linux/net/mptcp/subflow.c
Florian Westphal a6b118febb mptcp: add receive buffer auto-tuning
When mptcp is used, userspace doesn't read from the tcp (subflow)
socket but from the parent (mptcp) socket receive queue.

skbs are moved from the subflow socket to the mptcp rx queue either from
'data_ready' callback (if mptcp socket can be locked), a work queue, or
the socket receive function.

This means tcp_rcv_space_adjust() is never called and thus no receive
buffer size auto-tuning is done.

An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the
function that moves skbs from subflow to mptcp socket.
While this enabled autotuning, it also meant tuning was done even if
userspace was reading the mptcp socket very slowly.

This adds mptcp_rcv_space_adjust() and calls it after userspace has
read data from the mptcp socket rx queue.

Its very similar to tcp_rcv_space_adjust, with two differences:

1. The rtt estimate is the largest one observed on a subflow
2. The rcvbuf size and window clamp of all subflows is adjusted
   to the mptcp-level rcvbuf.

Otherwise, we get spurious drops at tcp (subflow) socket level if
the skbs are not moved to the mptcp socket fast enough.

Before:
time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap
[..]
ns4 MPTCP -> ns3 (10.0.3.2:10108      ) MPTCP   (duration 40823ms) [ OK ]
ns4 MPTCP -> ns3 (10.0.3.2:10109      ) TCP     (duration 23119ms) [ OK ]
ns4 TCP   -> ns3 (10.0.3.2:10110      ) MPTCP   (duration  5421ms) [ OK ]
ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP   (duration 41446ms) [ OK ]
ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP     (duration 23427ms) [ OK ]
ns4 TCP   -> ns3 (dead:beef:3::2:10113) MPTCP   (duration  5426ms) [ OK ]
Time: 1396 seconds

After:
ns4 MPTCP -> ns3 (10.0.3.2:10108      ) MPTCP   (duration  5417ms) [ OK ]
ns4 MPTCP -> ns3 (10.0.3.2:10109      ) TCP     (duration  5427ms) [ OK ]
ns4 TCP   -> ns3 (10.0.3.2:10110      ) MPTCP   (duration  5422ms) [ OK ]
ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP   (duration  5415ms) [ OK ]
ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP     (duration  5422ms) [ OK ]
ns4 TCP   -> ns3 (dead:beef:3::2:10113) MPTCP   (duration  5423ms) [ OK ]
Time: 296 seconds

Signed-off-by: Florian Westphal <fw@strlen.de>
Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-01 17:47:55 -07:00

1305 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2017 - 2019, Intel Corporation.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <crypto/algapi.h>
#include <crypto/sha.h>
#include <net/sock.h>
#include <net/inet_common.h>
#include <net/inet_hashtables.h>
#include <net/protocol.h>
#include <net/tcp.h>
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
#include <net/ip6_route.h>
#endif
#include <net/mptcp.h>
#include "protocol.h"
#include "mib.h"
static void SUBFLOW_REQ_INC_STATS(struct request_sock *req,
enum linux_mptcp_mib_field field)
{
MPTCP_INC_STATS(sock_net(req_to_sk(req)), field);
}
static void subflow_req_destructor(struct request_sock *req)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
pr_debug("subflow_req=%p", subflow_req);
if (subflow_req->msk)
sock_put((struct sock *)subflow_req->msk);
mptcp_token_destroy_request(req);
tcp_request_sock_ops.destructor(req);
}
static void subflow_generate_hmac(u64 key1, u64 key2, u32 nonce1, u32 nonce2,
void *hmac)
{
u8 msg[8];
put_unaligned_be32(nonce1, &msg[0]);
put_unaligned_be32(nonce2, &msg[4]);
mptcp_crypto_hmac_sha(key1, key2, msg, 8, hmac);
}
/* validate received token and create truncated hmac and nonce for SYN-ACK */
static struct mptcp_sock *subflow_token_join_request(struct request_sock *req,
const struct sk_buff *skb)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
u8 hmac[SHA256_DIGEST_SIZE];
struct mptcp_sock *msk;
int local_id;
msk = mptcp_token_get_sock(subflow_req->token);
if (!msk) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINNOTOKEN);
return NULL;
}
local_id = mptcp_pm_get_local_id(msk, (struct sock_common *)req);
if (local_id < 0) {
sock_put((struct sock *)msk);
return NULL;
}
subflow_req->local_id = local_id;
get_random_bytes(&subflow_req->local_nonce, sizeof(u32));
subflow_generate_hmac(msk->local_key, msk->remote_key,
subflow_req->local_nonce,
subflow_req->remote_nonce, hmac);
subflow_req->thmac = get_unaligned_be64(hmac);
return msk;
}
static void subflow_init_req(struct request_sock *req,
const struct sock *sk_listener,
struct sk_buff *skb)
{
struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener);
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct mptcp_options_received mp_opt;
pr_debug("subflow_req=%p, listener=%p", subflow_req, listener);
mptcp_get_options(skb, &mp_opt);
subflow_req->mp_capable = 0;
subflow_req->mp_join = 0;
subflow_req->msk = NULL;
mptcp_token_init_request(req);
#ifdef CONFIG_TCP_MD5SIG
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
* TCP option space.
