d8cd784ff7
Use the standard SCSI message definitions instead of the driver-internal ones. Link: https://lore.kernel.org/r/20210113090500.129644-20-hare@suse.de Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
10725 lines
290 KiB
C
10725 lines
290 KiB
C
/*
|
|
* Core routines and tables shareable across OS platforms.
|
|
*
|
|
* Copyright (c) 1994-2002 Justin T. Gibbs.
|
|
* Copyright (c) 2000-2003 Adaptec Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*
|
|
* $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
|
|
*/
|
|
|
|
#include "aic79xx_osm.h"
|
|
#include "aic79xx_inline.h"
|
|
#include "aicasm/aicasm_insformat.h"
|
|
|
|
/***************************** Lookup Tables **********************************/
|
|
static const char *const ahd_chip_names[] =
|
|
{
|
|
"NONE",
|
|
"aic7901",
|
|
"aic7902",
|
|
"aic7901A"
|
|
};
|
|
|
|
/*
|
|
* Hardware error codes.
|
|
*/
|
|
struct ahd_hard_error_entry {
|
|
uint8_t errno;
|
|
const char *errmesg;
|
|
};
|
|
|
|
static const struct ahd_hard_error_entry ahd_hard_errors[] = {
|
|
{ DSCTMOUT, "Discard Timer has timed out" },
|
|
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
|
|
{ SQPARERR, "Sequencer Parity Error" },
|
|
{ DPARERR, "Data-path Parity Error" },
|
|
{ MPARERR, "Scratch or SCB Memory Parity Error" },
|
|
{ CIOPARERR, "CIOBUS Parity Error" },
|
|
};
|
|
static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
|
|
|
|
static const struct ahd_phase_table_entry ahd_phase_table[] =
|
|
{
|
|
{ P_DATAOUT, NOP, "in Data-out phase" },
|
|
{ P_DATAIN, INITIATOR_ERROR, "in Data-in phase" },
|
|
{ P_DATAOUT_DT, NOP, "in DT Data-out phase" },
|
|
{ P_DATAIN_DT, INITIATOR_ERROR, "in DT Data-in phase" },
|
|
{ P_COMMAND, NOP, "in Command phase" },
|
|
{ P_MESGOUT, NOP, "in Message-out phase" },
|
|
{ P_STATUS, INITIATOR_ERROR, "in Status phase" },
|
|
{ P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
|
|
{ P_BUSFREE, NOP, "while idle" },
|
|
{ 0, NOP, "in unknown phase" }
|
|
};
|
|
|
|
/*
|
|
* In most cases we only wish to itterate over real phases, so
|
|
* exclude the last element from the count.
|
|
*/
|
|
static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
|
|
|
|
/* Our Sequencer Program */
|
|
#include "aic79xx_seq.h"
|
|
|
|
/**************************** Function Declarations ***************************/
|
|
static void ahd_handle_transmission_error(struct ahd_softc *ahd);
|
|
static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
|
|
u_int lqistat1);
|
|
static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
|
|
u_int busfreetime);
|
|
static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
|
|
static void ahd_handle_proto_violation(struct ahd_softc *ahd);
|
|
static void ahd_force_renegotiation(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo);
|
|
|
|
static struct ahd_tmode_tstate*
|
|
ahd_alloc_tstate(struct ahd_softc *ahd,
|
|
u_int scsi_id, char channel);
|
|
#ifdef AHD_TARGET_MODE
|
|
static void ahd_free_tstate(struct ahd_softc *ahd,
|
|
u_int scsi_id, char channel, int force);
|
|
#endif
|
|
static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
|
|
struct ahd_initiator_tinfo *,
|
|
u_int *period,
|
|
u_int *ppr_options,
|
|
role_t role);
|
|
static void ahd_update_neg_table(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
struct ahd_transinfo *tinfo);
|
|
static void ahd_update_pending_scbs(struct ahd_softc *ahd);
|
|
static void ahd_fetch_devinfo(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo);
|
|
static void ahd_scb_devinfo(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
struct scb *scb);
|
|
static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
struct scb *scb);
|
|
static void ahd_build_transfer_msg(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo);
|
|
static void ahd_construct_sdtr(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
