7187bb7d0b
Cortex-X4 and Neoverse-V3 suffer from errata whereby an MSR to the SSBS special-purpose register does not affect subsequent speculative instructions, permitting speculative store bypassing for a window of time. This is described in their Software Developer Errata Notice (SDEN) documents: * Cortex-X4 SDEN v8.0, erratum 3194386: https://developer.arm.com/documentation/SDEN-2432808/0800/ * Neoverse-V3 SDEN v6.0, erratum 3312417: https://developer.arm.com/documentation/SDEN-2891958/0600/ To workaround these errata, it is necessary to place a speculation barrier (SB) after MSR to the SSBS special-purpose register. This patch adds the requisite SB after writes to SSBS within the kernel, and hides the presence of SSBS from EL0 such that userspace software which cares about SSBS will manipulate this via prctl(PR_GET_SPECULATION_CTRL, ...). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240508081400.235362-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
3742 lines
125 KiB
C
3742 lines
125 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Contains CPU feature definitions
|
|
*
|
|
* Copyright (C) 2015 ARM Ltd.
|
|
*
|
|
* A note for the weary kernel hacker: the code here is confusing and hard to
|
|
* follow! That's partly because it's solving a nasty problem, but also because
|
|
* there's a little bit of over-abstraction that tends to obscure what's going
|
|
* on behind a maze of helper functions and macros.
|
|
*
|
|
* The basic problem is that hardware folks have started gluing together CPUs
|
|
* with distinct architectural features; in some cases even creating SoCs where
|
|
* user-visible instructions are available only on a subset of the available
|
|
* cores. We try to address this by snapshotting the feature registers of the
|
|
* boot CPU and comparing these with the feature registers of each secondary
|
|
* CPU when bringing them up. If there is a mismatch, then we update the
|
|
* snapshot state to indicate the lowest-common denominator of the feature,
|
|
* known as the "safe" value. This snapshot state can be queried to view the
|
|
* "sanitised" value of a feature register.
|
|
*
|
|
* The sanitised register values are used to decide which capabilities we
|
|
* have in the system. These may be in the form of traditional "hwcaps"
|
|
* advertised to userspace or internal "cpucaps" which are used to configure
|
|
* things like alternative patching and static keys. While a feature mismatch
|
|
* may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
|
|
* may prevent a CPU from being onlined at all.
|
|
*
|
|
* Some implementation details worth remembering:
|
|
*
|
|
* - Mismatched features are *always* sanitised to a "safe" value, which
|
|
* usually indicates that the feature is not supported.
|
|
*
|
|
* - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
|
|
* warning when onlining an offending CPU and the kernel will be tainted
|
|
* with TAINT_CPU_OUT_OF_SPEC.
|
|
*
|
|
* - Features marked as FTR_VISIBLE have their sanitised value visible to
|
|
* userspace. FTR_VISIBLE features in registers that are only visible
|
|
* to EL0 by trapping *must* have a corresponding HWCAP so that late
|
|
* onlining of CPUs cannot lead to features disappearing at runtime.
|
|
*
|
|
* - A "feature" is typically a 4-bit register field. A "capability" is the
|
|
* high-level description derived from the sanitised field value.
|
|
*
|
|
* - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
|
|
* scheme for fields in ID registers") to understand when feature fields
|
|
* may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
|
|
*
|
|
* - KVM exposes its own view of the feature registers to guest operating
|
|
* systems regardless of FTR_VISIBLE. This is typically driven from the
|
|
* sanitised register values to allow virtual CPUs to be migrated between
|
|
* arbitrary physical CPUs, but some features not present on the host are
|
|
* also advertised and emulated. Look at sys_reg_descs[] for the gory
|
|
* details.
|
|
*
|
|
* - If the arm64_ftr_bits[] for a register has a missing field, then this
|
|
* field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
|
|
* This is stronger than FTR_HIDDEN and can be used to hide features from
|
|
* KVM guests.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "CPU features: " fmt
|
|
|
|
#include <linux/bsearch.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/kstrtox.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/percpu.h>
|
|
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cpu_ops.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/hwcap.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/vectors.h>
|
|
#include <asm/virt.h>
|
|
|
|
/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
|
|
static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define COMPAT_ELF_HWCAP_DEFAULT \
|
|
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
|
|
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
|
|
COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
|
|
COMPAT_HWCAP_LPAE)
|
|
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
|
|
unsigned int compat_elf_hwcap2 __read_mostly;
|
|
#endif
|
|
|
|
DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
|
|
EXPORT_SYMBOL(system_cpucaps);
|
|
static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
|
|
|
|
DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
|
|
|
|
bool arm64_use_ng_mappings = false;
|
|
EXPORT_SYMBOL(arm64_use_ng_mappings);
|
|
|
|
DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
|
|
|
|
/*
|
|
* Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
|
|
* support it?
|
|
*/
|
|
static bool __read_mostly allow_mismatched_32bit_el0;
|
|
|
|
/*
|
|
* Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
|
|
* seen at least one CPU capable of 32-bit EL0.
|
|
*/
|
|
DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
|
|
|
|
/*
|
|
* Mask of CPUs supporting 32-bit EL0.
|
|
* Only valid if arm64_mismatched_32bit_el0 is enabled.
|
|
*/
|
|
static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
|
|
|
|
void dump_cpu_features(void)
|
|
{
|
|
/* file-wide pr_fmt adds "CPU features: " prefix */
|
|
pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
|
|
}
|
|
|
|
#define __ARM64_MAX_POSITIVE(reg, field) \
|
|
((reg##_##field##_SIGNED ? \
|
|
BIT(reg##_##field##_WIDTH - 1) : \
|
|
BIT(reg##_##field##_WIDTH)) - 1)
|
|
|
|
#define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
|
|
|
|
#define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
|
|
.sys_reg = SYS_##reg, \
|
|
.field_pos = reg##_##field##_SHIFT, \
|
|
.field_width = reg##_##field##_WIDTH, \
|
|
.sign = reg##_##field##_SIGNED, \
|
|
.min_field_value = min_value, \
|
|
.max_field_value = max_value,
|
|
|
|
/*
|
|
* ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
|
|
* an implicit maximum that depends on the sign-ess of the field.
|
|
*
|
|
* An unsigned field will be capped at all ones, while a signed field
|
|
* will be limited to the positive half only.
|
|
*/
|
|
#define ARM64_CPUID_FIELDS(reg, field, min_value) \
|
|
__ARM64_CPUID_FIELDS(reg, field, \
|
|
SYS_FIELD_VALUE(reg, field, min_value), \
|
|
__ARM64_MAX_POSITIVE(reg, field))
|
|
|
|
/*
|
|
* ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
|
|
* implicit minimal value to max_value. This should be used when
|
|
* matching a non-implemented property.
|
|
*/
|
|
#define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
|
|
__ARM64_CPUID_FIELDS(reg, field, \
|
|
__ARM64_MIN_NEGATIVE(reg, field), \
|
|
SYS_FIELD_VALUE(reg, field, max_value))
|
|
|
|
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
{ \
|
|
.sign = SIGNED, \
|
|
.visible = VISIBLE, \
|
|
.strict = STRICT, \
|
|
.type = TYPE, \
|
|
.shift = SHIFT, \
|
|
.width = WIDTH, \
|
|
.safe_val = SAFE_VAL, \
|
|
}
|
|
|
|
/* Define a feature with unsigned values */
|
|
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
/* Define a feature with a signed value */
|
|
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
|
|
__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
|
|
|
|
#define ARM64_FTR_END \
|
|
{ \
|
|
.width = 0, \
|
|
}
|
|
|
|
static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
|
|
|
|
static bool __system_matches_cap(unsigned int n);
|
|
|
|
/*
|
|
* NOTE: Any changes to the visibility of features should be kept in
|
|
* sync with the documentation of the CPU feature register ABI.
|
|
*/
|
|
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
|
|
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
|
|
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
|
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
|
|
/*
|
|
* Page size not being supported at Stage-2 is not fatal. You
|
|
* just give up KVM if PAGE_SIZE isn't supported there. Go fix
|
|
* your favourite nesting hypervisor.
|
|
*
|
|
* There is a small corner case where the hypervisor explicitly
|
|
* advertises a given granule size at Stage-2 (value 2) on some
|
|
* vCPUs, and uses the fallback to Stage-1 (value 0) for other
|
|
* vCPUs. Although this is not forbidden by the architecture, it
|
|
* indicates that the hypervisor is being silly (or buggy).
|
|
*
|
|
* We make no effort to cope with this and pretend that if these
|
|
* fields are inconsistent across vCPUs, then it isn't worth
|
|
* trying to bring KVM up.
|
|
*/
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
|
|
/*
|
|
* We already refuse to boot CPUs that don't support our configured
|
|
* page size, so we can only detect mismatches for a page size other
|
|
* than the one we're currently using. Unfortunately, SoCs like this
|
|
* exist in the wild so, even though we don't like it, we'll have to go
|
|
* along with it and treat them as non-strict.
|
|
*/
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
|
|
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
|
|
/* Linux shouldn't care about secure memory */
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
|
|
/*
|
|
* Differing PARange is fine as long as all peripherals and memory are mapped
|
|
* within the minimum PARange of all CPUs
|
|
*/
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_ctr[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
|
|
/*
|
|
* Linux can handle differing I-cache policies. Userspace JITs will
|
|
* make use of *minLine.
|
|
* If we have differing I-cache policies, report it as the weakest - VIPT.
|
|
*/
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static struct arm64_ftr_override __ro_after_init no_override = { };
|
|
|
|
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
|
|
.name = "SYS_CTR_EL0",
|
|
.ftr_bits = ftr_ctr,
|
|
.override = &no_override,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
|
|
/*
|
|
* We can instantiate multiple PMU instances with different levels
|
|
* of support.
|
|
*/
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_mvfr0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_mvfr1[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_mvfr2[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_dczid[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_gmid[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_isar0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_isar5[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
|
|
|
|
/*
|
|
* SpecSEI = 1 indicates that the PE might generate an SError on an
|
|
* external abort on speculative read. It is safe to assume that an
|
|
* SError might be generated than it will not be. Hence it has been
|
|
* classified as FTR_HIGHER_SAFE.