*/
if (rcu_access_pointer(tcp_sk(sk_listener)->md5sig_info))
return;
#endif
if (mp_opt.mp_capable) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MPCAPABLEPASSIVE);
if (mp_opt.mp_join)
return;
} else if (mp_opt.mp_join) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINSYNRX);
}
if (mp_opt.mp_capable && listener->request_mptcp) {
int err;
err = mptcp_token_new_request(req);
if (err == 0)
subflow_req->mp_capable = 1;
subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq;
} else if (mp_opt.mp_join && listener->request_mptcp) {
subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq;
subflow_req->mp_join = 1;
subflow_req->backup = mp_opt.backup;
subflow_req->remote_id = mp_opt.join_id;
subflow_req->token = mp_opt.token;
subflow_req->remote_nonce = mp_opt.nonce;
subflow_req->msk = subflow_token_join_request(req, skb);
pr_debug("token=%u, remote_nonce=%u msk=%p", subflow_req->token,
subflow_req->remote_nonce, subflow_req->msk);
}
}
static void subflow_v4_init_req(struct request_sock *req,
const struct sock *sk_listener,
struct sk_buff *skb)
{
tcp_rsk(req)->is_mptcp = 1;
tcp_request_sock_ipv4_ops.init_req(req, sk_listener, skb);
subflow_init_req(req, sk_listener, skb);
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static void subflow_v6_init_req(struct request_sock *req,
const struct sock *sk_listener,
struct sk_buff *skb)
{
tcp_rsk(req)->is_mptcp = 1;
tcp_request_sock_ipv6_ops.init_req(req, sk_listener, skb);
subflow_init_req(req, sk_listener, skb);
}
#endif
/* validate received truncated hmac and create hmac for third ACK */
static bool subflow_thmac_valid(struct mptcp_subflow_context *subflow)
{
u8 hmac[SHA256_DIGEST_SIZE];
u64 thmac;
subflow_generate_hmac(subflow->remote_key, subflow->local_key,
subflow->remote_nonce, subflow->local_nonce,
hmac);
thmac = get_unaligned_be64(hmac);
pr_debug("subflow=%p, token=%u, thmac=%llu, subflow->thmac=%llu\n",
subflow, subflow->token,
(unsigned long long)thmac,
(unsigned long long)subflow->thmac);
return thmac == subflow->thmac;
}
static void subflow_finish_connect(struct sock *sk, const struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_options_received mp_opt;
struct sock *parent = subflow->conn;
subflow->icsk_af_ops->sk_rx_dst_set(sk, skb);
if (inet_sk_state_load(parent) == TCP_SYN_SENT) {
inet_sk_state_store(parent, TCP_ESTABLISHED);
parent->sk_state_change(parent);
}
/* be sure no special action on any packet other than syn-ack */
if (subflow->conn_finished)
return;
subflow->conn_finished = 1;
subflow->ssn_offset = TCP_SKB_CB(skb)->seq;
pr_debug("subflow=%p synack seq=%x", subflow, subflow->ssn_offset);
mptcp_get_options(skb, &mp_opt);
if (subflow->request_mptcp && mp_opt.mp_capable) {
subflow->mp_capable = 1;
subflow->can_ack = 1;
subflow->remote_key = mp_opt.sndr_key;
pr_debug("subflow=%p, remote_key=%llu", subflow,
subflow->remote_key);
} else if (subflow->request_join && mp_opt.mp_join) {
subflow->mp_join = 1;
subflow->thmac = mp_opt.thmac;
subflow->remote_nonce = mp_opt.nonce;
pr_debug("subflow=%p, thmac=%llu, remote_nonce=%u", subflow,
subflow->thmac, subflow->remote_nonce);
} else {
if (subflow->request_mptcp)
MPTCP_INC_STATS(sock_net(sk),
MPTCP_MIB_MPCAPABLEACTIVEFALLBACK);
mptcp_do_fallback(sk);
pr_fallback(mptcp_sk(subflow->conn));
}
if (mptcp_check_fallback(sk)) {
mptcp_rcv_space_init(mptcp_sk(parent), sk);
return;
}
if (subflow->mp_capable) {
pr_debug("subflow=%p, remote_key=%llu", mptcp_subflow_ctx(sk),
subflow->remote_key);
mptcp_finish_connect(sk);
} else if (subflow->mp_join) {
u8 hmac[SHA256_DIGEST_SIZE];
pr_debug("subflow=%p, thmac=%llu, remote_nonce=%u",
subflow, subflow->thmac,
subflow->remote_nonce);
if (!subflow_thmac_valid(subflow)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINACKMAC);
subflow->mp_join = 0;
goto do_reset;
}
subflow_generate_hmac(subflow->local_key, subflow->remote_key,
subflow->local_nonce,
subflow->remote_nonce,
hmac);
memcpy(subflow->hmac, hmac, MPTCPOPT_HMAC_LEN);
if (!mptcp_finish_join(sk))
goto do_reset;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINSYNACKRX);
} else {
do_reset:
tcp_send_active_reset(sk, GFP_ATOMIC);
tcp_done(sk);
}
}
static struct request_sock_ops subflow_request_sock_ops;
static struct tcp_request_sock_ops subflow_request_sock_ipv4_ops;
static int subflow_v4_conn_request(struct sock *sk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
pr_debug("subflow=%p", subflow);
/* Never answer to SYNs sent to broadcast or multicast */
if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