u_int period, u_int offset);
|
|
static void ahd_construct_wdtr(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
u_int bus_width);
|
|
static void ahd_construct_ppr(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
u_int period, u_int offset,
|
|
u_int bus_width, u_int ppr_options);
|
|
static void ahd_clear_msg_state(struct ahd_softc *ahd);
|
|
static void ahd_handle_message_phase(struct ahd_softc *ahd);
|
|
typedef enum {
|
|
AHDMSG_1B,
|
|
AHDMSG_2B,
|
|
AHDMSG_EXT
|
|
} ahd_msgtype;
|
|
static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
|
|
u_int msgval, int full);
|
|
static int ahd_parse_msg(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo);
|
|
static int ahd_handle_msg_reject(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo);
|
|
static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo);
|
|
static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
|
|
static void ahd_handle_devreset(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
u_int lun, cam_status status,
|
|
char *message, int verbose_level);
|
|
#ifdef AHD_TARGET_MODE
|
|
static void ahd_setup_target_msgin(struct ahd_softc *ahd,
|
|
struct ahd_devinfo *devinfo,
|
|
struct scb *scb);
|
|
#endif
|
|
|
|
static u_int ahd_sglist_size(struct ahd_softc *ahd);
|
|
static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
|
|
static bus_dmamap_callback_t
|
|
ahd_dmamap_cb;
|
|
static void ahd_initialize_hscbs(struct ahd_softc *ahd);
|
|
static int ahd_init_scbdata(struct ahd_softc *ahd);
|
|
static void ahd_fini_scbdata(struct ahd_softc *ahd);
|
|
static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
|
|
static void ahd_iocell_first_selection(struct ahd_softc *ahd);
|
|
static void ahd_add_col_list(struct ahd_softc *ahd,
|
|
struct scb *scb, u_int col_idx);
|
|
static void ahd_rem_col_list(struct ahd_softc *ahd,
|
|
struct scb *scb);
|
|
static void ahd_chip_init(struct ahd_softc *ahd);
|
|
static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
|
|
struct scb *prev_scb,
|
|
struct scb *scb);
|
|
static int ahd_qinfifo_count(struct ahd_softc *ahd);
|
|
static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
|
|
char channel, int lun, u_int tag,
|
|
role_t role, uint32_t status,
|
|
ahd_search_action action,
|
|
u_int *list_head, u_int *list_tail,
|
|
u_int tid);
|
|
static void ahd_stitch_tid_list(struct ahd_softc *ahd,
|
|
u_int tid_prev, u_int tid_cur,
|
|
u_int tid_next);
|
|
static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
|
|
u_int scbid);
|
|
static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
|
|
u_int prev, u_int next, u_int tid);
|
|
static void ahd_reset_current_bus(struct ahd_softc *ahd);
|
|
static void ahd_stat_timer(struct timer_list *t);
|
|
#ifdef AHD_DUMP_SEQ
|
|
static void ahd_dumpseq(struct ahd_softc *ahd);
|
|
#endif
|
|
static void ahd_loadseq(struct ahd_softc *ahd);
|
|
static int ahd_check_patch(struct ahd_softc *ahd,
|
|
const struct patch **start_patch,
|
|
u_int start_instr, u_int *skip_addr);
|
|
static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
|
|
u_int address);
|
|
static void ahd_download_instr(struct ahd_softc *ahd,
|
|
u_int instrptr, uint8_t *dconsts);
|
|
static int ahd_probe_stack_size(struct ahd_softc *ahd);
|
|
static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
|
|
struct scb *scb);
|
|
static void ahd_run_data_fifo(struct ahd_softc *ahd,
|
|
struct scb *scb);
|
|
|
|
#ifdef AHD_TARGET_MODE
|
|
static void ahd_queue_lstate_event(struct ahd_softc *ahd,
|
|
struct ahd_tmode_lstate *lstate,
|
|
u_int initiator_id,
|
|
u_int event_type,
|
|
u_int event_arg);
|
|
static void ahd_update_scsiid(struct ahd_softc *ahd,
|
|
u_int targid_mask);
|
|
static int ahd_handle_target_cmd(struct ahd_softc *ahd,
|
|
struct target_cmd *cmd);
|
|
#endif
|
|
|
|
static int ahd_abort_scbs(struct ahd_softc *ahd, int target,
|
|
char channel, int lun, u_int tag,