|
|
*/
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_isar4[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_isar6[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_pfr1[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_pfr2[] = {
|
|
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
|
|
/* [31:28] TraceFilt */
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_id_dfr1[] = {
|
|
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
/*
|
|
* Common ftr bits for a 32bit register with all hidden, strict
|
|
* attributes, with 4bit feature fields and a default safe value of
|
|
* 0. Covers the following 32bit registers:
|
|
* id_isar[1-3], id_mmfr[1-3]
|
|
*/
|
|
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
/* Table for a single 32bit feature value */
|
|
static const struct arm64_ftr_bits ftr_single32[] = {
|
|
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
static const struct arm64_ftr_bits ftr_raz[] = {
|
|
ARM64_FTR_END,
|
|
};
|
|
|
|
#define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
|
|
.sys_id = id, \
|
|
.reg = &(struct arm64_ftr_reg){ \
|
|
.name = id_str, \
|
|
.override = (ovr), \
|
|
.ftr_bits = &((table)[0]), \
|
|
}}
|
|
|
|
#define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
|
|
__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
|
|
|
|
#define ARM64_FTR_REG(id, table) \
|
|
__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
|
|
|
|
struct arm64_ftr_override id_aa64mmfr0_override;
|
|
struct arm64_ftr_override id_aa64mmfr1_override;
|
|
struct arm64_ftr_override id_aa64mmfr2_override;
|
|
struct arm64_ftr_override id_aa64pfr0_override;
|
|
struct arm64_ftr_override id_aa64pfr1_override;
|
|
struct arm64_ftr_override id_aa64zfr0_override;
|
|
struct arm64_ftr_override id_aa64smfr0_override;
|
|
struct arm64_ftr_override id_aa64isar1_override;
|
|
struct arm64_ftr_override id_aa64isar2_override;
|
|
|
|
struct arm64_ftr_override arm64_sw_feature_override;
|
|
|
|
static const struct __ftr_reg_entry {
|
|
u32 sys_id;
|
|
struct arm64_ftr_reg *reg;
|
|
} arm64_ftr_regs[] = {
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 1 */
|
|
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
|
|
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
|
|
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
|
|
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 2 */
|
|
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
|
|
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
|
|
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
|
|
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
|
|
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
|
|
ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 3 */
|
|
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
|
|
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
|
|
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
|
|
ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
|
|
ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
|
|
ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 4 */
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
|
|
&id_aa64pfr0_override),
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
|
|
&id_aa64pfr1_override),
|
|
ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
|
|
&id_aa64zfr0_override),
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
|
|
&id_aa64smfr0_override),
|
|
ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 5 */
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
|
|
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 6 */
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
|
|
&id_aa64isar1_override),
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
|
|
&id_aa64isar2_override),
|
|
ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
|
|
|
|
/* Op1 = 0, CRn = 0, CRm = 7 */
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
|
|
&id_aa64mmfr0_override),
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
|
|
&id_aa64mmfr1_override),
|
|
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
|
|
&id_aa64mmfr2_override),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
|
|
ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
|
|
|
|
/* Op1 = 1, CRn = 0, CRm = 0 */
|
|
ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
|
|
|
|
/* Op1 = 3, CRn = 0, CRm = 0 */
|
|
{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
|
|
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
|
|
|
|
/* Op1 = 3, CRn = 14, CRm = 0 */
|
|
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
|
|
};
|
|
|
|
static int search_cmp_ftr_reg(const void *id, const void *regp)
|
|
{
|
|
return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
|
|
}
|
|
|
|
/*
|
|
* get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
|
|
* its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
|
|
* ascending order of sys_id, we use binary search to find a matching
|
|
* entry.
|
|
*
|
|
* returns - Upon success, matching ftr_reg entry for id.
|
|
* - NULL on failure. It is upto the caller to decide
|
|
* the impact of a failure.
|
|
*/
|
|
static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
|
|
{
|
|
const struct __ftr_reg_entry *ret;
|
|
|
|
ret = bsearch((const void *)(unsigned long)sys_id,
|
|
arm64_ftr_regs,
|
|
ARRAY_SIZE(arm64_ftr_regs),
|
|
sizeof(arm64_ftr_regs[0]),
|
|
search_cmp_ftr_reg);
|
|
if (ret)
|
|
return ret->reg;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* get_arm64_ftr_reg - Looks up a feature register entry using
|
|
* its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
|
|
*
|
|
* returns - Upon success, matching ftr_reg entry for id.
|
|
* - NULL on failure but with an WARN_ON().
|
|
*/
|
|
struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
|
|
{
|
|
struct arm64_ftr_reg *reg;
|
|
|
|
reg = get_arm64_ftr_reg_nowarn(sys_id);
|
|
|
|
/*
|
|
* Requesting a non-existent register search is an error. Warn
|
|
* and let the caller handle it.
|
|
*/
|
|
WARN_ON(!reg);
|
|
return reg;
|
|
}
|
|
|
|
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
|
|
s64 ftr_val)
|
|
{
|
|
u64 mask = arm64_ftr_mask(ftrp);
|
|
|
|
reg &= ~mask;
|
|
reg |= (ftr_val << ftrp->shift) & mask;
|
|
return reg;
|
|
}
|
|
|
|
s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
|
|
s64 cur)
|
|
{
|
|
s64 ret = 0;
|
|
|
|
switch (ftrp->type) {
|
|
case FTR_EXACT:
|
|
ret = ftrp->safe_val;
|
|
break;
|
|
case FTR_LOWER_SAFE:
|
|
ret = min(new, cur);
|
|
break;
|
|
case FTR_HIGHER_OR_ZERO_SAFE:
|
|
if (!cur || !new)
|
|
break;
|
|
fallthrough;
|
|
case FTR_HIGHER_SAFE:
|
|
ret = max(new, cur);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init sort_ftr_regs(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
|
|
const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
|
|
const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
|
|
unsigned int j = 0;
|
|
|
|
/*
|
|
* Features here must be sorted in descending order with respect
|
|
* to their shift values and should not overlap with each other.
|
|
*/
|
|
for (; ftr_bits->width != 0; ftr_bits++, j++) {
|
|
unsigned int width = ftr_reg->ftr_bits[j].width;
|
|
unsigned int shift = ftr_reg->ftr_bits[j].shift;
|
|
unsigned int prev_shift;
|
|
|
|
WARN((shift + width) > 64,
|
|
"%s has invalid feature at shift %d\n",
|
|
ftr_reg->name, shift);
|
|
|
|
/*
|
|
* Skip the first feature. There is nothing to
|
|
* compare against for now.
|
|
*/
|
|
if (j == 0)
|
|
continue;
|
|
|
|
prev_shift = ftr_reg->ftr_bits[j - 1].shift;
|
|
WARN((shift + width) > prev_shift,
|
|
"%s has feature overlap at shift %d\n",
|
|
ftr_reg->name, shift);
|
|
}
|
|
|
|
/*
|
|
* Skip the first register. There is nothing to
|
|
* compare against for now.
|
|
*/
|
|
if (i == 0)
|
|
continue;
|
|
/*
|
|
* Registers here must be sorted in ascending order with respect
|
|
* to sys_id for subsequent binary search in get_arm64_ftr_reg()
|
|
* to work correctly.
|
|
*/
|
|
BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise the CPU feature register from Boot CPU values.
|
|
* Also initiliases the strict_mask for the register.
|
|
* Any bits that are not covered by an arm64_ftr_bits entry are considered
|
|
* RES0 for the system-wide value, and must strictly match.
|
|
*/
|
|
static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
|
|
{
|
|
u64 val = 0;
|
|
u64 strict_mask = ~0x0ULL;
|
|
u64 user_mask = 0;
|
|
u64 valid_mask = 0;
|
|
|
|
const struct arm64_ftr_bits *ftrp;
|
|
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
|
|
|
|
if (!reg)
|
|
return;
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
u64 ftr_mask = arm64_ftr_mask(ftrp);
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
|
|
|
|
if ((ftr_mask & reg->override->mask) == ftr_mask) {
|
|
s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
|
|
char *str = NULL;
|
|
|
|
if (ftr_ovr != tmp) {
|
|
/* Unsafe, remove the override */
|
|
reg->override->mask &= ~ftr_mask;
|
|
reg->override->val &= ~ftr_mask;
|
|
tmp = ftr_ovr;
|
|
str = "ignoring override";
|
|
} else if (ftr_new != tmp) {
|
|
/* Override was valid */
|
|
ftr_new = tmp;
|
|
str = "forced";
|
|
} else if (ftr_ovr == tmp) {
|
|
/* Override was the safe value */
|
|
str = "already set";
|
|
}
|
|
|
|
if (str)
|
|
pr_warn("%s[%d:%d]: %s to %llx\n",
|
|
reg->name,
|
|
ftrp->shift + ftrp->width - 1,
|
|
ftrp->shift, str,
|
|
tmp & (BIT(ftrp->width) - 1));
|
|
} else if ((ftr_mask & reg->override->val) == ftr_mask) {
|
|
reg->override->val &= ~ftr_mask;
|
|
pr_warn("%s[%d:%d]: impossible override, ignored\n",
|
|
reg->name,
|
|
ftrp->shift + ftrp->width - 1,
|
|
ftrp->shift);
|
|
}
|
|
|
|
val = arm64_ftr_set_value(ftrp, val, ftr_new);
|
|
|
|
valid_mask |= ftr_mask;
|
|
if (!ftrp->strict)
|
|
strict_mask &= ~ftr_mask;
|
|
if (ftrp->visible)
|
|
user_mask |= ftr_mask;
|
|
else
|
|
reg->user_val = arm64_ftr_set_value(ftrp,
|
|
reg->user_val,
|
|
ftrp->safe_val);
|
|
}
|
|
|
|
val &= valid_mask;
|
|
|
|
reg->sys_val = val;
|
|
reg->strict_mask = strict_mask;
|
|
reg->user_mask = user_mask;
|
|
}
|
|
|
|
extern const struct arm64_cpu_capabilities arm64_errata[];
|
|
static const struct arm64_cpu_capabilities arm64_features[];
|
|
|
|
static void __init
|
|
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
for (; caps->matches; caps++) {
|
|
if (WARN(caps->capability >= ARM64_NCAPS,
|
|
"Invalid capability %d\n", caps->capability))
|
|
continue;
|
|
if (WARN(cpucap_ptrs[caps->capability],
|
|
"Duplicate entry for capability %d\n",
|
|
caps->capability))
|
|
continue;
|
|
cpucap_ptrs[caps->capability] = caps;
|
|
}
|
|
}
|
|
|
|
static void __init init_cpucap_indirect_list(void)
|
|
{
|
|
init_cpucap_indirect_list_from_array(arm64_features);
|
|
init_cpucap_indirect_list_from_array(arm64_errata);
|
|
}
|
|
|
|
static void __init setup_boot_cpu_capabilities(void);
|
|
|
|
static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
|
|
{
|
|
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
|
|
init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
|
|
init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
|
|
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
|
|
init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
|
|
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
|
|
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
|
|
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_PSEUDO_NMI
|
|
static bool enable_pseudo_nmi;
|
|
|
|
static int __init early_enable_pseudo_nmi(char *p)
|
|
{
|
|
return kstrtobool(p, &enable_pseudo_nmi);
|
|
}
|
|
early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
|
|
|
|
static __init void detect_system_supports_pseudo_nmi(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
if (!enable_pseudo_nmi)
|
|
return;
|
|
|
|
/*
|
|
* Detect broken MediaTek firmware that doesn't properly save and
|
|
* restore GIC priorities.
|
|
*/
|
|
np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
|
|
if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
|
|
pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
|
|
enable_pseudo_nmi = false;
|
|
}
|
|
of_node_put(np);
|
|
}
|
|
#else /* CONFIG_ARM64_PSEUDO_NMI */
|
|
static inline void detect_system_supports_pseudo_nmi(void) { }
|
|
#endif
|
|
|
|
void __init init_cpu_features(struct cpuinfo_arm64 *info)
|
|
{
|
|
/* Before we start using the tables, make sure it is sorted */
|
|
sort_ftr_regs();
|
|
|
|
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
|
|
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
|
|
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
|
|
init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
|
|
init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
|
|
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
|
|
init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
|
|
|
|
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
|
|
init_32bit_cpu_features(&info->aarch32);
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
|
|
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
|
|
unsigned long cpacr = cpacr_save_enable_kernel_sve();
|
|
|
|
vec_init_vq_map(ARM64_VEC_SVE);
|
|
|
|
cpacr_restore(cpacr);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64_SME) &&
|
|
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
|
|
unsigned long cpacr = cpacr_save_enable_kernel_sme();
|
|
|
|
/*
|
|
* We mask out SMPS since even if the hardware
|
|
* supports priorities the kernel does not at present
|
|
* and we block access to them.