goto drop;
return tcp_conn_request(&subflow_request_sock_ops,
&subflow_request_sock_ipv4_ops,
sk, skb);
drop:
tcp_listendrop(sk);
return 0;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static struct tcp_request_sock_ops subflow_request_sock_ipv6_ops;
static struct inet_connection_sock_af_ops subflow_v6_specific;
static struct inet_connection_sock_af_ops subflow_v6m_specific;
static int subflow_v6_conn_request(struct sock *sk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
pr_debug("subflow=%p", subflow);
if (skb->protocol == htons(ETH_P_IP))
return subflow_v4_conn_request(sk, skb);
if (!ipv6_unicast_destination(skb))
goto drop;
return tcp_conn_request(&subflow_request_sock_ops,
&subflow_request_sock_ipv6_ops, sk, skb);
drop:
tcp_listendrop(sk);
return 0; /* don't send reset */
}
#endif
/* validate hmac received in third ACK */
static bool subflow_hmac_valid(const struct request_sock *req,
const struct mptcp_options_received *mp_opt)
{
const struct mptcp_subflow_request_sock *subflow_req;
u8 hmac[SHA256_DIGEST_SIZE];
struct mptcp_sock *msk;
subflow_req = mptcp_subflow_rsk(req);
msk = subflow_req->msk;
if (!msk)
return false;
subflow_generate_hmac(msk->remote_key, msk->local_key,
subflow_req->remote_nonce,
subflow_req->local_nonce, hmac);
return !crypto_memneq(hmac, mp_opt->hmac, MPTCPOPT_HMAC_LEN);
}
static void mptcp_sock_destruct(struct sock *sk)
{
/* if new mptcp socket isn't accepted, it is free'd
* from the tcp listener sockets request queue, linked
* from req->sk. The tcp socket is released.
* This calls the ULP release function which will
* also remove the mptcp socket, via
* sock_put(ctx->conn).
*
* Problem is that the mptcp socket will not be in
* SYN_RECV state and doesn't have SOCK_DEAD flag.
* Both result in warnings from inet_sock_destruct.
*/
if (sk->sk_state == TCP_SYN_RECV) {
sk->sk_state = TCP_CLOSE;
WARN_ON_ONCE(sk->sk_socket);
sock_orphan(sk);
}
mptcp_token_destroy(mptcp_sk(sk));
inet_sock_destruct(sk);
}
static void mptcp_force_close(struct sock *sk)
{
inet_sk_state_store(sk, TCP_CLOSE);
sk_common_release(sk);
}
static void subflow_ulp_fallback(struct sock *sk,
struct mptcp_subflow_context *old_ctx)
{
struct inet_connection_sock *icsk = inet_csk(sk);
mptcp_subflow_tcp_fallback(sk, old_ctx);
icsk->icsk_ulp_ops = NULL;
rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
tcp_sk(sk)->is_mptcp = 0;
}
static void subflow_drop_ctx(struct sock *ssk)
{
struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(ssk);
if (!ctx)
return;
subflow_ulp_fallback(ssk, ctx);
if (ctx->conn)
sock_put(ctx->conn);
kfree_rcu(ctx, rcu);
}
static struct sock *subflow_syn_recv_sock(const struct sock *sk,
struct sk_buff *skb,
struct request_sock *req,
struct dst_entry *dst,
struct request_sock *req_unhash,
bool *own_req)
{
struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk);
struct mptcp_subflow_request_sock *subflow_req;
struct mptcp_options_received mp_opt;
bool fallback, fallback_is_fatal;
struct sock *new_msk = NULL;
struct sock *child;
pr_debug("listener=%p, req=%p, conn=%p", listener, req, listener->conn);
/* After child creation we must look for 'mp_capable' even when options
* are not parsed
*/
mp_opt.mp_capable = 0;
/* hopefully temporary handling for MP_JOIN+syncookie */
subflow_req = mptcp_subflow_rsk(req);
fallback_is_fatal = subflow_req->mp_join;
fallback = !tcp_rsk(req)->is_mptcp;
if (fallback)
goto create_child;
/* if the sk is MP_CAPABLE, we try to fetch the client key */
if (subflow_req->mp_capable) {
if (TCP_SKB_CB(skb)->seq != subflow_req->ssn_offset + 1) {
/* here we can receive and accept an in-window,
* out-of-order pkt, which will not carry the MP_CAPABLE
* opt even on mptcp enabled paths
*/
goto create_msk;
}
mptcp_get_options(skb, &mp_opt);
if (!mp_opt.mp_capable) {
fallback = true;
goto create_child;
}
create_msk:
new_msk = mptcp_sk_clone(listener->conn, &mp_opt, req);
if (!new_msk)
fallback = true;
} else if (subflow_req->mp_join) {
mptcp_get_options(skb, &mp_opt);
if (!mp_opt.mp_join ||
!subflow_hmac_valid(req, &mp_opt)) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKMAC);
fallback = true;
}
}
create_child:
child = listener->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
req_unhash, own_req);
if (child && *own_req) {
struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(child);
tcp_rsk(req)->drop_req = false;
/* we need to fallback on ctx allocation failure and on pre-reqs
* checking above. In the latter scenario we additionally need
* to reset the context to non MPTCP status.