|
|
role_t role, uint32_t status);
|
|
static void ahd_alloc_scbs(struct ahd_softc *ahd);
|
|
static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
|
|
u_int scbid);
|
|
static void ahd_calc_residual(struct ahd_softc *ahd,
|
|
struct scb *scb);
|
|
static void ahd_clear_critical_section(struct ahd_softc *ahd);
|
|
static void ahd_clear_intstat(struct ahd_softc *ahd);
|
|
static void ahd_enable_coalescing(struct ahd_softc *ahd,
|
|
int enable);
|
|
static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
|
|
static void ahd_freeze_devq(struct ahd_softc *ahd,
|
|
struct scb *scb);
|
|
static void ahd_handle_scb_status(struct ahd_softc *ahd,
|
|
struct scb *scb);
|
|
static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
|
|
static void ahd_shutdown(void *arg);
|
|
static void ahd_update_coalescing_values(struct ahd_softc *ahd,
|
|
u_int timer,
|
|
u_int maxcmds,
|
|
u_int mincmds);
|
|
static int ahd_verify_vpd_cksum(struct vpd_config *vpd);
|
|
static int ahd_wait_seeprom(struct ahd_softc *ahd);
|
|
static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
|
|
int target, char channel, int lun,
|
|
u_int tag, role_t role);
|
|
|
|
static void ahd_reset_cmds_pending(struct ahd_softc *ahd);
|
|
|
|
/*************************** Interrupt Services *******************************/
|
|
static void ahd_run_qoutfifo(struct ahd_softc *ahd);
|
|
#ifdef AHD_TARGET_MODE
|
|
static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
|
|
#endif
|
|
static void ahd_handle_hwerrint(struct ahd_softc *ahd);
|
|
static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
|
|
static void ahd_handle_scsiint(struct ahd_softc *ahd,
|
|
u_int intstat);
|
|
|
|
/************************ Sequencer Execution Control *************************/
|
|
void
|
|
ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
|
|
{
|
|
if (ahd->src_mode == src && ahd->dst_mode == dst)
|
|
return;
|
|
#ifdef AHD_DEBUG
|
|
if (ahd->src_mode == AHD_MODE_UNKNOWN
|
|
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
|
|
panic("Setting mode prior to saving it.\n");
|
|
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
|
|
printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
|
|
ahd_build_mode_state(ahd, src, dst));
|
|
#endif
|
|
ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
|
|
ahd->src_mode = src;
|
|
ahd->dst_mode = dst;
|
|
}
|
|
|
|
static void
|
|
ahd_update_modes(struct ahd_softc *ahd)
|
|
{
|
|
ahd_mode_state mode_ptr;
|
|
ahd_mode src;
|
|
ahd_mode dst;
|
|
|
|
mode_ptr = ahd_inb(ahd, MODE_PTR);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
|
|
printk("Reading mode 0x%x\n", mode_ptr);
|
|
#endif
|
|
ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
|
|
ahd_known_modes(ahd, src, dst);
|
|
}
|
|
|
|
static void
|
|
ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
|
|
ahd_mode dstmode, const char *file, int line)
|
|
{
|
|
#ifdef AHD_DEBUG
|
|
if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
|
|
|| (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
|
|
panic("%s:%s:%d: Mode assertion failed.\n",
|
|
ahd_name(ahd), file, line);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define AHD_ASSERT_MODES(ahd, source, dest) \
|
|
ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
|
|
|
|
ahd_mode_state
|
|
ahd_save_modes(struct ahd_softc *ahd)
|
|
{
|
|
if (ahd->src_mode == AHD_MODE_UNKNOWN
|
|
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
|
|
ahd_update_modes(ahd);
|
|
|
|
return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
|
|
}
|
|
|
|
void
|
|
ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
|
|
{
|
|
ahd_mode src;
|
|
ahd_mode dst;
|
|
|
|
ahd_extract_mode_state(ahd, state, &src, &dst);
|
|
ahd_set_modes(ahd, src, dst);
|
|
}
|
|
|
|
/*
|
|
* Determine whether the sequencer has halted code execution.
|
|
* Returns non-zero status if the sequencer is stopped.
