Mark Rutland 080297becc arm64: defer clearing DAIF.D
For historical reasons we unmask debug exceptions in __cpu_setup(), but
it's not necessary to unmask debug exceptions this early in the
boot/idle entry paths. It would be better to unmask debug exceptions
later in C code as this simplifies the current code and will make it
easier to rework exception masking logic to handle non-DAIF bits in
future (e.g. PSTATE.{ALLINT,PM}).

We started clearing DAIF.D in __cpu_setup() in commit:

  2ce39ad15182604b ("arm64: debug: unmask PSTATE.D earlier")

At the time, we needed to ensure that DAIF.D was clear on the primary
CPU before scheduling and preemption were possible, and chose to do this
in __cpu_setup() so that this occurred in the same place for primary and
secondary CPUs. As we cannot handle debug exceptions this early, we
placed an ISB between initializing MDSCR_EL1 and clearing DAIF.D so that
no exceptions should be triggered.

Subsequently we rewrote the return-from-{idle,suspend} paths to use
__cpu_setup() in commit:

  cabe1c81ea5be983 ("arm64: Change cpu_resume() to enable mmu early then access sleep_sp by va")

... which allowed for earlier use of the MMU and had the desirable
property of using the same code to reset the CPU in the cold and warm
boot paths. This introduced a bug: DAIF.D was clear while
cpu_do_resume() restored MDSCR_EL1 and other control registers (e.g.
breakpoint/watchpoint control/value registers), and so we could
unexpectedly take debug exceptions.

We fixed that in commit:

  744c6c37cc18705d ("arm64: kernel: Fix unmasked debug exceptions when restoring mdscr_el1")

... by having cpu_do_resume() use the `disable_dbg` macro to set DAIF.D
before restoring MDSCR_EL1 and other control registers. This relies on
DAIF.D being subsequently cleared again in cpu_resume().

Subsequently we reworked DAIF masking in commit:

  0fbeb318754860b3 ("arm64: explicitly mask all exceptions")

... where we began enforcing a policy that DAIF.D being set implies all
other DAIF bits are set, and so e.g. we cannot take an IRQ while DAIF.D
is set. As part of this the use of `disable_dbg` in cpu_resume() was
replaced with `disable_daif` for consistency with the rest of the
kernel.

These days, there's no need to clear DAIF.D early within __cpu_setup():

* setup_arch() clears DAIF.DA before scheduling and preemption are
  possible on the primary CPU, avoiding the problem we we originally
  trying to work around.

  Note: DAIF.IF get cleared later when interrupts are enabled for the
  first time.

* secondary_start_kernel() clears all DAIF bits before scheduling and
  preemption are possible on secondary CPUs.

  Note: with pseudo-NMI, the PMR is initialized here before any DAIF
  bits are cleared. Similar will be necessary for the architectural NMI.

* cpu_suspend() restores all DAIF bits when returning from idle,
  ensuring that we don't unexpectedly leave DAIF.D clear or set.

  Note: with pseudo-NMI, the PMR is initialized here before DAIF is
  cleared. Similar will be necessary for the architectural NMI.

This patch removes the unmasking of debug exceptions from __cpu_setup(),
relying on the above locations to initialize DAIF. This allows some
other cleanups:

* It is no longer necessary for cpu_resume() to explicitly mask debug
  (or other) exceptions, as it is always called with all DAIF bits set.
  Thus we drop the use of `disable_daif`.

* The `enable_dbg` macro is no longer used, and so is dropped.

* It is no longer necessary to have an ISB immediately after
  initializing MDSCR_EL1 in __cpu_setup(), and we can revert to relying
  on the context synchronization that occurs when the MMU is enabled
  between __cpu_setup() and code which clears DAIF.D

Comments are added to setup_arch() and secondary_start_kernel() to
explain the initial unmasking of the DAIF bits.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240422113523.4070414-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2024-04-28 08:40:35 +01:00