*/
if (!ctx || fallback) {
if (fallback_is_fatal)
goto dispose_child;
subflow_drop_ctx(child);
goto out;
}
if (ctx->mp_capable) {
/* new mpc subflow takes ownership of the newly
* created mptcp socket
*/
new_msk->sk_destruct = mptcp_sock_destruct;
mptcp_pm_new_connection(mptcp_sk(new_msk), 1);
mptcp_token_accept(subflow_req, mptcp_sk(new_msk));
ctx->conn = new_msk;
new_msk = NULL;
/* with OoO packets we can reach here without ingress
* mpc option
*/
ctx->remote_key = mp_opt.sndr_key;
ctx->fully_established = mp_opt.mp_capable;
ctx->can_ack = mp_opt.mp_capable;
} else if (ctx->mp_join) {
struct mptcp_sock *owner;
owner = subflow_req->msk;
if (!owner)
goto dispose_child;
/* move the msk reference ownership to the subflow */
subflow_req->msk = NULL;
ctx->conn = (struct sock *)owner;
if (!mptcp_finish_join(child))
goto dispose_child;
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKRX);
tcp_rsk(req)->drop_req = true;
}
}
out:
/* dispose of the left over mptcp master, if any */
if (unlikely(new_msk))
mptcp_force_close(new_msk);
/* check for expected invariant - should never trigger, just help
* catching eariler subtle bugs
*/
WARN_ON_ONCE(child && *own_req && tcp_sk(child)->is_mptcp &&
(!mptcp_subflow_ctx(child) ||
!mptcp_subflow_ctx(child)->conn));
return child;
dispose_child:
subflow_drop_ctx(child);
tcp_rsk(req)->drop_req = true;
tcp_send_active_reset(child, GFP_ATOMIC);
inet_csk_prepare_for_destroy_sock(child);
tcp_done(child);
/* The last child reference will be released by the caller */
return child;
}
static struct inet_connection_sock_af_ops subflow_specific;
enum mapping_status {
MAPPING_OK,
MAPPING_INVALID,
MAPPING_EMPTY,
MAPPING_DATA_FIN,
MAPPING_DUMMY
};
static u64 expand_seq(u64 old_seq, u16 old_data_len, u64 seq)
{
if ((u32)seq == (u32)old_seq)
return old_seq;
/* Assume map covers data not mapped yet. */
return seq | ((old_seq + old_data_len + 1) & GENMASK_ULL(63, 32));
}
static void warn_bad_map(struct mptcp_subflow_context *subflow, u32 ssn)
{
WARN_ONCE(1, "Bad mapping: ssn=%d map_seq=%d map_data_len=%d",
ssn, subflow->map_subflow_seq, subflow->map_data_len);
}
static bool skb_is_fully_mapped(struct sock *ssk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
unsigned int skb_consumed;
skb_consumed = tcp_sk(ssk)->copied_seq - TCP_SKB_CB(skb)->seq;
if (WARN_ON_ONCE(skb_consumed >= skb->len))
return true;
return skb->len - skb_consumed <= subflow->map_data_len -
mptcp_subflow_get_map_offset(subflow);
}
static bool validate_mapping(struct sock *ssk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
u32 ssn = tcp_sk(ssk)->copied_seq - subflow->ssn_offset;
if (unlikely(before(ssn, subflow->map_subflow_seq))) {
/* Mapping covers data later in the subflow stream,
* currently unsupported.
*/
warn_bad_map(subflow, ssn);
return false;
}
if (unlikely(!before(ssn, subflow->map_subflow_seq +
subflow->map_data_len))) {
/* Mapping does covers past subflow data, invalid */
warn_bad_map(subflow, ssn + skb->len);
return false;
}
return true;
}
static enum mapping_status get_mapping_status(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_ext *mpext;
struct sk_buff *skb;
u16 data_len;
u64 map_seq;
skb = skb_peek(&ssk->sk_receive_queue);
if (!skb)
return MAPPING_EMPTY;
if (mptcp_check_fallback(ssk))
return MAPPING_DUMMY;
mpext = mptcp_get_ext(skb);
if (!mpext || !mpext->use_map) {
if (!subflow->map_valid && !skb->len) {
/* the TCP stack deliver 0 len FIN pkt to the receive
* queue, that is the only 0len pkts ever expected here,
* and we can admit no mapping only for 0 len pkts
*/
if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
WARN_ONCE(1, "0len seq %d:%d flags %x",
TCP_SKB_CB(skb)->seq,
TCP_SKB_CB(skb)->end_seq,
TCP_SKB_CB(skb)->tcp_flags);
sk_eat_skb(ssk, skb);
return MAPPING_EMPTY;
}
if (!subflow->map_valid)
return MAPPING_INVALID;
goto validate_seq;
}
pr_debug("seq=%llu is64=%d ssn=%u data_len=%u data_fin=%d",
mpext->data_seq, mpext->dsn64, mpext->subflow_seq,
mpext->data_len, mpext->data_fin);
data_len = mpext->data_len;
if (data_len == 0) {
pr_err("Infinite mapping not handled");
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPRX);
return MAPPING_INVALID;
}
if (mpext->data_fin == 1) {
if (data_len == 1) {
pr_debug("DATA_FIN with no payload");
if (subflow->map_valid) {
/* A DATA_FIN might arrive in a DSS
* option before the previous mapping
* has been fully consumed. Continue
* handling the existing mapping.