|
|
*/
|
|
int
|
|
ahd_is_paused(struct ahd_softc *ahd)
|
|
{
|
|
return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
|
|
}
|
|
|
|
/*
|
|
* Request that the sequencer stop and wait, indefinitely, for it
|
|
* to stop. The sequencer will only acknowledge that it is paused
|
|
* once it has reached an instruction boundary and PAUSEDIS is
|
|
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
|
|
* for critical sections.
|
|
*/
|
|
void
|
|
ahd_pause(struct ahd_softc *ahd)
|
|
{
|
|
ahd_outb(ahd, HCNTRL, ahd->pause);
|
|
|
|
/*
|
|
* Since the sequencer can disable pausing in a critical section, we
|
|
* must loop until it actually stops.
|
|
*/
|
|
while (ahd_is_paused(ahd) == 0)
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Allow the sequencer to continue program execution.
|
|
* We check here to ensure that no additional interrupt
|
|
* sources that would cause the sequencer to halt have been
|
|
* asserted. If, for example, a SCSI bus reset is detected
|
|
* while we are fielding a different, pausing, interrupt type,
|
|
* we don't want to release the sequencer before going back
|
|
* into our interrupt handler and dealing with this new
|
|
* condition.
|
|
*/
|
|
void
|
|
ahd_unpause(struct ahd_softc *ahd)
|
|
{
|
|
/*
|
|
* Automatically restore our modes to those saved
|
|
* prior to the first change of the mode.
|
|
*/
|
|
if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
|
|
&& ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
|
|
if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
|
|
ahd_reset_cmds_pending(ahd);
|
|
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
|
|
}
|
|
|
|
if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
|
|
ahd_outb(ahd, HCNTRL, ahd->unpause);
|
|
|
|
ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
|
|
}
|
|
|
|
/*********************** Scatter Gather List Handling *************************/
|
|
void *
|
|
ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
|
|
void *sgptr, dma_addr_t addr, bus_size_t len, int last)
|
|
{
|
|
scb->sg_count++;
|
|
if (sizeof(dma_addr_t) > 4
|
|
&& (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
|
|
struct ahd_dma64_seg *sg;
|
|
|
|
sg = (struct ahd_dma64_seg *)sgptr;
|
|
sg->addr = ahd_htole64(addr);
|
|
sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
|
|
return (sg + 1);
|
|
} else {
|
|
struct ahd_dma_seg *sg;
|
|
|
|
sg = (struct ahd_dma_seg *)sgptr;
|
|
sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
|
|
sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
|
|
| (last ? AHD_DMA_LAST_SEG : 0));
|
|
return (sg + 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
/* XXX Handle target mode SCBs. */
|
|
scb->crc_retry_count = 0;
|
|
if ((scb->flags & SCB_PACKETIZED) != 0) {
|
|
/* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
|
|
scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
|
|
} else {
|
|
if (ahd_get_transfer_length(scb) & 0x01)
|
|
scb->hscb->task_attribute = SCB_XFERLEN_ODD;
|
|
else
|
|
scb->hscb->task_attribute = 0;
|
|
}
|
|
|
|
if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
|
|
|| (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
|
|
scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
|
|
ahd_htole32(scb->sense_busaddr);
|
|
}
|
|
|
|
static void
|
|
ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
/*
|
|
* Copy the first SG into the "current" data ponter area.
|
|
*/
|
|
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
|
|
struct ahd_dma64_seg *sg;
|
|
|
|
sg = (struct ahd_dma64_seg *)scb->sg_list;
|
|
scb->hscb->dataptr = sg->addr;
|
|
scb->hscb->datacnt = sg->len;
|
|
} else {
|
|
struct ahd_dma_seg *sg;
|
|
uint32_t *dataptr_words;
|
|
|
|
sg = (struct ahd_dma_seg *)scb->sg_list;
|
|
dataptr_words = (uint32_t*)&scb->hscb->dataptr;
|
|
dataptr_words[0] = sg->addr;
|
|
dataptr_words[1] = 0;
|
|
if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
|
|
uint64_t high_addr;
|
|
|
|
high_addr = ahd_le32toh(sg->len) & 0x7F000000;
|
|
scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
|
|
}
|
|
scb->hscb->datacnt = sg->len;
|
|
}
|
|
/*
|
|
* Note where to find the SG entries in bus space.