435 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/acpi.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/cache.h>
#include <linux/screen_info.h>
#include <linux/init.h>
#include <linux/kexec.h>
#include <linux/root_dev.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/panic_notifier.h>
#include <linux/proc_fs.h>
#include <linux/memblock.h>
#include <linux/of_fdt.h>
#include <linux/efi.h>
#include <linux/psci.h>
#include <linux/sched/task.h>
#include <linux/scs.h>
#include <linux/mm.h>
#include <asm/acpi.h>
#include <asm/fixmap.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/daifflags.h>
#include <asm/elf.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/kasan.h>
#include <asm/numa.h>
#include <asm/scs.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp_plat.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/traps.h>
#include <asm/efi.h>
#include <asm/xen/hypervisor.h>
#include <asm/mmu_context.h>
static int num_standard_resources;
static struct resource *standard_resources;
phys_addr_t __fdt_pointer __initdata;
u64 mmu_enabled_at_boot __initdata;
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_SYSTEM_RAM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_SYSTEM_RAM
}
};
#define kernel_code mem_res[0]
#define kernel_data mem_res[1]
/*
* The recorded values of x0 .. x3 upon kernel entry.
*/
u64 __cacheline_aligned boot_args[4];
void __init smp_setup_processor_id(void)
{
u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
set_cpu_logical_map(0, mpidr);
pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
(unsigned long)mpidr, read_cpuid_id());
}
bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
return phys_id == cpu_logical_map(cpu);
}
struct mpidr_hash mpidr_hash;
/**
* smp_build_mpidr_hash - Pre-compute shifts required at each affinity
* level in order to build a linear index from an
* MPIDR value. Resulting algorithm is a collision
* free hash carried out through shifting and ORing
*/
static void __init smp_build_mpidr_hash(void)
{
u32 i, affinity, fs[4], bits[4], ls;
u64 mask = 0;
/*
* Pre-scan the list of MPIDRS and filter out bits that do
* not contribute to affinity levels, ie they never toggle.
*/
for_each_possible_cpu(i)
mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
pr_debug("mask of set bits %#llx\n", mask);
/*
* Find and stash the last and first bit set at all affinity levels to
* check how many bits are required to represent them.
*/
for (i = 0; i < 4; i++) {
affinity = MPIDR_AFFINITY_LEVEL(mask, i);
/*
* Find the MSB bit and LSB bits position
* to determine how many bits are required
* to express the affinity level.
*/
ls = fls(affinity);
fs[i] = affinity ? ffs(affinity) - 1 : 0;
bits[i] = ls - fs[i];
}
/*
* An index can be created from the MPIDR_EL1 by isolating the
* significant bits at each affinity level and by shifting
* them in order to compress the 32 bits values space to a
* compressed set of values. This is equivalent to hashing
* the MPIDR_EL1 through shifting and ORing. It is a collision free
* hash though not minimal since some levels might contain a number
* of CPUs that is not an exact power of 2 and their bit
* representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
*/
mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
(bits[1] + bits[0]);
mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
fs[3] - (bits[2] + bits[1] + bits[0]);
mpidr_hash.mask = mask;
mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
mpidr_hash.shift_aff[0],
mpidr_hash.shift_aff[1],
mpidr_hash.shift_aff[2],
mpidr_hash.shift_aff[3],
mpidr_hash.mask,
mpidr_hash.bits);
/*
* 4x is an arbitrary value used to warn on a hash table much bigger
* than expected on most systems.
*/
if (mpidr_hash_size() > 4 * num_possible_cpus())
pr_warn("Large number of MPIDR hash buckets detected\n");
}
static void __init setup_machine_fdt(phys_addr_t dt_phys)
{
int size;
void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
const char *name;
if (dt_virt)
memblock_reserve(dt_phys, size);
if (!dt_virt || !early_init_dt_scan(dt_virt)) {
pr_crit("\n"
"Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
"\nPlease check your bootloader.",
&dt_phys, dt_virt);
/*
* Note that in this _really_ early stage we cannot even BUG()
* or oops, so the least terrible thing to do is cpu_relax(),
* or else we could end-up printing non-initialized data, etc.
*/
while (true)
cpu_relax();
}
/* Early fixups are done, map the FDT as read-only now */
fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
name = of_flat_dt_get_machine_name();
if (!name)
return;
pr_info("Machine model: %s\n", name);
dump_stack_set_arch_desc("%s (DT)", name);
}
static void __init request_standard_resources(void)
{
struct memblock_region *region;
struct resource *res;
unsigned long i = 0;
size_t res_size;
kernel_code.start = __pa_symbol(_stext);
kernel_code.end = __pa_symbol(__init_begin - 1);