|
|
*/
|
|
info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
|
|
vec_init_vq_map(ARM64_VEC_SME);
|
|
|
|
cpacr_restore(cpacr);
|
|
}
|
|
|
|
if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
|
|
init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
|
|
}
|
|
|
|
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
|
|
{
|
|
const struct arm64_ftr_bits *ftrp;
|
|
|
|
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
|
|
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
|
|
s64 ftr_new = arm64_ftr_value(ftrp, new);
|
|
|
|
if (ftr_cur == ftr_new)
|
|
continue;
|
|
/* Find a safe value */
|
|
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
|
|
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
|
|
}
|
|
|
|
}
|
|
|
|
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
|
|
|
|
if (!regp)
|
|
return 0;
|
|
|
|
update_cpu_ftr_reg(regp, val);
|
|
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
|
|
return 0;
|
|
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
|
|
regp->name, boot, cpu, val);
|
|
return 1;
|
|
}
|
|
|
|
static void relax_cpu_ftr_reg(u32 sys_id, int field)
|
|
{
|
|
const struct arm64_ftr_bits *ftrp;
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
|
|
|
|
if (!regp)
|
|
return;
|
|
|
|
for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
|
|
if (ftrp->shift == field) {
|
|
regp->strict_mask &= ~arm64_ftr_mask(ftrp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Bogus field? */
|
|
WARN_ON(!ftrp->width);
|
|
}
|
|
|
|
static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
|
|
struct cpuinfo_arm64 *boot)
|
|
{
|
|
static bool boot_cpu_32bit_regs_overridden = false;
|
|
|
|
if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
|
|
return;
|
|
|
|
if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
|
|
return;
|
|
|
|
boot->aarch32 = info->aarch32;
|
|
init_32bit_cpu_features(&boot->aarch32);
|
|
boot_cpu_32bit_regs_overridden = true;
|
|
}
|
|
|
|
static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
|
|
struct cpuinfo_32bit *boot)
|
|
{
|
|
int taint = 0;
|
|
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
|
|
|
|
/*
|
|
* If we don't have AArch32 at EL1, then relax the strictness of
|
|
* EL1-dependent register fields to avoid spurious sanity check fails.
|
|
*/
|
|
if (!id_aa64pfr0_32bit_el1(pfr0)) {
|
|
relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
|
|
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
|
|
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
|
|
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
|
|
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
|
|
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
|
|
}
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
|
|
info->reg_id_dfr0, boot->reg_id_dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
|
|
info->reg_id_dfr1, boot->reg_id_dfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
|
|
info->reg_id_isar0, boot->reg_id_isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
|
|
info->reg_id_isar1, boot->reg_id_isar1);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
|
|
info->reg_id_isar2, boot->reg_id_isar2);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
|
|
info->reg_id_isar3, boot->reg_id_isar3);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
|
|
info->reg_id_isar4, boot->reg_id_isar4);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
|
|
info->reg_id_isar5, boot->reg_id_isar5);
|
|
taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
|
|
info->reg_id_isar6, boot->reg_id_isar6);
|
|
|
|
/*
|
|
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
|
|
* ACTLR formats could differ across CPUs and therefore would have to
|
|
* be trapped for virtualization anyway.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
|
|
info->reg_id_mmfr0, boot->reg_id_mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
|
|
info->reg_id_mmfr1, boot->reg_id_mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
|
|
info->reg_id_mmfr2, boot->reg_id_mmfr2);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
|
|
info->reg_id_mmfr3, boot->reg_id_mmfr3);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
|
|
info->reg_id_mmfr4, boot->reg_id_mmfr4);
|
|
taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
|
|
info->reg_id_mmfr5, boot->reg_id_mmfr5);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
|
|
info->reg_id_pfr0, boot->reg_id_pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
|
|
info->reg_id_pfr1, boot->reg_id_pfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
|
|
info->reg_id_pfr2, boot->reg_id_pfr2);
|
|
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
|
|
info->reg_mvfr0, boot->reg_mvfr0);
|
|
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
|
|
info->reg_mvfr1, boot->reg_mvfr1);
|
|
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
|
|
info->reg_mvfr2, boot->reg_mvfr2);
|
|
|
|
return taint;
|
|
}
|
|
|
|
/*
|
|
* Update system wide CPU feature registers with the values from a
|
|
* non-boot CPU. Also performs SANITY checks to make sure that there
|
|
* aren't any insane variations from that of the boot CPU.
|
|
*/
|
|
void update_cpu_features(int cpu,
|
|
struct cpuinfo_arm64 *info,
|
|
struct cpuinfo_arm64 *boot)
|
|
{
|
|
int taint = 0;
|
|
|
|
/*
|
|
* The kernel can handle differing I-cache policies, but otherwise
|
|
* caches should look identical. Userspace JITs will make use of
|
|
* *minLine.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
|
|
info->reg_ctr, boot->reg_ctr);
|
|
|
|
/*
|
|
* Userspace may perform DC ZVA instructions. Mismatched block sizes
|
|
* could result in too much or too little memory being zeroed if a
|
|
* process is preempted and migrated between CPUs.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
|
|
info->reg_dczid, boot->reg_dczid);
|
|
|
|
/* If different, timekeeping will be broken (especially with KVM) */
|
|
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
|
|
info->reg_cntfrq, boot->reg_cntfrq);
|
|
|
|
/*
|
|
* The kernel uses self-hosted debug features and expects CPUs to
|
|
* support identical debug features. We presently need CTX_CMPs, WRPs,
|
|
* and BRPs to be identical.
|
|
* ID_AA64DFR1 is currently RES0.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
|
|
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
|
|
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
|
|
/*
|
|
* Even in big.LITTLE, processors should be identical instruction-set
|
|
* wise.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
|
|
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
|
|
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
|
|
info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
|
|
info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
|
|
|
|
/*
|
|
* Differing PARange support is fine as long as all peripherals and
|
|
* memory are mapped within the minimum PARange of all CPUs.
|
|
* Linux should not care about secure memory.
|
|
*/
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
|
|
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
|
|
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
|
|
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
|
|
info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
|
|
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
|
|
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
|
|
info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
|
|
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
|
|
info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
|
|
|
|
taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
|
|
info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
|
|
|
|
/* Probe vector lengths */
|
|
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
|
|
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
|
|
if (!system_capabilities_finalized()) {
|
|
unsigned long cpacr = cpacr_save_enable_kernel_sve();
|
|
|
|
vec_update_vq_map(ARM64_VEC_SVE);
|
|
|
|
cpacr_restore(cpacr);
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64_SME) &&
|
|
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
|
|
unsigned long cpacr = cpacr_save_enable_kernel_sme();
|
|
|
|
/*
|
|
* We mask out SMPS since even if the hardware
|
|
* supports priorities the kernel does not at present
|
|
* and we block access to them.
|
|
*/
|
|
info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
|
|
|
|
/* Probe vector lengths */
|
|
if (!system_capabilities_finalized())
|
|
vec_update_vq_map(ARM64_VEC_SME);
|
|
|
|
cpacr_restore(cpacr);
|
|
}
|
|
|
|
/*
|
|
* The kernel uses the LDGM/STGM instructions and the number of tags
|
|
* they read/write depends on the GMID_EL1.BS field. Check that the
|
|
* value is the same on all CPUs.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ARM64_MTE) &&
|
|
id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
|
|
taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
|
|
info->reg_gmid, boot->reg_gmid);
|
|
}
|
|
|
|
/*
|
|
* If we don't have AArch32 at all then skip the checks entirely
|
|
* as the register values may be UNKNOWN and we're not going to be
|
|
* using them for anything.
|
|
*
|
|
* This relies on a sanitised view of the AArch64 ID registers
|
|
* (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
|
|
*/
|
|
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
|
|
lazy_init_32bit_cpu_features(info, boot);
|
|
taint |= update_32bit_cpu_features(cpu, &info->aarch32,
|
|
&boot->aarch32);
|
|
}
|
|
|
|
/*
|
|
* Mismatched CPU features are a recipe for disaster. Don't even
|
|
* pretend to support them.
|
|
*/
|
|
if (taint) {
|
|
pr_warn_once("Unsupported CPU feature variation detected.\n");
|
|
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
|
|
}
|
|
}
|
|
|
|
u64 read_sanitised_ftr_reg(u32 id)
|
|
{
|
|
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
|
|
|
|
if (!regp)
|
|
return 0;
|
|
return regp->sys_val;
|
|
}
|
|
EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
|
|
|
|
#define read_sysreg_case(r) \
|
|
case r: val = read_sysreg_s(r); break;
|
|
|
|
/*
|
|
* __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
|
|
* Read the system register on the current CPU
|
|
*/
|
|
u64 __read_sysreg_by_encoding(u32 sys_id)
|
|
{
|
|
struct arm64_ftr_reg *regp;
|
|
u64 val;
|
|
|
|
switch (sys_id) {
|
|
read_sysreg_case(SYS_ID_PFR0_EL1);
|
|
read_sysreg_case(SYS_ID_PFR1_EL1);
|
|
read_sysreg_case(SYS_ID_PFR2_EL1);
|
|
read_sysreg_case(SYS_ID_DFR0_EL1);
|
|
read_sysreg_case(SYS_ID_DFR1_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR0_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR1_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR2_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR3_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR4_EL1);
|
|
read_sysreg_case(SYS_ID_MMFR5_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR0_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR1_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR2_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR3_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR4_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR5_EL1);
|
|
read_sysreg_case(SYS_ID_ISAR6_EL1);
|
|
read_sysreg_case(SYS_MVFR0_EL1);
|
|
read_sysreg_case(SYS_MVFR1_EL1);
|
|
read_sysreg_case(SYS_MVFR2_EL1);
|
|
|
|
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
|
|
read_sysreg_case(SYS_ID_AA64PFR2_EL1);
|
|
read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
|
|
read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
|
|
read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
|
|
read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
|
|
read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
|
|
read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
|
|
|
|
read_sysreg_case(SYS_CNTFRQ_EL0);
|
|
read_sysreg_case(SYS_CTR_EL0);
|
|
read_sysreg_case(SYS_DCZID_EL0);
|
|
|
|
default:
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
regp = get_arm64_ftr_reg(sys_id);
|
|
if (regp) {
|
|
val &= ~regp->override->mask;
|
|
val |= (regp->override->val & regp->override->mask);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
|
|
static bool
|
|
has_always(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
|
|
{
|
|
int val, min, max;
|
|
u64 tmp;
|
|
|
|
val = cpuid_feature_extract_field_width(reg, entry->field_pos,
|
|
entry->field_width,
|
|
entry->sign);
|
|
|
|
tmp = entry->min_field_value;
|
|
tmp <<= entry->field_pos;
|
|
|
|
min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
|
|
entry->field_width,
|
|
entry->sign);
|
|
|
|
tmp = entry->max_field_value;
|
|
tmp <<= entry->field_pos;
|
|
|
|
max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
|
|
entry->field_width,
|
|
entry->sign);
|
|
|
|
return val >= min && val <= max;
|
|
}
|
|
|
|
static u64
|
|
read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
|
|
if (scope == SCOPE_SYSTEM)
|
|
return read_sanitised_ftr_reg(entry->sys_reg);
|
|
else
|
|
return __read_sysreg_by_encoding(entry->sys_reg);
|
|
}
|
|
|
|
static bool
|
|
has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
int mask;
|
|
struct arm64_ftr_reg *regp;
|
|
u64 val = read_scoped_sysreg(entry, scope);
|
|
|
|
regp = get_arm64_ftr_reg(entry->sys_reg);
|
|
if (!regp)
|
|
return false;
|
|
|
|
mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
|
|
entry->field_pos,
|
|
entry->field_width);
|
|
if (!mask)
|
|
return false;
|
|
|
|
return feature_matches(val, entry);
|
|
}
|
|
|
|
static bool
|
|
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
u64 val = read_scoped_sysreg(entry, scope);
|
|
return feature_matches(val, entry);
|
|
}
|
|
|
|
const struct cpumask *system_32bit_el0_cpumask(void)
|
|
{
|
|
if (!system_supports_32bit_el0())
|
|
return cpu_none_mask;
|
|
|
|
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
|
|
return cpu_32bit_el0_mask;
|
|
|
|
return cpu_possible_mask;
|
|
}
|
|
|
|
static int __init parse_32bit_el0_param(char *str)
|
|
{
|
|
allow_mismatched_32bit_el0 = true;
|
|
return 0;
|
|
}
|
|
early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
|
|
|
|
static ssize_t aarch32_el0_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
const struct cpumask *mask = system_32bit_el0_cpumask();
|
|
|
|
return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
|
|
}
|
|
static const DEVICE_ATTR_RO(aarch32_el0);
|
|
|
|
static int __init aarch32_el0_sysfs_init(void)
|
|
{
|
|
struct device *dev_root;
|
|
int ret = 0;
|
|
|
|
if (!allow_mismatched_32bit_el0)
|
|
return 0;
|
|
|
|
dev_root = bus_get_dev_root(&cpu_subsys);
|
|
if (dev_root) {
|
|
ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
|
|
put_device(dev_root);
|
|
}
|
|
return ret;
|
|
}
|
|
device_initcall(aarch32_el0_sysfs_init);
|
|
|
|
static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
if (!has_cpuid_feature(entry, scope))
|
|
return allow_mismatched_32bit_el0;
|
|
|
|
if (scope == SCOPE_SYSTEM)
|
|
pr_info("detected: 32-bit EL0 Support\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
bool has_sre;
|
|
|
|
if (!has_cpuid_feature(entry, scope))
|
|
return false;
|
|
|
|
has_sre = gic_enable_sre();
|
|
if (!has_sre)
|
|
pr_warn_once("%s present but disabled by higher exception level\n",
|
|
entry->desc);
|
|
|
|
return has_sre;
|
|
}
|
|
|
|
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
u64 ctr;
|
|
|
|
if (scope == SCOPE_SYSTEM)
|
|
ctr = arm64_ftr_reg_ctrel0.sys_val;
|
|
else
|
|
ctr = read_cpuid_effective_cachetype();
|
|
|
|
return ctr & BIT(CTR_EL0_IDC_SHIFT);
|
|
}
|
|
|
|
static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
|
|
* CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
|
|
* to the CTR_EL0 on this CPU and emulate it with the real/safe
|
|
* value.