*/
skb_ext_del(skb, SKB_EXT_MPTCP);
return MAPPING_OK;
} else {
return MAPPING_DATA_FIN;
}
}
/* Adjust for DATA_FIN using 1 byte of sequence space */
data_len--;
}
if (!mpext->dsn64) {
map_seq = expand_seq(subflow->map_seq, subflow->map_data_len,
mpext->data_seq);
subflow->use_64bit_ack = 0;
pr_debug("expanded seq=%llu", subflow->map_seq);
} else {
map_seq = mpext->data_seq;
subflow->use_64bit_ack = 1;
}
if (subflow->map_valid) {
/* Allow replacing only with an identical map */
if (subflow->map_seq == map_seq &&
subflow->map_subflow_seq == mpext->subflow_seq &&
subflow->map_data_len == data_len) {
skb_ext_del(skb, SKB_EXT_MPTCP);
return MAPPING_OK;
}
/* If this skb data are fully covered by the current mapping,
* the new map would need caching, which is not supported
*/
if (skb_is_fully_mapped(ssk, skb)) {
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSNOMATCH);
return MAPPING_INVALID;
}
/* will validate the next map after consuming the current one */
return MAPPING_OK;
}
subflow->map_seq = map_seq;
subflow->map_subflow_seq = mpext->subflow_seq;
subflow->map_data_len = data_len;
subflow->map_valid = 1;
subflow->mpc_map = mpext->mpc_map;
pr_debug("new map seq=%llu subflow_seq=%u data_len=%u",
subflow->map_seq, subflow->map_subflow_seq,
subflow->map_data_len);
validate_seq:
/* we revalidate valid mapping on new skb, because we must ensure
* the current skb is completely covered by the available mapping
*/
if (!validate_mapping(ssk, skb))
return MAPPING_INVALID;
skb_ext_del(skb, SKB_EXT_MPTCP);
return MAPPING_OK;
}
static int subflow_read_actor(read_descriptor_t *desc,
struct sk_buff *skb,
unsigned int offset, size_t len)
{
size_t copy_len = min(desc->count, len);
desc->count -= copy_len;
pr_debug("flushed %zu bytes, %zu left", copy_len, desc->count);
return copy_len;
}
static bool subflow_check_data_avail(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
enum mapping_status status;
struct mptcp_sock *msk;
struct sk_buff *skb;
pr_debug("msk=%p ssk=%p data_avail=%d skb=%p", subflow->conn, ssk,
subflow->data_avail, skb_peek(&ssk->sk_receive_queue));
if (subflow->data_avail)
return true;
msk = mptcp_sk(subflow->conn);
for (;;) {
u32 map_remaining;
size_t delta;
u64 ack_seq;
u64 old_ack;
status = get_mapping_status(ssk);
pr_debug("msk=%p ssk=%p status=%d", msk, ssk, status);
if (status == MAPPING_INVALID) {
ssk->sk_err = EBADMSG;
goto fatal;
}
if (status == MAPPING_DUMMY) {
__mptcp_do_fallback(msk);
skb = skb_peek(&ssk->sk_receive_queue);
subflow->map_valid = 1;
subflow->map_seq = READ_ONCE(msk->ack_seq);
subflow->map_data_len = skb->len;
subflow->map_subflow_seq = tcp_sk(ssk)->copied_seq -
subflow->ssn_offset;
return true;
}
if (status != MAPPING_OK)
return false;
skb = skb_peek(&ssk->sk_receive_queue);
if (WARN_ON_ONCE(!skb))
return false;
/* if msk lacks the remote key, this subflow must provide an
* MP_CAPABLE-based mapping
*/
if (unlikely(!READ_ONCE(msk->can_ack))) {
if (!subflow->mpc_map) {
ssk->sk_err = EBADMSG;
goto fatal;
}
WRITE_ONCE(msk->remote_key, subflow->remote_key);
WRITE_ONCE(msk->ack_seq, subflow->map_seq);
WRITE_ONCE(msk->can_ack, true);
}
old_ack = READ_ONCE(msk->ack_seq);
ack_seq = mptcp_subflow_get_mapped_dsn(subflow);
pr_debug("msk ack_seq=%llx subflow ack_seq=%llx", old_ack,
ack_seq);
if (ack_seq == old_ack)
break;
/* only accept in-sequence mapping. Old values are spurious
* retransmission; we can hit "future" values on active backup
* subflow switch, we relay on retransmissions to get
* in-sequence data.