kernel_data.start = __pa_symbol(_sdata);
kernel_data.end = __pa_symbol(_end - 1);
insert_resource(&iomem_resource, &kernel_code);
insert_resource(&iomem_resource, &kernel_data);
num_standard_resources = memblock.memory.cnt;
res_size = num_standard_resources * sizeof(*standard_resources);
standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
if (!standard_resources)
panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
for_each_mem_region(region) {
res = &standard_resources[i++];
if (memblock_is_nomap(region)) {
res->name = "reserved";
res->flags = IORESOURCE_MEM;
res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
} else {
res->name = "System RAM";
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
}
insert_resource(&iomem_resource, res);
}
}
static int __init reserve_memblock_reserved_regions(void)
{
u64 i, j;
for (i = 0; i < num_standard_resources; ++i) {
struct resource *mem = &standard_resources[i];
phys_addr_t r_start, r_end, mem_size = resource_size(mem);
if (!memblock_is_region_reserved(mem->start, mem_size))
continue;
for_each_reserved_mem_range(j, &r_start, &r_end) {
resource_size_t start, end;
start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
if (start > mem->end || end < mem->start)
continue;
reserve_region_with_split(mem, start, end, "reserved");
}
}
return 0;
}
arch_initcall(reserve_memblock_reserved_regions);
u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
u64 cpu_logical_map(unsigned int cpu)
{
return __cpu_logical_map[cpu];
}
void __init __no_sanitize_address setup_arch(char **cmdline_p)
{
setup_initial_init_mm(_stext, _etext, _edata, _end);
*cmdline_p = boot_command_line;
kaslr_init();
early_fixmap_init();
early_ioremap_init();
setup_machine_fdt(__fdt_pointer);
/*
* Initialise the static keys early as they may be enabled by the
* cpufeature code and early parameters.
*/
jump_label_init();
parse_early_param();
dynamic_scs_init();
/*
* The primary CPU enters the kernel with all DAIF exceptions masked.
*
* We must unmask Debug and SError before preemption or scheduling is
* possible to ensure that these are consistently unmasked across
* threads, and we want to unmask SError as soon as possible after
* initializing earlycon so that we can report any SErrors immediately.
*
* IRQ and FIQ will be unmasked after the root irqchip has been
* detected and initialized.
*/
local_daif_restore(DAIF_PROCCTX_NOIRQ);
/*
* TTBR0 is only used for the identity mapping at this stage. Make it
* point to zero page to avoid speculatively fetching new entries.
*/
cpu_uninstall_idmap();
xen_early_init();
efi_init();
if (!efi_enabled(EFI_BOOT)) {
if ((u64)_text % MIN_KIMG_ALIGN)
pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
FW_BUG "Booted with MMU enabled!");
}
arm64_memblock_init();
paging_init();
acpi_table_upgrade();
/* Parse the ACPI tables for possible boot-time configuration */
acpi_boot_table_init();
if (acpi_disabled)
unflatten_device_tree();
bootmem_init();
kasan_init();
request_standard_resources();
early_ioremap_reset();
if (acpi_disabled)
psci_dt_init();
else
psci_acpi_init();
init_bootcpu_ops();
smp_init_cpus();
smp_build_mpidr_hash();
/* Init percpu seeds for random tags after cpus are set up. */
kasan_init_sw_tags();
#ifdef CONFIG_ARM64_SW_TTBR0_PAN
/*
* Make sure init_thread_info.ttbr0 always generates translation
* faults in case uaccess_enable() is inadvertently called by the init
* thread.
*/
init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
#endif
if (boot_args[1] || boot_args[2] || boot_args[3]) {
pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
"This indicates a broken bootloader or old kernel\n",
boot_args[1], boot_args[2], boot_args[3]);
}
}
static inline bool cpu_can_disable(unsigned int cpu)
{
#ifdef CONFIG_HOTPLUG_CPU
const struct cpu_operations *ops = get_cpu_ops(cpu);
if (ops && ops->cpu_can_disable)
return ops->cpu_can_disable(cpu);
#endif
return false;
}
bool arch_cpu_is_hotpluggable(int num)
{
return cpu_can_disable(num);
}
static void dump_kernel_offset(void)
{
const unsigned long offset = kaslr_offset();
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
offset, KIMAGE_VADDR);
pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
} else {
pr_emerg("Kernel Offset: disabled\n");
}
}
static int arm64_panic_block_dump(struct notifier_block *self,
unsigned long v, void *p)
{
dump_kernel_offset();
dump_cpu_features();
dump_mem_limit();
return 0;
}
static struct notifier_block arm64_panic_block = {
.notifier_call = arm64_panic_block_dump
};
static int __init register_arm64_panic_block(void)
{
atomic_notifier_chain_register(&panic_notifier_list,
&arm64_panic_block);
return 0;
}
device_initcall(register_arm64_panic_block);
static int __init check_mmu_enabled_at_boot(void)
{
if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
panic("Non-EFI boot detected with MMU and caches enabled");
return 0;
}
device_initcall_sync(check_mmu_enabled_at_boot);