|
|
*/
|
|
if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
|
|
}
|
|
|
|
static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
u64 ctr;
|
|
|
|
if (scope == SCOPE_SYSTEM)
|
|
ctr = arm64_ftr_reg_ctrel0.sys_val;
|
|
else
|
|
ctr = read_cpuid_cachetype();
|
|
|
|
return ctr & BIT(CTR_EL0_DIC_SHIFT);
|
|
}
|
|
|
|
static bool __maybe_unused
|
|
has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
/*
|
|
* Kdump isn't guaranteed to power-off all secondary CPUs, CNP
|
|
* may share TLB entries with a CPU stuck in the crashed
|
|
* kernel.
|
|
*/
|
|
if (is_kdump_kernel())
|
|
return false;
|
|
|
|
if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
|
|
return false;
|
|
|
|
return has_cpuid_feature(entry, scope);
|
|
}
|
|
|
|
static bool __meltdown_safe = true;
|
|
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
|
|
|
|
static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
/* List of CPUs that are not vulnerable and don't need KPTI */
|
|
static const struct midr_range kpti_safe_list[] = {
|
|
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
|
|
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
|
|
MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
|
|
MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
|
|
MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
|
|
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
|
|
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
|
|
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
|
|
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
|
|
{ /* sentinel */ }
|
|
};
|
|
char const *str = "kpti command line option";
|
|
bool meltdown_safe;
|
|
|
|
meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
|
|
|
|
/* Defer to CPU feature registers */
|
|
if (has_cpuid_feature(entry, scope))
|
|
meltdown_safe = true;
|
|
|
|
if (!meltdown_safe)
|
|
__meltdown_safe = false;
|
|
|
|
/*
|
|
* For reasons that aren't entirely clear, enabling KPTI on Cavium
|
|
* ThunderX leads to apparent I-cache corruption of kernel text, which
|
|
* ends as well as you might imagine. Don't even try. We cannot rely
|
|
* on the cpus_have_*cap() helpers here to detect the CPU erratum
|
|
* because cpucap detection order may change. However, since we know
|
|
* affected CPUs are always in a homogeneous configuration, it is
|
|
* safe to rely on this_cpu_has_cap() here.
|
|
*/
|
|
if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
|
|
str = "ARM64_WORKAROUND_CAVIUM_27456";
|
|
__kpti_forced = -1;
|
|
}
|
|
|
|
/* Useful for KASLR robustness */
|
|
if (kaslr_enabled() && kaslr_requires_kpti()) {
|
|
if (!__kpti_forced) {
|
|
str = "KASLR";
|
|
__kpti_forced = 1;
|
|
}
|
|
}
|
|
|
|
if (cpu_mitigations_off() && !__kpti_forced) {
|
|
str = "mitigations=off";
|
|
__kpti_forced = -1;
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
|
|
pr_info_once("kernel page table isolation disabled by kernel configuration\n");
|
|
return false;
|
|
}
|
|
|
|
/* Forced? */
|
|
if (__kpti_forced) {
|
|
pr_info_once("kernel page table isolation forced %s by %s\n",
|
|
__kpti_forced > 0 ? "ON" : "OFF", str);
|
|
return __kpti_forced > 0;
|
|
}
|
|
|
|
return !meltdown_safe;
|
|
}
|
|
|
|
static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
/*
|
|
* Although the Apple M2 family appears to support NV1, the
|
|
* PTW barfs on the nVHE EL2 S1 page table format. Pretend
|
|
* that it doesn't support NV1 at all.
|
|
*/
|
|
static const struct midr_range nv1_ni_list[] = {
|
|
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
|
|
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
|
|
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
|
|
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
|
|
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
|
|
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
|
|
{}
|
|
};
|
|
|
|
return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
|
|
!(has_cpuid_feature(entry, scope) ||
|
|
is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
|
|
}
|
|
|
|
#if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
|
|
static bool has_lpa2_at_stage1(u64 mmfr0)
|
|
{
|
|
unsigned int tgran;
|
|
|
|
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
|
|
ID_AA64MMFR0_EL1_TGRAN_SHIFT);
|
|
return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
|
|
}
|
|
|
|
static bool has_lpa2_at_stage2(u64 mmfr0)
|
|
{
|
|
unsigned int tgran;
|
|
|
|
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
|
|
ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
|
|
return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
|
|
}
|
|
|
|
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
u64 mmfr0;
|
|
|
|
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
|
|
}
|
|
#else
|
|
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
|
|
#define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
|
|
|
|
extern
|
|
void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
|
|
phys_addr_t size, pgprot_t prot,
|
|
phys_addr_t (*pgtable_alloc)(int), int flags);
|
|
|
|
static phys_addr_t __initdata kpti_ng_temp_alloc;
|
|
|
|
static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
|
|
{
|
|
kpti_ng_temp_alloc -= PAGE_SIZE;
|
|
return kpti_ng_temp_alloc;
|
|
}
|
|
|
|
static int __init __kpti_install_ng_mappings(void *__unused)
|
|
{
|
|
typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
|
|
extern kpti_remap_fn idmap_kpti_install_ng_mappings;
|
|
kpti_remap_fn *remap_fn;
|
|
|
|
int cpu = smp_processor_id();
|
|
int levels = CONFIG_PGTABLE_LEVELS;
|
|
int order = order_base_2(levels);
|
|
u64 kpti_ng_temp_pgd_pa = 0;
|
|
pgd_t *kpti_ng_temp_pgd;
|
|
u64 alloc = 0;
|
|
|
|
if (levels == 5 && !pgtable_l5_enabled())
|
|
levels = 4;
|
|
else if (levels == 4 && !pgtable_l4_enabled())
|
|
levels = 3;
|
|
|
|
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
|
|
|
|
if (!cpu) {
|
|
alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
|
|
kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
|
|
kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
|
|
|
|
//
|
|
// Create a minimal page table hierarchy that permits us to map
|
|
// the swapper page tables temporarily as we traverse them.
|
|
//
|
|
// The physical pages are laid out as follows:
|
|
//
|
|
// +--------+-/-------+-/------ +-/------ +-\\\--------+
|
|
// : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
|
|
// +--------+-\-------+-\------ +-\------ +-///--------+
|
|
// ^
|
|
// The first page is mapped into this hierarchy at a PMD_SHIFT
|
|
// aligned virtual address, so that we can manipulate the PTE
|
|
// level entries while the mapping is active. The first entry
|
|
// covers the PTE[] page itself, the remaining entries are free
|
|
// to be used as a ad-hoc fixmap.
|
|
//
|
|
create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
|
|
KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
|
|
kpti_ng_pgd_alloc, 0);
|
|
}
|
|
|
|
cpu_install_idmap();
|
|
remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
|
|
cpu_uninstall_idmap();
|
|
|
|
if (!cpu) {
|
|
free_pages(alloc, order);
|
|
arm64_use_ng_mappings = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init kpti_install_ng_mappings(void)
|
|
{
|
|
/* Check whether KPTI is going to be used */
|
|
if (!arm64_kernel_unmapped_at_el0())
|
|
return;
|
|
|
|
/*
|
|
* We don't need to rewrite the page-tables if either we've done
|
|
* it already or we have KASLR enabled and therefore have not
|
|
* created any global mappings at all.
