
if (!mr->mr_nents)
|
|
goto out_dmamap_err;
|
|
trace_xprtrdma_mr_map(mr);
|
|
|
|
ibmr = frwr->fr_mr;
|
|
n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE);
|
|
if (unlikely(n != mr->mr_nents))
|
|
goto out_mapmr_err;
|
|
|
|
key = (u8)(ibmr->rkey & 0x000000FF);
|
|
ib_update_fast_reg_key(ibmr, ++key);
|
|
|
|
reg_wr = &frwr->fr_regwr;
|
|
reg_wr->mr = ibmr;
|
|
reg_wr->key = ibmr->rkey;
|
|
reg_wr->access = writing ?
|
|
IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
|
|
IB_ACCESS_REMOTE_READ;
|
|
|
|
mr->mr_handle = ibmr->rkey;
|
|
mr->mr_length = ibmr->length;
|
|
mr->mr_offset = ibmr->iova;
|
|
|
|
*out = mr;
|
|
return seg;
|
|
|
|
out_dmamap_err:
|
|
pr_err("rpcrdma: failed to DMA map sg %p sg_nents %d\n",
|
|
mr->mr_sg, i);
|
|
frwr->fr_state = FRWR_IS_INVALID;
|
|
rpcrdma_mr_put(mr);
|
|
return ERR_PTR(-EIO);
|
|
|
|
out_mapmr_err:
|
|
pr_err("rpcrdma: failed to map mr %p (%d/%d)\n",
|
|
frwr->fr_mr, n, mr->mr_nents);
|
|
rpcrdma_mr_recycle(mr);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
/* Post Send WR containing the RPC Call message.
|
|
*
|
|
* For FRMR, chain any FastReg WRs to the Send WR. Only a
|
|
* single ib_post_send call is needed to register memory
|
|
* and then post the Send WR.
|
|
*/
|
|
static int
|
|
frwr_op_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
|
|
{
|
|
struct ib_send_wr *post_wr;
|
|
struct rpcrdma_mr *mr;
|
|
|
|
post_wr = &req->rl_sendctx->sc_wr;
|
|
list_for_each_entry(mr, &req->rl_registered, mr_list) {
|
|
struct rpcrdma_frwr *frwr;
|
|
|
|
frwr = &mr->frwr;
|
|
|
|
frwr->fr_cqe.done = frwr_wc_fastreg;
|
|
frwr->fr_regwr.wr.next = post_wr;
|
|
frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
|
|
frwr->fr_regwr.wr.num_sge = 0;
|
|
frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
|
|
frwr->fr_regwr.wr.send_flags = 0;
|
|
|
|
post_wr = &frwr->fr_regwr.wr;
|
|
}
|
|
|
|
/* If ib_post_send fails, the next ->send_request for
|
|
* @req will queue these MWs for recovery.
|
|
*/
|
|
return ib_post_send(ia->ri_id->qp, post_wr, NULL);
|
|
}
|
|
|
|
/* Handle a remotely invalidated mr on the @mrs list
|
|
*/
|
|
static void
|
|
frwr_op_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
|
|
{
|
|
struct rpcrdma_mr *mr;
|
|
|
|
list_for_each_entry(mr, mrs, mr_list)
|
|
if (mr->mr_handle == rep->rr_inv_rkey) {
|
|
list_del_init(&mr->mr_list);
|
|
trace_xprtrdma_mr_remoteinv(mr);
|
|
mr->frwr.fr_state = FRWR_IS_INVALID;
|
|
rpcrdma_mr_unmap_and_put(mr);
|
|
break; /* only one invalidated MR per RPC */
|
|
}
|
|
}
|
|
|
|
/* Invalidate all memory regions that were registered for "req".
|
|
*
|
|
* Sleeps until it is safe for the host CPU to access the
|
|
* previously mapped memory regions.
|
|
*
|
|
* Caller ensures that @mrs is not empty before the call. This
|
|
* function empties the list.