* Cuncurrent subflows support will require subflow data
* reordering
*/
map_remaining = subflow->map_data_len -
mptcp_subflow_get_map_offset(subflow);
if (before64(ack_seq, old_ack))
delta = min_t(size_t, old_ack - ack_seq, map_remaining);
else
delta = min_t(size_t, ack_seq - old_ack, map_remaining);
/* discard mapped data */
pr_debug("discarding %zu bytes, current map len=%d", delta,
map_remaining);
if (delta) {
read_descriptor_t desc = {
.count = delta,
};
int ret;
ret = tcp_read_sock(ssk, &desc, subflow_read_actor);
if (ret < 0) {
ssk->sk_err = -ret;
goto fatal;
}
if (ret < delta)
return false;
if (delta == map_remaining)
subflow->map_valid = 0;
}
}
return true;
fatal:
/* fatal protocol error, close the socket */
/* This barrier is coupled with smp_rmb() in tcp_poll() */
smp_wmb();
ssk->sk_error_report(ssk);
tcp_set_state(ssk, TCP_CLOSE);
tcp_send_active_reset(ssk, GFP_ATOMIC);
return false;
}
bool mptcp_subflow_data_available(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct sk_buff *skb;
/* check if current mapping is still valid */
if (subflow->map_valid &&
mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len) {
subflow->map_valid = 0;
subflow->data_avail = 0;
pr_debug("Done with mapping: seq=%u data_len=%u",
subflow->map_subflow_seq,
subflow->map_data_len);
}
if (!subflow_check_data_avail(sk)) {
subflow->data_avail = 0;
return false;
}
skb = skb_peek(&sk->sk_receive_queue);
subflow->data_avail = skb &&
before(tcp_sk(sk)->copied_seq, TCP_SKB_CB(skb)->end_seq);
return subflow->data_avail;
}
/* If ssk has an mptcp parent socket, use the mptcp rcvbuf occupancy,
* not the ssk one.
*
* In mptcp, rwin is about the mptcp-level connection data.
*
* Data that is still on the ssk rx queue can thus be ignored,
* as far as mptcp peer is concerened that data is still inflight.
* DSS ACK is updated when skb is moved to the mptcp rx queue.
*/
void mptcp_space(const struct sock *ssk, int *space, int *full_space)
{
const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
const struct sock *sk = subflow->conn;
*space = tcp_space(sk);
*full_space = tcp_full_space(sk);
}
static void subflow_data_ready(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct sock *parent = subflow->conn;
struct mptcp_sock *msk;
msk = mptcp_sk(parent);
if (inet_sk_state_load(sk) == TCP_LISTEN) {
set_bit(MPTCP_DATA_READY, &msk->flags);
parent->sk_data_ready(parent);
return;
}
WARN_ON_ONCE(!__mptcp_check_fallback(msk) && !subflow->mp_capable &&
!subflow->mp_join);
if (mptcp_subflow_data_available(sk))
mptcp_data_ready(parent, sk);
}
static void subflow_write_space(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct sock *parent = subflow->conn;
sk_stream_write_space(sk);
if (sk_stream_is_writeable(sk)) {
set_bit(MPTCP_SEND_SPACE, &mptcp_sk(parent)->flags);
smp_mb__after_atomic();
/* set SEND_SPACE before sk_stream_write_space clears NOSPACE */
sk_stream_write_space(parent);
}
}
static struct inet_connection_sock_af_ops *
subflow_default_af_ops(struct sock *sk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (sk->sk_family == AF_INET6)
return &subflow_v6_specific;
#endif
return &subflow_specific;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
void mptcpv6_handle_mapped(struct sock *sk, bool mapped)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
struct inet_connection_sock_af_ops *target;
target = mapped ? &subflow_v6m_specific : subflow_default_af_ops(sk);
pr_debug("subflow=%p family=%d ops=%p target=%p mapped=%d",
subflow, sk->sk_family, icsk->icsk_af_ops, target, mapped);
if (likely(icsk->icsk_af_ops == target))
return;
subflow->icsk_af_ops = icsk->icsk_af_ops;
icsk->icsk_af_ops = target;
}
#endif
static void mptcp_info2sockaddr(const struct mptcp_addr_info *info,
struct sockaddr_storage *addr)
{
memset(addr, 0, sizeof(*addr));
addr->ss_family = info->family;
if (addr->ss_family == AF_INET) {
struct sockaddr_in *in_addr = (struct sockaddr_in *)addr;
in_addr->sin_addr = info->addr;
in_addr->sin_port = info->port;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->ss_family == AF_INET6) {
struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)addr;
in6_addr->sin6_addr = info->addr6;