|
|
*/
|
|
if (arm64_use_ng_mappings)
|
|
return;
|
|
|
|
stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
|
|
}
|
|
|
|
#else
|
|
static inline void kpti_install_ng_mappings(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
|
|
|
|
static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
if (__this_cpu_read(this_cpu_vector) == vectors) {
|
|
const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
|
|
|
|
__this_cpu_write(this_cpu_vector, v);
|
|
}
|
|
|
|
}
|
|
|
|
static int __init parse_kpti(char *str)
|
|
{
|
|
bool enabled;
|
|
int ret = kstrtobool(str, &enabled);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
__kpti_forced = enabled ? 1 : -1;
|
|
return 0;
|
|
}
|
|
early_param("kpti", parse_kpti);
|
|
|
|
#ifdef CONFIG_ARM64_HW_AFDBM
|
|
static struct cpumask dbm_cpus __read_mostly;
|
|
|
|
static inline void __cpu_enable_hw_dbm(void)
|
|
{
|
|
u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
|
|
|
|
write_sysreg(tcr, tcr_el1);
|
|
isb();
|
|
local_flush_tlb_all();
|
|
}
|
|
|
|
static bool cpu_has_broken_dbm(void)
|
|
{
|
|
/* List of CPUs which have broken DBM support. */
|
|
static const struct midr_range cpus[] = {
|
|
#ifdef CONFIG_ARM64_ERRATUM_1024718
|
|
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
|
|
/* Kryo4xx Silver (rdpe => r1p0) */
|
|
MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
|
|
#endif
|
|
#ifdef CONFIG_ARM64_ERRATUM_2051678
|
|
MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
return is_midr_in_range_list(read_cpuid_id(), cpus);
|
|
}
|
|
|
|
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
|
|
!cpu_has_broken_dbm();
|
|
}
|
|
|
|
static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
if (cpu_can_use_dbm(cap)) {
|
|
__cpu_enable_hw_dbm();
|
|
cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
|
|
}
|
|
}
|
|
|
|
static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
|
|
int __unused)
|
|
{
|
|
/*
|
|
* DBM is a non-conflicting feature. i.e, the kernel can safely
|
|
* run a mix of CPUs with and without the feature. So, we
|
|
* unconditionally enable the capability to allow any late CPU
|
|
* to use the feature. We only enable the control bits on the
|
|
* CPU, if it is supported.
|
|
*/
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_AMU_EXTN
|
|
|
|
/*
|
|
* The "amu_cpus" cpumask only signals that the CPU implementation for the
|
|
* flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
|
|
* information regarding all the events that it supports. When a CPU bit is
|
|
* set in the cpumask, the user of this feature can only rely on the presence
|
|
* of the 4 fixed counters for that CPU. But this does not guarantee that the
|
|
* counters are enabled or access to these counters is enabled by code
|
|
* executed at higher exception levels (firmware).
|
|
*/
|
|
static struct cpumask amu_cpus __read_mostly;
|
|
|
|
bool cpu_has_amu_feat(int cpu)
|
|
{
|
|
return cpumask_test_cpu(cpu, &amu_cpus);
|
|
}
|
|
|
|
int get_cpu_with_amu_feat(void)
|
|
{
|
|
return cpumask_any(&amu_cpus);
|
|
}
|
|
|
|
static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
|
|
cpumask_set_cpu(smp_processor_id(), &amu_cpus);
|
|
|
|
/* 0 reference values signal broken/disabled counters */
|
|
if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
|
|
update_freq_counters_refs();
|
|
}
|
|
}
|
|
|
|
static bool has_amu(const struct arm64_cpu_capabilities *cap,
|
|
int __unused)
|
|
{
|
|
/*
|
|
* The AMU extension is a non-conflicting feature: the kernel can
|
|
* safely run a mix of CPUs with and without support for the
|
|
* activity monitors extension. Therefore, unconditionally enable
|
|
* the capability to allow any late CPU to use the feature.
|
|
*
|
|
* With this feature unconditionally enabled, the cpu_enable
|
|
* function will be called for all CPUs that match the criteria,
|
|
* including secondary and hotplugged, marking this feature as
|
|
* present on that respective CPU. The enable function will also
|
|
* print a detection message.
|
|
*/
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
int get_cpu_with_amu_feat(void)
|
|
{
|
|
return nr_cpu_ids;
|
|
}
|
|
#endif
|
|
|
|
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return is_kernel_in_hyp_mode();
|
|
}
|
|
|
|
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* Copy register values that aren't redirected by hardware.
|
|
*
|
|
* Before code patching, we only set tpidr_el1, all CPUs need to copy
|
|
* this value to tpidr_el2 before we patch the code. Once we've done
|
|
* that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
|
|
* do anything here.
|
|
*/
|
|
if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
|
|
write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
|
|
}
|
|
|
|
static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
|
|
int scope)
|
|
{
|
|
if (kvm_get_mode() != KVM_MODE_NV)
|
|
return false;
|
|
|
|
if (!has_cpuid_feature(cap, scope)) {
|
|
pr_warn("unavailable: %s\n", cap->desc);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
|
|
int __unused)
|
|
{
|
|
return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_PAN
|
|
static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* We modify PSTATE. This won't work from irq context as the PSTATE
|
|
* is discarded once we return from the exception.
|
|
*/
|
|
WARN_ON_ONCE(in_interrupt());
|
|
|
|
sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
|
|
set_pstate_pan(1);
|
|
}
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
|
|
#ifdef CONFIG_ARM64_RAS_EXTN
|
|
static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/* Firmware may have left a deferred SError in this register. */
|
|
write_sysreg_s(0, SYS_DISR_EL1);
|
|
}
|
|
#endif /* CONFIG_ARM64_RAS_EXTN */
|
|
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
|
|
{
|
|
int boot_val, sec_val;
|
|
|
|
/* We don't expect to be called with SCOPE_SYSTEM */
|
|
WARN_ON(scope == SCOPE_SYSTEM);
|
|
/*
|
|
* The ptr-auth feature levels are not intercompatible with lower
|
|
* levels. Hence we must match ptr-auth feature level of the secondary
|
|
* CPUs with that of the boot CPU. The level of boot cpu is fetched
|
|
* from the sanitised register whereas direct register read is done for
|
|
* the secondary CPUs.
|
|
* The sanitised feature state is guaranteed to match that of the
|
|
* boot CPU as a mismatched secondary CPU is parked before it gets
|
|
* a chance to update the state, with the capability.
|
|
*/
|
|
boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
|
|
entry->field_pos, entry->sign);
|
|
if (scope & SCOPE_BOOT_CPU)
|
|
return boot_val >= entry->min_field_value;
|
|
/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
|
|
sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
|
|
entry->field_pos, entry->sign);
|
|
return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
|
|
}
|
|
|
|
static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
|
|
bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
|
|
bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
|
|
|
|
return apa || apa3 || api;
|
|
}
|
|
|
|
static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
|
|
int __unused)
|
|
{
|
|
bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
|
|
bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
|
|
bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
|
|
|
|
return gpa || gpa3 || gpi;
|
|
}
|
|
#endif /* CONFIG_ARM64_PTR_AUTH */
|
|
|
|
#ifdef CONFIG_ARM64_E0PD
|
|
static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
if (this_cpu_has_cap(ARM64_HAS_E0PD))
|
|
sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
|
|
}
|
|
#endif /* CONFIG_ARM64_E0PD */
|
|
|
|
#ifdef CONFIG_ARM64_PSEUDO_NMI
|
|
static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
/*
|
|
* ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
|
|
* feature, so will be detected earlier.
|
|
*/
|
|
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
|
|
if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
|
|
return false;
|
|
|
|
return enable_pseudo_nmi;
|
|
}
|
|
|
|
static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
|
|
int scope)
|
|
{
|
|
/*
|
|
* If we're not using priority masking then we won't be poking PMR_EL1,
|
|
* and there's no need to relax synchronization of writes to it, and
|
|
* ICC_CTLR_EL1 might not be accessible and we must avoid reads from
|
|
* that.
|
|
*
|
|
* ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
|
|
* feature, so will be detected earlier.
|
|
*/
|
|
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
|
|
if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
|
|
return false;
|
|
|
|
/*
|
|
* When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
|
|
* hint for interrupt distribution, a DSB is not necessary when
|
|
* unmasking IRQs via PMR, and we can relax the barrier to a NOP.
|
|
*
|
|
* Linux itself doesn't use 1:N distribution, so has no need to
|
|
* set PMHE. The only reason to have it set is if EL3 requires it
|
|
* (and we can't change it).
|
|
*/
|
|
return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_BTI
|
|
static void bti_enable(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* Use of X16/X17 for tail-calls and trampolines that jump to
|
|
* function entry points using BR is a requirement for
|
|
* marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
|
|
* So, be strict and forbid other BRs using other registers to
|
|
* jump onto a PACIxSP instruction:
|
|
*/
|
|
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
|
|
isb();
|
|
}
|
|
#endif /* CONFIG_ARM64_BTI */
|
|
|
|
#ifdef CONFIG_ARM64_MTE
|
|
static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
|
|
|
|
mte_cpu_setup();
|
|
|
|
/*
|
|
* Clear the tags in the zero page. This needs to be done via the
|
|
* linear map which has the Tagged attribute.
|
|
*/
|
|
if (try_page_mte_tagging(ZERO_PAGE(0))) {
|
|
mte_clear_page_tags(lm_alias(empty_zero_page));
|
|
set_page_mte_tagged(ZERO_PAGE(0));
|
|
}
|
|
|
|
kasan_init_hw_tags_cpu();
|
|
}
|
|
#endif /* CONFIG_ARM64_MTE */
|
|
|
|
static void user_feature_fixup(void)
|
|
{
|
|
if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
|
|
struct arm64_ftr_reg *regp;
|
|
|
|
regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
|
|
if (regp)
|
|
regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
|
|
}
|
|
|
|
if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
|
|
struct arm64_ftr_reg *regp;
|
|
|
|
regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
|
|
if (regp)
|
|
regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
|
|
}
|
|
}
|
|
|
|
static void elf_hwcap_fixup(void)
|
|
{
|
|
#ifdef CONFIG_COMPAT
|
|
if (cpus_have_cap(ARM64_WORKAROUND_1742098))
|
|
compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
|
|
#endif /* CONFIG_COMPAT */
|
|
}
|
|
|
|
#ifdef CONFIG_KVM
|
|
static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
|
|
{
|
|
return kvm_get_mode() == KVM_MODE_PROTECTED;
|
|
}
|
|
#endif /* CONFIG_KVM */
|
|
|
|
static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
|
|
}
|
|
|
|
static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
set_pstate_dit(1);
|
|
}
|
|
|
|
static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
|
|
}
|
|
|
|
/* Internal helper functions to match cpu capability type */
|
|
static bool
|
|
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
|
|
}
|
|
|
|
static bool
|
|
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
|
|
}
|
|
|
|
static bool
|
|
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
|
|
}
|
|
|
|
static const struct arm64_cpu_capabilities arm64_features[] = {
|
|
{
|
|
.capability = ARM64_ALWAYS_BOOT,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_always,
|
|
},
|
|
{
|
|
.capability = ARM64_ALWAYS_SYSTEM,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_always,
|
|
},
|
|
{
|
|
.desc = "GIC system register CPU interface",
|
|
.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
.matches = has_useable_gicv3_cpuif,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
|
|
},
|
|
{
|
|
.desc = "Enhanced Counter Virtualization",
|
|
.capability = ARM64_HAS_ECV,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
|
|
},
|
|
{
|
|
.desc = "Enhanced Counter Virtualization (CNTPOFF)",
|
|
.capability = ARM64_HAS_ECV_CNTPOFF,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
|
|
},
|
|
#ifdef CONFIG_ARM64_PAN
|
|
{
|
|
.desc = "Privileged Access Never",
|
|
.capability = ARM64_HAS_PAN,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_pan,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
|
|
},
|
|
#endif /* CONFIG_ARM64_PAN */
|
|
#ifdef CONFIG_ARM64_EPAN
|
|
{
|
|
.desc = "Enhanced Privileged Access Never",
|
|
.capability = ARM64_HAS_EPAN,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
|
|
},
|
|
#endif /* CONFIG_ARM64_EPAN */
|
|
#ifdef CONFIG_ARM64_LSE_ATOMICS
|
|
{
|
|
.desc = "LSE atomic instructions",
|
|
.capability = ARM64_HAS_LSE_ATOMICS,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
|
|
},
|
|
#endif /* CONFIG_ARM64_LSE_ATOMICS */
|
|
{
|
|
.desc = "Virtualization Host Extensions",
|
|
.capability = ARM64_HAS_VIRT_HOST_EXTN,
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
.matches = runs_at_el2,
|
|
.cpu_enable = cpu_copy_el2regs,
|
|
},
|
|
{
|
|
.desc = "Nested Virtualization Support",
|
|
.capability = ARM64_HAS_NESTED_VIRT,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_nested_virt_support,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
|
|
},
|
|
{
|
|
.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_32bit_el0,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
|
|
},
|
|
#ifdef CONFIG_KVM
|
|
{
|
|
.desc = "32-bit EL1 Support",
|
|
.capability = ARM64_HAS_32BIT_EL1,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
|
|
},
|
|
{
|
|
.desc = "Protected KVM",
|
|
.capability = ARM64_KVM_PROTECTED_MODE,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = is_kvm_protected_mode,
|
|
},
|
|
{
|
|
.desc = "HCRX_EL2 register",
|
|
.capability = ARM64_HAS_HCX,
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "Kernel page table isolation (KPTI)",
|
|
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
|
|
.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
|
|
.cpu_enable = cpu_enable_kpti,
|
|
.matches = unmap_kernel_at_el0,
|
|
/*
|
|
* The ID feature fields below are used to indicate that
|
|
* the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
|
|
* more details.