|
|
* We also set the full residual flag which the
|
|
* sequencer will clear as soon as a data transfer
|
|
* occurs.
|
|
*/
|
|
scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
|
|
}
|
|
|
|
static void
|
|
ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
|
|
scb->hscb->dataptr = 0;
|
|
scb->hscb->datacnt = 0;
|
|
}
|
|
|
|
/************************** Memory mapping routines ***************************/
|
|
static void *
|
|
ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
|
|
{
|
|
dma_addr_t sg_offset;
|
|
|
|
/* sg_list_phys points to entry 1, not 0 */
|
|
sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
|
|
return ((uint8_t *)scb->sg_list + sg_offset);
|
|
}
|
|
|
|
static uint32_t
|
|
ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
|
|
{
|
|
dma_addr_t sg_offset;
|
|
|
|
/* sg_list_phys points to entry 1, not 0 */
|
|
sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
|
|
- ahd_sg_size(ahd);
|
|
|
|
return (scb->sg_list_busaddr + sg_offset);
|
|
}
|
|
|
|
static void
|
|
ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
|
|
{
|
|
ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
|
|
scb->hscb_map->dmamap,
|
|
/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
|
|
/*len*/sizeof(*scb->hscb), op);
|
|
}
|
|
|
|
void
|
|
ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
|
|
{
|
|
if (scb->sg_count == 0)
|
|
return;
|
|
|
|
ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
|
|
scb->sg_map->dmamap,
|
|
/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
|
|
/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
|
|
}
|
|
|
|
static void
|
|
ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
|
|
{
|
|
ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
|
|
scb->sense_map->dmamap,
|
|
/*offset*/scb->sense_busaddr,
|
|
/*len*/AHD_SENSE_BUFSIZE, op);
|
|
}
|
|
|
|
#ifdef AHD_TARGET_MODE
|
|
static uint32_t
|
|
ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
|
|
{
|
|
return (((uint8_t *)&ahd->targetcmds[index])
|
|
- (uint8_t *)ahd->qoutfifo);
|
|
}
|
|
#endif
|
|
|
|
/*********************** Miscellaneous Support Functions ***********************/
|
|
/*
|
|
* Return pointers to the transfer negotiation information
|
|
* for the specified our_id/remote_id pair.
|
|
*/
|
|
struct ahd_initiator_tinfo *
|
|
ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
|
|
u_int remote_id, struct ahd_tmode_tstate **tstate)
|
|
{
|
|
/*
|
|
* Transfer data structures are stored from the perspective
|
|
* of the target role. Since the parameters for a connection
|
|
* in the initiator role to a given target are the same as
|
|
* when the roles are reversed, we pretend we are the target.
|
|
*/
|
|
if (channel == 'B')
|
|
our_id += 8;
|
|
*tstate = ahd->enabled_targets[our_id];
|
|
return (&(*tstate)->transinfo[remote_id]);
|
|
}
|
|
|
|
uint16_t
|
|
ahd_inw(struct ahd_softc *ahd, u_int port)
|
|
{
|
|
/*
|
|
* Read high byte first as some registers increment
|
|
* or have other side effects when the low byte is
|
|
* read.
|
|
*/
|
|
uint16_t r = ahd_inb(ahd, port+1) << 8;
|
|
return r | ahd_inb(ahd, port);
|
|
}
|
|
|
|
void
|
|
ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
|
|
{
|
|
/*
|
|
* Write low byte first to accommodate registers
|
|
* such as PRGMCNT where the order maters.