|
|
*/
|
|
static void
|
|
frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct list_head *mrs)
|
|
{
|
|
struct ib_send_wr *first, **prev, *last;
|
|
const struct ib_send_wr *bad_wr;
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
struct rpcrdma_frwr *frwr;
|
|
struct rpcrdma_mr *mr;
|
|
int count, rc;
|
|
|
|
/* ORDER: Invalidate all of the MRs first
|
|
*
|
|
* Chain the LOCAL_INV Work Requests and post them with
|
|
* a single ib_post_send() call.
|
|
*/
|
|
frwr = NULL;
|
|
count = 0;
|
|
prev = &first;
|
|
list_for_each_entry(mr, mrs, mr_list) {
|
|
mr->frwr.fr_state = FRWR_IS_INVALID;
|
|
|
|
frwr = &mr->frwr;
|
|
trace_xprtrdma_mr_localinv(mr);
|
|
|
|
frwr->fr_cqe.done = frwr_wc_localinv;
|
|
last = &frwr->fr_invwr;
|
|
memset(last, 0, sizeof(*last));
|
|
last->wr_cqe = &frwr->fr_cqe;
|
|
last->opcode = IB_WR_LOCAL_INV;
|
|
last->ex.invalidate_rkey = mr->mr_handle;
|
|
count++;
|
|
|
|
*prev = last;
|
|
prev = &last->next;
|
|
}
|
|
if (!frwr)
|
|
goto unmap;
|
|
|
|
/* Strong send queue ordering guarantees that when the
|
|
* last WR in the chain completes, all WRs in the chain
|
|
* are complete.
|
|
*/
|
|
last->send_flags = IB_SEND_SIGNALED;
|
|
frwr->fr_cqe.done = frwr_wc_localinv_wake;
|
|
reinit_completion(&frwr->fr_linv_done);
|
|
|
|
/* Transport disconnect drains the receive CQ before it
|
|
* replaces the QP. The RPC reply handler won't call us
|
|
* unless ri_id->qp is a valid pointer.
|
|
*/
|
|
r_xprt->rx_stats.local_inv_needed++;
|
|
bad_wr = NULL;
|
|
rc = ib_post_send(ia->ri_id->qp, first, &bad_wr);
|
|
if (bad_wr != first)
|
|
wait_for_completion(&frwr->fr_linv_done);
|
|
if (rc)
|
|
goto out_release;
|
|
|
|
/* ORDER: Now DMA unmap all of the MRs, and return
|
|
* them to the free MR list.
|
|
*/
|
|
unmap:
|
|
while (!list_empty(mrs)) {
|
|
mr = rpcrdma_mr_pop(mrs);
|
|
rpcrdma_mr_unmap_and_put(mr);
|
|
}
|
|
return;
|
|
|
|
out_release:
|
|
pr_err("rpcrdma: FRWR invalidate ib_post_send returned %i\n", rc);
|
|
|
|
/* Unmap and release the MRs in the LOCAL_INV WRs that did not
|
|
* get posted.
|
|
*/
|
|
while (bad_wr) {
|
|
frwr = container_of(bad_wr, struct rpcrdma_frwr,
|
|
fr_invwr);
|
|
mr = container_of(frwr, struct rpcrdma_mr, frwr);
|
|
bad_wr = bad_wr->next;
|
|
|
|
list_del(&mr->mr_list);
|
|
frwr_op_release_mr(mr);
|
|
}
|
|
}
|
|
|
|
const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = {
|
|
.ro_map = frwr_op_map,
|
|
.ro_send = frwr_op_send,
|
|
.ro_reminv = frwr_op_reminv,
|
|
.ro_unmap_sync = frwr_op_unmap_sync,
|
|
.ro_open = frwr_op_open,
|
|
.ro_maxpages = frwr_op_maxpages,
|
|
.ro_init_mr = frwr_op_init_mr,
|
|
.ro_release_mr = frwr_op_release_mr,
|
|
.ro_displayname = "frwr",
|
|
.ro_send_w_inv_ok = RPCRDMA_CMP_F_SND_W_INV_OK,
|
|
};
|