|
|
*/
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
|
|
},
|
|
{
|
|
.capability = ARM64_HAS_FPSIMD,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_fpsimd,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
|
|
},
|
|
#ifdef CONFIG_ARM64_PMEM
|
|
{
|
|
.desc = "Data cache clean to Point of Persistence",
|
|
.capability = ARM64_HAS_DCPOP,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
|
|
},
|
|
{
|
|
.desc = "Data cache clean to Point of Deep Persistence",
|
|
.capability = ARM64_HAS_DCPODP,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_ARM64_SVE
|
|
{
|
|
.desc = "Scalable Vector Extension",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_SVE,
|
|
.cpu_enable = cpu_enable_sve,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
|
|
},
|
|
#endif /* CONFIG_ARM64_SVE */
|
|
#ifdef CONFIG_ARM64_RAS_EXTN
|
|
{
|
|
.desc = "RAS Extension Support",
|
|
.capability = ARM64_HAS_RAS_EXTN,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_clear_disr,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
|
|
},
|
|
#endif /* CONFIG_ARM64_RAS_EXTN */
|
|
#ifdef CONFIG_ARM64_AMU_EXTN
|
|
{
|
|
.desc = "Activity Monitors Unit (AMU)",
|
|
.capability = ARM64_HAS_AMU_EXTN,
|
|
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
|
|
.matches = has_amu,
|
|
.cpu_enable = cpu_amu_enable,
|
|
.cpus = &amu_cpus,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
|
|
},
|
|
#endif /* CONFIG_ARM64_AMU_EXTN */
|
|
{
|
|
.desc = "Data cache clean to the PoU not required for I/D coherence",
|
|
.capability = ARM64_HAS_CACHE_IDC,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cache_idc,
|
|
.cpu_enable = cpu_emulate_effective_ctr,
|
|
},
|
|
{
|
|
.desc = "Instruction cache invalidation not required for I/D coherence",
|
|
.capability = ARM64_HAS_CACHE_DIC,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cache_dic,
|
|
},
|
|
{
|
|
.desc = "Stage-2 Force Write-Back",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_HAS_STAGE2_FWB,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
|
|
},
|
|
{
|
|
.desc = "ARMv8.4 Translation Table Level",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_HAS_ARMv8_4_TTL,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
|
|
},
|
|
{
|
|
.desc = "TLB range maintenance instructions",
|
|
.capability = ARM64_HAS_TLB_RANGE,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
|
|
},
|
|
#ifdef CONFIG_ARM64_HW_AFDBM
|
|
{
|
|
.desc = "Hardware dirty bit management",
|
|
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
|
|
.capability = ARM64_HW_DBM,
|
|
.matches = has_hw_dbm,
|
|
.cpu_enable = cpu_enable_hw_dbm,
|
|
.cpus = &dbm_cpus,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "CRC32 instructions",
|
|
.capability = ARM64_HAS_CRC32,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
|
|
},
|
|
{
|
|
.desc = "Speculative Store Bypassing Safe (SSBS)",
|
|
.capability = ARM64_SSBS,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
|
|
},
|
|
#ifdef CONFIG_ARM64_CNP
|
|
{
|
|
.desc = "Common not Private translations",
|
|
.capability = ARM64_HAS_CNP,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_useable_cnp,
|
|
.cpu_enable = cpu_enable_cnp,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "Speculation barrier (SB)",
|
|
.capability = ARM64_HAS_SB,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
|
|
},
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
{
|
|
.desc = "Address authentication (architected QARMA5 algorithm)",
|
|
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_address_auth_cpucap,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
|
|
},
|
|
{
|
|
.desc = "Address authentication (architected QARMA3 algorithm)",
|
|
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_address_auth_cpucap,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
|
|
},
|
|
{
|
|
.desc = "Address authentication (IMP DEF algorithm)",
|
|
.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_address_auth_cpucap,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
|
|
},
|
|
{
|
|
.capability = ARM64_HAS_ADDRESS_AUTH,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_address_auth_metacap,
|
|
},
|
|
{
|
|
.desc = "Generic authentication (architected QARMA5 algorithm)",
|
|
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
|
|
},
|
|
{
|
|
.desc = "Generic authentication (architected QARMA3 algorithm)",
|
|
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
|
|
},
|
|
{
|
|
.desc = "Generic authentication (IMP DEF algorithm)",
|
|
.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
|
|
},
|
|
{
|
|
.capability = ARM64_HAS_GENERIC_AUTH,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_generic_auth,
|
|
},
|
|
#endif /* CONFIG_ARM64_PTR_AUTH */
|
|
#ifdef CONFIG_ARM64_PSEUDO_NMI
|
|
{
|
|
/*
|
|
* Depends on having GICv3
|
|
*/
|
|
.desc = "IRQ priority masking",
|
|
.capability = ARM64_HAS_GIC_PRIO_MASKING,
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
.matches = can_use_gic_priorities,
|
|
},
|
|
{
|
|
/*
|
|
* Depends on ARM64_HAS_GIC_PRIO_MASKING
|
|
*/
|
|
.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
.matches = has_gic_prio_relaxed_sync,
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_ARM64_E0PD
|
|
{
|
|
.desc = "E0PD",
|
|
.capability = ARM64_HAS_E0PD,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.cpu_enable = cpu_enable_e0pd,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "Random Number Generator",
|
|
.capability = ARM64_HAS_RNG,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
|
|
},
|
|
#ifdef CONFIG_ARM64_BTI
|
|
{
|
|
.desc = "Branch Target Identification",
|
|
.capability = ARM64_BTI,
|
|
#ifdef CONFIG_ARM64_BTI_KERNEL
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
#else
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
#endif
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = bti_enable,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
|
|
},
|
|
#endif
|
|
#ifdef CONFIG_ARM64_MTE
|
|
{
|
|
.desc = "Memory Tagging Extension",
|
|
.capability = ARM64_MTE,
|
|
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_mte,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
|
|
},
|
|
{
|
|
.desc = "Asymmetric MTE Tag Check Fault",
|
|
.capability = ARM64_MTE_ASYMM,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
|
|
},
|
|
#endif /* CONFIG_ARM64_MTE */
|
|
{
|
|
.desc = "RCpc load-acquire (LDAPR)",
|
|
.capability = ARM64_HAS_LDAPR,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
|
|
},
|
|
{
|
|
.desc = "Fine Grained Traps",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_HAS_FGT,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
|
|
},
|
|
#ifdef CONFIG_ARM64_SME
|
|
{
|
|
.desc = "Scalable Matrix Extension",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_SME,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_sme,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
|
|
},
|
|
/* FA64 should be sorted after the base SME capability */
|
|
{
|
|
.desc = "FA64",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_SME_FA64,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_fa64,
|
|
ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
|
|
},
|
|
{
|
|
.desc = "SME2",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_SME2,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_sme2,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
|
|
},
|
|
#endif /* CONFIG_ARM64_SME */
|
|
{
|
|
.desc = "WFx with timeout",
|
|
.capability = ARM64_HAS_WFXT,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
|
|
},
|
|
{
|
|
.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
|
|
.capability = ARM64_HAS_TIDCP1,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_trap_el0_impdef,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
|
|
},
|
|
{
|
|
.desc = "Data independent timing control (DIT)",
|
|
.capability = ARM64_HAS_DIT,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_dit,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
|
|
},
|
|
{
|
|
.desc = "Memory Copy and Memory Set instructions",
|
|
.capability = ARM64_HAS_MOPS,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_mops,
|
|
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
|
|
},
|
|
{
|
|
.capability = ARM64_HAS_TCR2,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
|
|
},
|
|
{
|
|
.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
|
|
.capability = ARM64_HAS_S1PIE,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
|
|
},
|
|
{
|
|
.desc = "VHE for hypervisor only",
|
|
.capability = ARM64_KVM_HVHE,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = hvhe_possible,
|
|
},
|
|
{
|
|
.desc = "Enhanced Virtualization Traps",
|
|
.capability = ARM64_HAS_EVT,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
|
|
},
|
|
{
|
|
.desc = "52-bit Virtual Addressing for KVM (LPA2)",
|
|
.capability = ARM64_HAS_LPA2,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_lpa2,
|
|
},
|
|
{
|
|
.desc = "FPMR",
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.capability = ARM64_HAS_FPMR,
|
|
.matches = has_cpuid_feature,
|
|
.cpu_enable = cpu_enable_fpmr,
|
|
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
|
|
},
|
|
#ifdef CONFIG_ARM64_VA_BITS_52
|
|
{
|
|
.capability = ARM64_HAS_VA52,
|
|
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
|
|
.matches = has_cpuid_feature,
|
|
#ifdef CONFIG_ARM64_64K_PAGES
|
|
.desc = "52-bit Virtual Addressing (LVA)",
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
|
|
#else
|
|
.desc = "52-bit Virtual Addressing (LPA2)",
|
|
#ifdef CONFIG_ARM64_4K_PAGES
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
|
|
#else
|
|
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
|
|
#endif
|
|
#endif
|
|
},
|
|
#endif
|
|
{
|
|
.desc = "NV1",
|
|
.capability = ARM64_HAS_HCR_NV1,
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
|
.matches = has_nv1,
|
|
ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
|
|
},
|
|
{},
|
|
};
|
|
|
|
#define HWCAP_CPUID_MATCH(reg, field, min_value) \
|
|
.matches = has_user_cpuid_feature, \
|
|
ARM64_CPUID_FIELDS(reg, field, min_value)
|
|
|
|
#define __HWCAP_CAP(name, cap_type, cap) \
|
|
.desc = name, \
|
|
.type = ARM64_CPUCAP_SYSTEM_FEATURE, \
|
|
.hwcap_type = cap_type, \
|
|
.hwcap = cap, \
|
|
|
|
#define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
|
|
{ \
|
|
__HWCAP_CAP(#cap, cap_type, cap) \
|
|
HWCAP_CPUID_MATCH(reg, field, min_value) \
|
|
}
|
|
|
|
#define HWCAP_MULTI_CAP(list, cap_type, cap) \
|
|
{ \
|
|
__HWCAP_CAP(#cap, cap_type, cap) \
|
|
.matches = cpucap_multi_entry_cap_matches, \
|
|
.match_list = list, \
|
|
}
|
|
|
|
#define HWCAP_CAP_MATCH(match, cap_type, cap) \
|
|
{ \
|
|
__HWCAP_CAP(#cap, cap_type, cap) \
|
|
.matches = match, \
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
|
|
{
|
|
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
|
|
},
|
|
{
|
|
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
|
|
},
|
|
{
|
|
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
|
|
},
|
|
{},
|
|
};
|
|
|
|
static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
|
|
{
|
|
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
|
|
},
|
|
{
|
|
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
|
|
},
|
|
{
|
|
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
|
|
},
|
|
{},
|
|
};
|
|
#endif
|
|
|
|
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
|
|
HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
|
|
HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
|
|
HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
|
|
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
|
|
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
|
|
HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
|
|
HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
|
|
HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
|
|
HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
|
|
HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
|
|
HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
|
|
#ifdef CONFIG_ARM64_SVE
|
|
HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
|
|
HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
|
|
#endif
|
|
HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
|
|
#ifdef CONFIG_ARM64_BTI
|
|
HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
|
|
#endif
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
|
|
HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
|
|
#endif
|
|
#ifdef CONFIG_ARM64_MTE
|
|
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
|
|
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
|
|
#endif /* CONFIG_ARM64_MTE */
|
|
HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
|
|
HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
|
|
HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
|
|
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
|
|
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
|
|
HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
|
|
HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
|
|
HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
|
|
#ifdef CONFIG_ARM64_SME
|
|
HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
|
|
HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
|
|
#endif /* CONFIG_ARM64_SME */
|
|
HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
|
|
HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
|
|
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
|
|
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
|
|
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
|
|
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
|
|
{},
|
|
};
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
|
|
{
|
|
/*
|
|
* Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
|
|
* in line with that of arm32 as in vfp_init(). We make sure that the
|
|
* check is future proof, by making sure value is non-zero.