in6_addr->sin6_port = info->port;
}
#endif
}
int __mptcp_subflow_connect(struct sock *sk, int ifindex,
const struct mptcp_addr_info *loc,
const struct mptcp_addr_info *remote)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_subflow_context *subflow;
struct sockaddr_storage addr;
int local_id = loc->id;
struct socket *sf;
struct sock *ssk;
u32 remote_token;
int addrlen;
int err;
if (sk->sk_state != TCP_ESTABLISHED)
return -ENOTCONN;
err = mptcp_subflow_create_socket(sk, &sf);
if (err)
return err;
ssk = sf->sk;
subflow = mptcp_subflow_ctx(ssk);
do {
get_random_bytes(&subflow->local_nonce, sizeof(u32));
} while (!subflow->local_nonce);
if (!local_id) {
err = mptcp_pm_get_local_id(msk, (struct sock_common *)ssk);
if (err < 0)
goto failed;
local_id = err;
}
subflow->remote_key = msk->remote_key;
subflow->local_key = msk->local_key;
subflow->token = msk->token;
mptcp_info2sockaddr(loc, &addr);
addrlen = sizeof(struct sockaddr_in);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (loc->family == AF_INET6)
addrlen = sizeof(struct sockaddr_in6);
#endif
ssk->sk_bound_dev_if = ifindex;
err = kernel_bind(sf, (struct sockaddr *)&addr, addrlen);
if (err)
goto failed;
mptcp_crypto_key_sha(subflow->remote_key, &remote_token, NULL);
pr_debug("msk=%p remote_token=%u local_id=%d", msk, remote_token,
local_id);
subflow->remote_token = remote_token;
subflow->local_id = local_id;
subflow->request_join = 1;
subflow->request_bkup = 1;
mptcp_info2sockaddr(remote, &addr);
err = kernel_connect(sf, (struct sockaddr *)&addr, addrlen, O_NONBLOCK);
if (err && err != -EINPROGRESS)
goto failed;
spin_lock_bh(&msk->join_list_lock);
list_add_tail(&subflow->node, &msk->join_list);
spin_unlock_bh(&msk->join_list_lock);
return err;
failed:
sock_release(sf);
return err;
}
int mptcp_subflow_create_socket(struct sock *sk, struct socket **new_sock)
{
struct mptcp_subflow_context *subflow;
struct net *net = sock_net(sk);
struct socket *sf;
int err;
err = sock_create_kern(net, sk->sk_family, SOCK_STREAM, IPPROTO_TCP,
&sf);
if (err)
return err;
lock_sock(sf->sk);
/* kernel sockets do not by default acquire net ref, but TCP timer
* needs it.
*/
sf->sk->sk_net_refcnt = 1;
get_net(net);
#ifdef CONFIG_PROC_FS
this_cpu_add(*net->core.sock_inuse, 1);
#endif
err = tcp_set_ulp(sf->sk, "mptcp");
release_sock(sf->sk);
if (err) {
sock_release(sf);
return err;
}
/* the newly created socket really belongs to the owning MPTCP master
* socket, even if for additional subflows the allocation is performed
* by a kernel workqueue. Adjust inode references, so that the
* procfs/diag interaces really show this one belonging to the correct
* user.
*/
SOCK_INODE(sf)->i_ino = SOCK_INODE(sk->sk_socket)->i_ino;
SOCK_INODE(sf)->i_uid = SOCK_INODE(sk->sk_socket)->i_uid;
SOCK_INODE(sf)->i_gid = SOCK_INODE(sk->sk_socket)->i_gid;
subflow = mptcp_subflow_ctx(sf->sk);
pr_debug("subflow=%p", subflow);
*new_sock = sf;
sock_hold(sk);
subflow->conn = sk;
return 0;
}
static struct mptcp_subflow_context *subflow_create_ctx(struct sock *sk,
gfp_t priority)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct mptcp_subflow_context *ctx;
ctx = kzalloc(sizeof(*ctx), priority);
if (!ctx)
return NULL;
rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
INIT_LIST_HEAD(&ctx->node);
pr_debug("subflow=%p", ctx);
ctx->tcp_sock = sk;
return ctx;
}
static void __subflow_state_change(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_all(&wq->wait);
rcu_read_unlock();
}
static bool subflow_is_done(const struct sock *sk)
{
return sk->sk_shutdown & RCV_SHUTDOWN || sk->sk_state == TCP_CLOSE;
}
static void subflow_state_change(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct sock *parent = subflow->conn;
__subflow_state_change(sk);
if (subflow_simultaneous_connect(sk)) {
mptcp_do_fallback(sk);
mptcp_rcv_space_init(mptcp_sk(parent), sk);
pr_fallback(mptcp_sk(parent));
subflow->conn_finished = 1;
if (inet_sk_state_load(parent) == TCP_SYN_SENT) {
inet_sk_state_store(parent, TCP_ESTABLISHED);
parent->sk_state_change(parent);
}
}
/* as recvmsg() does not acquire the subflow socket for ssk selection
* a fin packet carrying a DSS can be unnoticed if we don't trigger
* the data available machinery here.