|
|
*/
|
|
ahd_outb(ahd, port, value & 0xFF);
|
|
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
|
|
}
|
|
|
|
uint32_t
|
|
ahd_inl(struct ahd_softc *ahd, u_int port)
|
|
{
|
|
return ((ahd_inb(ahd, port))
|
|
| (ahd_inb(ahd, port+1) << 8)
|
|
| (ahd_inb(ahd, port+2) << 16)
|
|
| (ahd_inb(ahd, port+3) << 24));
|
|
}
|
|
|
|
void
|
|
ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
|
|
{
|
|
ahd_outb(ahd, port, (value) & 0xFF);
|
|
ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
|
|
ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
|
|
ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
|
|
}
|
|
|
|
uint64_t
|
|
ahd_inq(struct ahd_softc *ahd, u_int port)
|
|
{
|
|
return ((ahd_inb(ahd, port))
|
|
| (ahd_inb(ahd, port+1) << 8)
|
|
| (ahd_inb(ahd, port+2) << 16)
|
|
| (ahd_inb(ahd, port+3) << 24)
|
|
| (((uint64_t)ahd_inb(ahd, port+4)) << 32)
|
|
| (((uint64_t)ahd_inb(ahd, port+5)) << 40)
|
|
| (((uint64_t)ahd_inb(ahd, port+6)) << 48)
|
|
| (((uint64_t)ahd_inb(ahd, port+7)) << 56));
|
|
}
|
|
|
|
void
|
|
ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
|
|
{
|
|
ahd_outb(ahd, port, value & 0xFF);
|
|
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
|
|
ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
|
|
ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
|
|
ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
|
|
ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
|
|
ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
|
|
ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
|
|
}
|
|
|
|
u_int
|
|
ahd_get_scbptr(struct ahd_softc *ahd)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
|
|
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
|
|
return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
|
|
}
|
|
|
|
void
|
|
ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
|
|
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
|
|
ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
|
|
ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static u_int
|
|
ahd_get_hnscb_qoff(struct ahd_softc *ahd)
|
|
{
|
|
return (ahd_inw_atomic(ahd, HNSCB_QOFF));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
|
|
{
|
|
ahd_outw_atomic(ahd, HNSCB_QOFF, value);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static u_int
|
|
ahd_get_hescb_qoff(struct ahd_softc *ahd)
|
|
{
|
|
return (ahd_inb(ahd, HESCB_QOFF));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
|
|
{
|
|
ahd_outb(ahd, HESCB_QOFF, value);
|
|
}
|
|
|
|
static u_int
|
|
ahd_get_snscb_qoff(struct ahd_softc *ahd)
|
|
{
|
|
u_int oldvalue;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
|
|
oldvalue = ahd_inw(ahd, SNSCB_QOFF);
|
|
ahd_outw(ahd, SNSCB_QOFF, oldvalue);
|
|
return (oldvalue);
|
|
}
|
|
|
|
static void
|
|
ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
|
|
ahd_outw(ahd, SNSCB_QOFF, value);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static u_int
|
|
ahd_get_sescb_qoff(struct ahd_softc *ahd)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
|
|
return (ahd_inb(ahd, SESCB_QOFF));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
|
|
ahd_outb(ahd, SESCB_QOFF, value);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static u_int
|
|
ahd_get_sdscb_qoff(struct ahd_softc *ahd)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
|
|
return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
|
|
ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
|
|
ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
|
|
}
|
|
|
|
u_int
|
|
ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
|
|
{
|
|
u_int value;
|
|
|
|
/*
|
|
* Workaround PCI-X Rev A. hardware bug.
|
|
* After a host read of SCB memory, the chip
|
|
* may become confused into thinking prefetch
|
|
* was required. This starts the discard timer
|
|
* running and can cause an unexpected discard
|
|
* timer interrupt. The work around is to read
|
|
* a normal register prior to the exhaustion of
|
|
* the discard timer. The mode pointer register
|
|
* has no side effects and so serves well for
|
|
* this purpose.
|
|
*
|
|
* Razor #528
|
|
*/
|
|
value = ahd_inb(ahd, offset);
|
|
if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
|
|
ahd_inb(ahd, MODE_PTR);
|
|
return (value);
|
|
}
|
|
|
|
u_int
|
|
ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
|
|
{
|
|
return (ahd_inb_scbram(ahd, offset)
|
|
| (ahd_inb_scbram(ahd, offset+1) << 8));
|
|
}
|
|
|
|
static uint32_t
|
|
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
|
|
{
|
|
return (ahd_inw_scbram(ahd, offset)
|
|
| (ahd_inw_scbram(ahd, offset+2) << 16));
|
|
}
|
|
|
|
static uint64_t
|
|
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
|
|
{
|
|
return (ahd_inl_scbram(ahd, offset)
|
|
| ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
|
|
}
|
|
|
|
struct scb *
|
|
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
|
|
{
|
|
struct scb* scb;
|
|
|
|
if (tag >= AHD_SCB_MAX)
|
|
return (NULL);
|
|
scb = ahd->scb_data.scbindex[tag];
|
|
if (scb != NULL)
|
|
ahd_sync_scb(ahd, scb,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
return (scb);
|
|
}
|
|
|
|
static void
|
|
ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
struct hardware_scb *q_hscb;
|
|
struct map_node *q_hscb_map;
|
|
uint32_t saved_hscb_busaddr;
|
|
|
|
/*
|
|
* Our queuing method is a bit tricky. The card
|
|
* knows in advance which HSCB (by address) to download,
|
|
* and we can't disappoint it. To achieve this, the next
|
|
* HSCB to download is saved off in ahd->next_queued_hscb.