|
|
*/
|
|
u32 mvfr1;
|
|
|
|
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
|
|
if (scope == SCOPE_SYSTEM)
|
|
mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
|
|
else
|
|
mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
|
|
|
|
return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
|
|
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
|
|
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
|
|
}
|
|
#endif
|
|
|
|
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
|
|
#ifdef CONFIG_COMPAT
|
|
HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
|
|
HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
|
|
/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
|
|
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
|
|
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
|
|
HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
|
|
HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
|
|
HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
|
|
HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
|
|
HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
|
|
HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
|
|
HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
|
|
HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
|
|
HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
|
|
HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
|
|
HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
|
|
HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
|
|
HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
cpu_set_feature(cap->hwcap);
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
compat_elf_hwcap |= (u32)cap->hwcap;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
compat_elf_hwcap2 |= (u32)cap->hwcap;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if we have a particular HWCAP enabled */
|
|
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
|
|
{
|
|
bool rc;
|
|
|
|
switch (cap->hwcap_type) {
|
|
case CAP_HWCAP:
|
|
rc = cpu_have_feature(cap->hwcap);
|
|
break;
|
|
#ifdef CONFIG_COMPAT
|
|
case CAP_COMPAT_HWCAP:
|
|
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
|
|
break;
|
|
case CAP_COMPAT_HWCAP2:
|
|
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
WARN_ON(1);
|
|
rc = false;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
|
|
{
|
|
/* We support emulation of accesses to CPU ID feature registers */
|
|
cpu_set_named_feature(CPUID);
|
|
for (; hwcaps->matches; hwcaps++)
|
|
if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
|
|
cap_set_elf_hwcap(hwcaps);
|
|
}
|
|
|
|
static void update_cpu_capabilities(u16 scope_mask)
|
|
{
|
|
int i;
|
|
const struct arm64_cpu_capabilities *caps;
|
|
|
|
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
|
|
for (i = 0; i < ARM64_NCAPS; i++) {
|
|
caps = cpucap_ptrs[i];
|
|
if (!caps || !(caps->type & scope_mask) ||
|
|
cpus_have_cap(caps->capability) ||
|
|
!caps->matches(caps, cpucap_default_scope(caps)))
|
|
continue;
|
|
|
|
if (caps->desc && !caps->cpus)
|
|
pr_info("detected: %s\n", caps->desc);
|
|
|
|
__set_bit(caps->capability, system_cpucaps);
|
|
|
|
if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
|
|
set_bit(caps->capability, boot_cpucaps);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable all the available capabilities on this CPU. The capabilities
|
|
* with BOOT_CPU scope are handled separately and hence skipped here.
|
|
*/
|
|
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
|
|
{
|
|
int i;
|
|
u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
|
|
|
|
for_each_available_cap(i) {
|
|
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
|
|
|
|
if (WARN_ON(!cap))
|
|
continue;
|
|
|
|
if (!(cap->type & non_boot_scope))
|
|
continue;
|
|
|
|
if (cap->cpu_enable)
|
|
cap->cpu_enable(cap);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Run through the enabled capabilities and enable() it on all active
|
|
* CPUs
|
|
*/
|
|
static void __init enable_cpu_capabilities(u16 scope_mask)
|
|
{
|
|
int i;
|
|
const struct arm64_cpu_capabilities *caps;
|
|
bool boot_scope;
|
|
|
|
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
|
|
boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
|
|
|
|
for (i = 0; i < ARM64_NCAPS; i++) {
|
|
caps = cpucap_ptrs[i];
|
|
if (!caps || !(caps->type & scope_mask) ||
|
|
!cpus_have_cap(caps->capability))
|
|
continue;
|
|
|
|
if (boot_scope && caps->cpu_enable)
|
|
/*
|
|
* Capabilities with SCOPE_BOOT_CPU scope are finalised
|
|
* before any secondary CPU boots. Thus, each secondary
|
|
* will enable the capability as appropriate via
|
|
* check_local_cpu_capabilities(). The only exception is
|
|
* the boot CPU, for which the capability must be
|
|
* enabled here. This approach avoids costly
|
|
* stop_machine() calls for this case.
|
|
*/
|
|
caps->cpu_enable(caps);
|
|
}
|
|
|
|
/*
|
|
* For all non-boot scope capabilities, use stop_machine()
|
|
* as it schedules the work allowing us to modify PSTATE,
|
|
* instead of on_each_cpu() which uses an IPI, giving us a
|
|
* PSTATE that disappears when we return.
|
|
*/
|
|
if (!boot_scope)
|
|
stop_machine(cpu_enable_non_boot_scope_capabilities,
|
|
NULL, cpu_online_mask);
|
|
}
|
|
|
|
/*
|
|
* Run through the list of capabilities to check for conflicts.
|
|
* If the system has already detected a capability, take necessary
|
|
* action on this CPU.
|
|
*/
|
|
static void verify_local_cpu_caps(u16 scope_mask)
|
|
{
|
|
int i;
|
|
bool cpu_has_cap, system_has_cap;
|
|
const struct arm64_cpu_capabilities *caps;
|
|
|
|
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
|
|
|
|
for (i = 0; i < ARM64_NCAPS; i++) {
|
|
caps = cpucap_ptrs[i];
|
|
if (!caps || !(caps->type & scope_mask))
|
|
continue;
|
|
|
|
cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
|
|
system_has_cap = cpus_have_cap(caps->capability);
|
|
|
|
if (system_has_cap) {
|
|
/*
|
|
* Check if the new CPU misses an advertised feature,
|
|
* which is not safe to miss.
|
|
*/
|
|
if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
|
|
break;
|
|
/*
|
|
* We have to issue cpu_enable() irrespective of
|
|
* whether the CPU has it or not, as it is enabeld
|
|
* system wide. It is upto the call back to take
|
|
* appropriate action on this CPU.
|
|
*/
|
|
if (caps->cpu_enable)
|
|
caps->cpu_enable(caps);
|
|
} else {
|
|
/*
|
|
* Check if the CPU has this capability if it isn't
|
|
* safe to have when the system doesn't.
|
|
*/
|
|
if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i < ARM64_NCAPS) {
|
|
pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
|
|
smp_processor_id(), caps->capability,
|
|
caps->desc, system_has_cap, cpu_has_cap);
|
|
|
|
if (cpucap_panic_on_conflict(caps))
|
|
cpu_panic_kernel();
|
|
else
|
|
cpu_die_early();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for CPU features that are used in early boot
|
|
* based on the Boot CPU value.
|
|
*/
|
|
static void check_early_cpu_features(void)
|
|
{
|
|
verify_cpu_asid_bits();
|
|
|
|
verify_local_cpu_caps(SCOPE_BOOT_CPU);
|
|
}
|
|
|
|
static void
|
|
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
|
|
{
|
|
|
|
for (; caps->matches; caps++)
|
|
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
|
|
pr_crit("CPU%d: missing HWCAP: %s\n",
|
|
smp_processor_id(), caps->desc);
|
|
cpu_die_early();
|
|
}
|
|
}
|
|
|
|
static void verify_local_elf_hwcaps(void)
|
|
{
|
|
__verify_local_elf_hwcaps(arm64_elf_hwcaps);
|
|
|
|
if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
|
|
__verify_local_elf_hwcaps(compat_elf_hwcaps);
|
|
}
|
|
|
|
static void verify_sve_features(void)
|
|
{
|
|
unsigned long cpacr = cpacr_save_enable_kernel_sve();
|
|
|
|
if (vec_verify_vq_map(ARM64_VEC_SVE)) {
|
|
pr_crit("CPU%d: SVE: vector length support mismatch\n",
|
|
smp_processor_id());
|
|
cpu_die_early();
|
|
}
|
|
|
|
cpacr_restore(cpacr);
|
|
}
|
|
|
|
static void verify_sme_features(void)
|
|
{
|
|
unsigned long cpacr = cpacr_save_enable_kernel_sme();
|
|
|
|
if (vec_verify_vq_map(ARM64_VEC_SME)) {
|
|
pr_crit("CPU%d: SME: vector length support mismatch\n",
|
|
smp_processor_id());
|
|
cpu_die_early();
|
|
}
|
|
|
|
cpacr_restore(cpacr);
|
|
}
|
|
|
|
static void verify_hyp_capabilities(void)
|
|
{
|
|
u64 safe_mmfr1, mmfr0, mmfr1;
|
|
int parange, ipa_max;
|
|
unsigned int safe_vmid_bits, vmid_bits;
|
|
|
|
if (!IS_ENABLED(CONFIG_KVM))
|
|
return;
|
|
|
|
safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
|
mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
|
|
mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
|
|
|
|
/* Verify VMID bits */
|
|
safe_vmid_bits = get_vmid_bits(safe_mmfr1);
|
|
vmid_bits = get_vmid_bits(mmfr1);
|
|
if (vmid_bits < safe_vmid_bits) {
|
|
pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
|
|
cpu_die_early();
|
|
}
|
|
|
|
/* Verify IPA range */
|
|
parange = cpuid_feature_extract_unsigned_field(mmfr0,
|
|
ID_AA64MMFR0_EL1_PARANGE_SHIFT);
|
|
ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
|
|
if (ipa_max < get_kvm_ipa_limit()) {
|
|
pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
|
|
cpu_die_early();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run through the enabled system capabilities and enable() it on this CPU.
|
|
* The capabilities were decided based on the available CPUs at the boot time.