*/
if (mptcp_subflow_data_available(sk))
mptcp_data_ready(parent, sk);
if (!(parent->sk_shutdown & RCV_SHUTDOWN) &&
!subflow->rx_eof && subflow_is_done(sk)) {
subflow->rx_eof = 1;
mptcp_subflow_eof(parent);
}
}
static int subflow_ulp_init(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct mptcp_subflow_context *ctx;
struct tcp_sock *tp = tcp_sk(sk);
int err = 0;
/* disallow attaching ULP to a socket unless it has been
* created with sock_create_kern()
*/
if (!sk->sk_kern_sock) {
err = -EOPNOTSUPP;
goto out;
}
ctx = subflow_create_ctx(sk, GFP_KERNEL);
if (!ctx) {
err = -ENOMEM;
goto out;
}
pr_debug("subflow=%p, family=%d", ctx, sk->sk_family);
tp->is_mptcp = 1;
ctx->icsk_af_ops = icsk->icsk_af_ops;
icsk->icsk_af_ops = subflow_default_af_ops(sk);
ctx->tcp_data_ready = sk->sk_data_ready;
ctx->tcp_state_change = sk->sk_state_change;
ctx->tcp_write_space = sk->sk_write_space;
sk->sk_data_ready = subflow_data_ready;
sk->sk_write_space = subflow_write_space;
sk->sk_state_change = subflow_state_change;
out:
return err;
}
static void subflow_ulp_release(struct sock *sk)
{
struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(sk);
if (!ctx)
return;
if (ctx->conn)
sock_put(ctx->conn);
kfree_rcu(ctx, rcu);
}
static void subflow_ulp_clone(const struct request_sock *req,
struct sock *newsk,
const gfp_t priority)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct mptcp_subflow_context *old_ctx = mptcp_subflow_ctx(newsk);
struct mptcp_subflow_context *new_ctx;
if (!tcp_rsk(req)->is_mptcp ||
(!subflow_req->mp_capable && !subflow_req->mp_join)) {
subflow_ulp_fallback(newsk, old_ctx);
return;
}
new_ctx = subflow_create_ctx(newsk, priority);
if (!new_ctx) {
subflow_ulp_fallback(newsk, old_ctx);
return;
}
new_ctx->conn_finished = 1;
new_ctx->icsk_af_ops = old_ctx->icsk_af_ops;
new_ctx->tcp_data_ready = old_ctx->tcp_data_ready;
new_ctx->tcp_state_change = old_ctx->tcp_state_change;
new_ctx->tcp_write_space = old_ctx->tcp_write_space;
new_ctx->rel_write_seq = 1;
new_ctx->tcp_sock = newsk;
if (subflow_req->mp_capable) {
/* see comments in subflow_syn_recv_sock(), MPTCP connection
* is fully established only after we receive the remote key
*/
new_ctx->mp_capable = 1;
new_ctx->local_key = subflow_req->local_key;
new_ctx->token = subflow_req->token;
new_ctx->ssn_offset = subflow_req->ssn_offset;
new_ctx->idsn = subflow_req->idsn;
} else if (subflow_req->mp_join) {
new_ctx->ssn_offset = subflow_req->ssn_offset;
new_ctx->mp_join = 1;
new_ctx->fully_established = 1;
new_ctx->backup = subflow_req->backup;
new_ctx->local_id = subflow_req->local_id;
new_ctx->token = subflow_req->token;
new_ctx->thmac = subflow_req->thmac;
}
}
static struct tcp_ulp_ops subflow_ulp_ops __read_mostly = {
.name = "mptcp",
.owner = THIS_MODULE,
.init = subflow_ulp_init,
.release = subflow_ulp_release,
.clone = subflow_ulp_clone,
};
static int subflow_ops_init(struct request_sock_ops *subflow_ops)
{
subflow_ops->obj_size = sizeof(struct mptcp_subflow_request_sock);
subflow_ops->slab_name = "request_sock_subflow";
subflow_ops->slab = kmem_cache_create(subflow_ops->slab_name,
subflow_ops->obj_size, 0,
SLAB_ACCOUNT |
SLAB_TYPESAFE_BY_RCU,
NULL);
if (!subflow_ops->slab)
return -ENOMEM;
subflow_ops->destructor = subflow_req_destructor;
return 0;
}
void __init mptcp_subflow_init(void)
{
subflow_request_sock_ops = tcp_request_sock_ops;
if (subflow_ops_init(&subflow_request_sock_ops) != 0)
panic("MPTCP: failed to init subflow request sock ops\n");
subflow_request_sock_ipv4_ops = tcp_request_sock_ipv4_ops;
subflow_request_sock_ipv4_ops.init_req = subflow_v4_init_req;
subflow_specific = ipv4_specific;
subflow_specific.conn_request = subflow_v4_conn_request;
subflow_specific.syn_recv_sock = subflow_syn_recv_sock;
subflow_specific.sk_rx_dst_set = subflow_finish_connect;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
subflow_request_sock_ipv6_ops = tcp_request_sock_ipv6_ops;
subflow_request_sock_ipv6_ops.init_req = subflow_v6_init_req;
subflow_v6_specific = ipv6_specific;
subflow_v6_specific.conn_request = subflow_v6_conn_request;
subflow_v6_specific.syn_recv_sock = subflow_syn_recv_sock;
subflow_v6_specific.sk_rx_dst_set = subflow_finish_connect;
subflow_v6m_specific = subflow_v6_specific;
subflow_v6m_specific.queue_xmit = ipv4_specific.queue_xmit;
subflow_v6m_specific.send_check = ipv4_specific.send_check;
subflow_v6m_specific.net_header_len = ipv4_specific.net_header_len;
subflow_v6m_specific.mtu_reduced = ipv4_specific.mtu_reduced;
subflow_v6m_specific.net_frag_header_len = 0;
#endif
mptcp_diag_subflow_init(&subflow_ulp_ops);
if (tcp_register_ulp(&subflow_ulp_ops) != 0)
panic("MPTCP: failed to register subflows to ULP\n");
}