|
|
* When we are called to queue "an arbitrary scb",
|
|
* we copy the contents of the incoming HSCB to the one
|
|
* the sequencer knows about, swap HSCB pointers and
|
|
* finally assign the SCB to the tag indexed location
|
|
* in the scb_array. This makes sure that we can still
|
|
* locate the correct SCB by SCB_TAG.
|
|
*/
|
|
q_hscb = ahd->next_queued_hscb;
|
|
q_hscb_map = ahd->next_queued_hscb_map;
|
|
saved_hscb_busaddr = q_hscb->hscb_busaddr;
|
|
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
|
|
q_hscb->hscb_busaddr = saved_hscb_busaddr;
|
|
q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
|
|
|
|
/* Now swap HSCB pointers. */
|
|
ahd->next_queued_hscb = scb->hscb;
|
|
ahd->next_queued_hscb_map = scb->hscb_map;
|
|
scb->hscb = q_hscb;
|
|
scb->hscb_map = q_hscb_map;
|
|
|
|
/* Now define the mapping from tag to SCB in the scbindex */
|
|
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
|
|
}
|
|
|
|
/*
|
|
* Tell the sequencer about a new transaction to execute.
|
|
*/
|
|
void
|
|
ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
ahd_swap_with_next_hscb(ahd, scb);
|
|
|
|
if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
|
|
panic("Attempt to queue invalid SCB tag %x\n",
|
|
SCB_GET_TAG(scb));
|
|
|
|
/*
|
|
* Keep a history of SCBs we've downloaded in the qinfifo.
|
|
*/
|
|
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
|
|
ahd->qinfifonext++;
|
|
|
|
if (scb->sg_count != 0)
|
|
ahd_setup_data_scb(ahd, scb);
|
|
else
|
|
ahd_setup_noxfer_scb(ahd, scb);
|
|
ahd_setup_scb_common(ahd, scb);
|
|
|
|
/*
|
|
* Make sure our data is consistent from the
|
|
* perspective of the adapter.
|
|
*/
|
|
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
|
|
uint64_t host_dataptr;
|
|
|
|
host_dataptr = ahd_le64toh(scb->hscb->dataptr);
|
|
printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
|
|
ahd_name(ahd),
|
|
SCB_GET_TAG(scb), scb->hscb->scsiid,
|
|
ahd_le32toh(scb->hscb->hscb_busaddr),
|
|
(u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
|
|
(u_int)(host_dataptr & 0xFFFFFFFF),
|
|
ahd_le32toh(scb->hscb->datacnt));
|
|
}
|
|
#endif
|
|
/* Tell the adapter about the newly queued SCB */
|
|
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
|
|
}
|
|
|
|
/************************** Interrupt Processing ******************************/
|
|
static void
|
|
ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
|
|
{
|
|
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
|
|
/*offset*/0,
|
|
/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
|
|
}
|
|
|
|
static void
|
|
ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
|
|
{
|
|
#ifdef AHD_TARGET_MODE
|
|
if ((ahd->flags & AHD_TARGETROLE) != 0) {
|
|
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
|
|
ahd->shared_data_map.dmamap,
|
|
ahd_targetcmd_offset(ahd, 0),
|
|
sizeof(struct target_cmd) * AHD_TMODE_CMDS,
|
|
op);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* See if the firmware has posted any completed commands
|
|
* into our in-core command complete fifos.