|
|
* Any new CPU should match the system wide status of the capability. If the
|
|
* new CPU doesn't have a capability which the system now has enabled, we
|
|
* cannot do anything to fix it up and could cause unexpected failures. So
|
|
* we park the CPU.
|
|
*/
|
|
static void verify_local_cpu_capabilities(void)
|
|
{
|
|
/*
|
|
* The capabilities with SCOPE_BOOT_CPU are checked from
|
|
* check_early_cpu_features(), as they need to be verified
|
|
* on all secondary CPUs.
|
|
*/
|
|
verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
|
|
verify_local_elf_hwcaps();
|
|
|
|
if (system_supports_sve())
|
|
verify_sve_features();
|
|
|
|
if (system_supports_sme())
|
|
verify_sme_features();
|
|
|
|
if (is_hyp_mode_available())
|
|
verify_hyp_capabilities();
|
|
}
|
|
|
|
void check_local_cpu_capabilities(void)
|
|
{
|
|
/*
|
|
* All secondary CPUs should conform to the early CPU features
|
|
* in use by the kernel based on boot CPU.
|
|
*/
|
|
check_early_cpu_features();
|
|
|
|
/*
|
|
* If we haven't finalised the system capabilities, this CPU gets
|
|
* a chance to update the errata work arounds and local features.
|
|
* Otherwise, this CPU should verify that it has all the system
|
|
* advertised capabilities.
|
|
*/
|
|
if (!system_capabilities_finalized())
|
|
update_cpu_capabilities(SCOPE_LOCAL_CPU);
|
|
else
|
|
verify_local_cpu_capabilities();
|
|
}
|
|
|
|
bool this_cpu_has_cap(unsigned int n)
|
|
{
|
|
if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
|
|
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
|
|
|
|
if (cap)
|
|
return cap->matches(cap, SCOPE_LOCAL_CPU);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(this_cpu_has_cap);
|
|
|
|
/*
|
|
* This helper function is used in a narrow window when,
|
|
* - The system wide safe registers are set with all the SMP CPUs and,
|
|
* - The SYSTEM_FEATURE system_cpucaps may not have been set.
|
|
*/
|
|
static bool __maybe_unused __system_matches_cap(unsigned int n)
|
|
{
|
|
if (n < ARM64_NCAPS) {
|
|
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
|
|
|
|
if (cap)
|
|
return cap->matches(cap, SCOPE_SYSTEM);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void cpu_set_feature(unsigned int num)
|
|
{
|
|
set_bit(num, elf_hwcap);
|
|
}
|
|
|
|
bool cpu_have_feature(unsigned int num)
|
|
{
|
|
return test_bit(num, elf_hwcap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_have_feature);
|
|
|
|
unsigned long cpu_get_elf_hwcap(void)
|
|
{
|
|
/*
|
|
* We currently only populate the first 32 bits of AT_HWCAP. Please
|
|
* note that for userspace compatibility we guarantee that bits 62
|
|
* and 63 will always be returned as 0.
|
|
*/
|
|
return elf_hwcap[0];
|
|
}
|
|
|
|
unsigned long cpu_get_elf_hwcap2(void)
|
|
{
|
|
return elf_hwcap[1];
|
|
}
|
|
|
|
static void __init setup_boot_cpu_capabilities(void)
|
|
{
|
|
/*
|
|
* The boot CPU's feature register values have been recorded. Detect
|
|
* boot cpucaps and local cpucaps for the boot CPU, then enable and
|
|
* patch alternatives for the available boot cpucaps.
|
|
*/
|
|
update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
|
|
enable_cpu_capabilities(SCOPE_BOOT_CPU);
|
|
apply_boot_alternatives();
|
|
}
|
|
|
|
void __init setup_boot_cpu_features(void)
|
|
{
|
|
/*
|
|
* Initialize the indirect array of CPU capabilities pointers before we
|
|
* handle the boot CPU.
|
|
*/
|
|
init_cpucap_indirect_list();
|
|
|
|
/*
|
|
* Detect broken pseudo-NMI. Must be called _before_ the call to
|
|
* setup_boot_cpu_capabilities() since it interacts with
|
|
* can_use_gic_priorities().
|
|
*/
|
|
detect_system_supports_pseudo_nmi();
|
|
|
|
setup_boot_cpu_capabilities();
|
|
}
|
|
|
|
static void __init setup_system_capabilities(void)
|
|
{
|
|
/*
|
|
* The system-wide safe feature register values have been finalized.
|
|
* Detect, enable, and patch alternatives for the available system
|
|
* cpucaps.
|
|
*/
|
|
update_cpu_capabilities(SCOPE_SYSTEM);
|
|
enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
|
|
apply_alternatives_all();
|
|
|
|
/*
|
|
* Log any cpucaps with a cpumask as these aren't logged by
|
|
* update_cpu_capabilities().
|
|
*/
|
|
for (int i = 0; i < ARM64_NCAPS; i++) {
|
|
const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
|
|
|
|
if (caps && caps->cpus && caps->desc &&
|
|
cpumask_any(caps->cpus) < nr_cpu_ids)
|
|
pr_info("detected: %s on CPU%*pbl\n",
|
|
caps->desc, cpumask_pr_args(caps->cpus));
|
|
}
|
|
|
|
/*
|
|
* TTBR0 PAN doesn't have its own cpucap, so log it manually.
|
|
*/
|
|
if (system_uses_ttbr0_pan())
|
|
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
|
|
}
|
|
|
|
void __init setup_system_features(void)
|
|
{
|
|
setup_system_capabilities();
|
|
|
|
kpti_install_ng_mappings();
|
|
|
|
sve_setup();
|
|
sme_setup();
|
|
|
|
/*
|
|
* Check for sane CTR_EL0.CWG value.
|
|
*/
|
|
if (!cache_type_cwg())
|
|
pr_warn("No Cache Writeback Granule information, assuming %d\n",
|
|
ARCH_DMA_MINALIGN);
|
|
}
|
|
|
|
void __init setup_user_features(void)
|
|
{
|
|
user_feature_fixup();
|
|
|
|
setup_elf_hwcaps(arm64_elf_hwcaps);
|
|
|
|
if (system_supports_32bit_el0()) {
|
|
setup_elf_hwcaps(compat_elf_hwcaps);
|
|
elf_hwcap_fixup();
|
|
}
|
|
|
|
minsigstksz_setup();
|
|
}
|
|
|
|
static int enable_mismatched_32bit_el0(unsigned int cpu)
|
|
{
|
|
/*
|
|
* The first 32-bit-capable CPU we detected and so can no longer
|
|
* be offlined by userspace. -1 indicates we haven't yet onlined
|
|
* a 32-bit-capable CPU.
|
|
*/
|
|
static int lucky_winner = -1;
|
|
|
|
struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
|
|
bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
|
|
|
|
if (cpu_32bit) {
|
|
cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
|
|
static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
|
|
}
|
|
|
|
if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
|
|
return 0;
|
|
|
|
if (lucky_winner >= 0)
|
|
return 0;
|
|
|
|
/*
|
|
* We've detected a mismatch. We need to keep one of our CPUs with
|
|
* 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
|
|
* every CPU in the system for a 32-bit task.
|
|
*/
|
|
lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
|
|
cpu_active_mask);
|
|
get_cpu_device(lucky_winner)->offline_disabled = true;
|
|
setup_elf_hwcaps(compat_elf_hwcaps);
|
|
elf_hwcap_fixup();
|
|
pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
|
|
cpu, lucky_winner);
|
|
return 0;
|
|
}
|
|
|
|
static int __init init_32bit_el0_mask(void)
|
|
{
|
|
if (!allow_mismatched_32bit_el0)
|
|
return 0;
|
|
|
|
if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
|
|
"arm64/mismatched_32bit_el0:online",
|
|
enable_mismatched_32bit_el0, NULL);
|
|
}
|
|
subsys_initcall_sync(init_32bit_el0_mask);
|
|
|
|
static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
|
|
{
|
|
cpu_enable_swapper_cnp();
|
|
}
|
|
|
|
/*
|
|
* We emulate only the following system register space.
|
|
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
|
|
* See Table C5-6 System instruction encodings for System register accesses,
|
|
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
|
|
*/
|
|
static inline bool __attribute_const__ is_emulated(u32 id)
|
|
{
|
|
return (sys_reg_Op0(id) == 0x3 &&
|
|
sys_reg_CRn(id) == 0x0 &&
|
|
sys_reg_Op1(id) == 0x0 &&
|
|
(sys_reg_CRm(id) == 0 ||
|
|
((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
|
|
}
|
|
|
|
/*
|
|
* With CRm == 0, reg should be one of :
|
|
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
|
|
*/
|
|
static inline int emulate_id_reg(u32 id, u64 *valp)
|
|
{
|
|
switch (id) {
|
|
case SYS_MIDR_EL1:
|
|
*valp = read_cpuid_id();
|
|
break;
|
|
case SYS_MPIDR_EL1:
|
|
*valp = SYS_MPIDR_SAFE_VAL;
|
|
break;
|
|
case SYS_REVIDR_EL1:
|
|
/* IMPLEMENTATION DEFINED values are emulated with 0 */
|
|
*valp = 0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulate_sys_reg(u32 id, u64 *valp)
|
|
{
|
|
struct arm64_ftr_reg *regp;
|
|
|
|
if (!is_emulated(id))
|
|
return -EINVAL;
|
|
|
|
if (sys_reg_CRm(id) == 0)
|
|
return emulate_id_reg(id, valp);
|
|
|
|
regp = get_arm64_ftr_reg_nowarn(id);
|
|
if (regp)
|
|
*valp = arm64_ftr_reg_user_value(regp);
|
|
else
|
|
/*
|
|
* The untracked registers are either IMPLEMENTATION DEFINED
|
|
* (e.g, ID_AFR0_EL1) or reserved RAZ.
|
|
*/
|
|
*valp = 0;
|
|
return 0;
|
|
}
|
|
|
|
int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
|
|
{
|
|
int rc;
|
|
u64 val;
|
|
|
|
rc = emulate_sys_reg(sys_reg, &val);
|
|
if (!rc) {
|
|
pt_regs_write_reg(regs, rt, val);
|
|
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
|
|
{
|
|
u32 sys_reg, rt;
|
|
|
|
if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
|
|
return false;
|
|
|
|
/*
|
|
* sys_reg values are defined as used in mrs/msr instruction.
|
|
* shift the imm value to get the encoding.
|
|
*/
|
|
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
|
|
rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
|
|
return do_emulate_mrs(regs, sys_reg, rt) == 0;
|
|
}
|
|
|
|
enum mitigation_state arm64_get_meltdown_state(void)
|
|
{
|
|
if (__meltdown_safe)
|
|
return SPECTRE_UNAFFECTED;
|
|
|
|
if (arm64_kernel_unmapped_at_el0())
|
|
return SPECTRE_MITIGATED;
|
|
|
|
return SPECTRE_VULNERABLE;
|
|
}
|
|
|
|
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
switch (arm64_get_meltdown_state()) {
|
|
case SPECTRE_UNAFFECTED:
|
|
return sprintf(buf, "Not affected\n");
|
|
|
|
case SPECTRE_MITIGATED:
|
|
return sprintf(buf, "Mitigation: PTI\n");
|
|
|
|
default:
|
|
return sprintf(buf, "Vulnerable\n");
|
|
}
|
|
}
|