|
|
*/
|
|
#define AHD_RUN_QOUTFIFO 0x1
|
|
#define AHD_RUN_TQINFIFO 0x2
|
|
static u_int
|
|
ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
|
|
{
|
|
u_int retval;
|
|
|
|
retval = 0;
|
|
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
|
|
/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
|
|
/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
|
|
if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
|
|
== ahd->qoutfifonext_valid_tag)
|
|
retval |= AHD_RUN_QOUTFIFO;
|
|
#ifdef AHD_TARGET_MODE
|
|
if ((ahd->flags & AHD_TARGETROLE) != 0
|
|
&& (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
|
|
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
|
|
ahd->shared_data_map.dmamap,
|
|
ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
|
|
/*len*/sizeof(struct target_cmd),
|
|
BUS_DMASYNC_POSTREAD);
|
|
if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
|
|
retval |= AHD_RUN_TQINFIFO;
|
|
}
|
|
#endif
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Catch an interrupt from the adapter
|
|
*/
|
|
int
|
|
ahd_intr(struct ahd_softc *ahd)
|
|
{
|
|
u_int intstat;
|
|
|
|
if ((ahd->pause & INTEN) == 0) {
|
|
/*
|
|
* Our interrupt is not enabled on the chip
|
|
* and may be disabled for re-entrancy reasons,
|
|
* so just return. This is likely just a shared
|
|
* interrupt.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Instead of directly reading the interrupt status register,
|
|
* infer the cause of the interrupt by checking our in-core
|
|
* completion queues. This avoids a costly PCI bus read in
|
|
* most cases.
|
|
*/
|
|
if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
|
|
&& (ahd_check_cmdcmpltqueues(ahd) != 0))
|
|
intstat = CMDCMPLT;
|
|
else
|
|
intstat = ahd_inb(ahd, INTSTAT);
|
|
|
|
if ((intstat & INT_PEND) == 0)
|
|
return (0);
|
|
|
|
if (intstat & CMDCMPLT) {
|
|
ahd_outb(ahd, CLRINT, CLRCMDINT);
|
|
|
|
/*
|
|
* Ensure that the chip sees that we've cleared
|
|
* this interrupt before we walk the output fifo.
|
|
* Otherwise, we may, due to posted bus writes,
|
|
* clear the interrupt after we finish the scan,
|
|
* and after the sequencer has added new entries
|
|
* and asserted the interrupt again.
|
|
*/
|
|
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
|
|
if (ahd_is_paused(ahd)) {
|
|
/*
|
|
* Potentially lost SEQINT.
|
|
* If SEQINTCODE is non-zero,
|
|
* simulate the SEQINT.
|
|
*/
|
|
if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
|
|
intstat |= SEQINT;
|
|
}
|
|
} else {
|
|
ahd_flush_device_writes(ahd);
|
|
}
|
|
ahd_run_qoutfifo(ahd);
|
|
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
|
|
ahd->cmdcmplt_total++;
|
|
#ifdef AHD_TARGET_MODE
|
|
if ((ahd->flags & AHD_TARGETROLE) != 0)
|
|
ahd_run_tqinfifo(ahd, /*paused*/FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Handle statuses that may invalidate our cached
|
|
* copy of INTSTAT separately.
|
|
*/
|
|
if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
|
|
/* Hot eject. Do nothing */
|
|
} else if (intstat & HWERRINT) {
|
|
ahd_handle_hwerrint(ahd);
|
|
} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
|
|
ahd->bus_intr(ahd);
|
|
} else {
|
|
|
|
if ((intstat & SEQINT) != 0)
|
|
ahd_handle_seqint(ahd, intstat);
|
|
|
|
if ((intstat & SCSIINT) != 0)
|
|
ahd_handle_scsiint(ahd, intstat);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/******************************** Private Inlines *****************************/
|
|
static inline void
|
|
ahd_assert_atn(struct ahd_softc *ahd)
|
|
{
|
|
ahd_outb(ahd, SCSISIGO, ATNO);
|
|
}
|
|
|
|
/*
|
|
* Determine if the current connection has a packetized
|
|
* agreement. This does not necessarily mean that we
|
|
* are currently in a packetized transfer. We could
|
|
* just as easily be sending or receiving a message.
|
|
*/
|
|
static int
|
|
ahd_currently_packetized(struct ahd_softc *ahd)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
int packetized;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
|
|
/*
|
|
* The packetized bit refers to the last
|
|
* connection, not the current one. Check
|
|
* for non-zero LQISTATE instead.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
packetized = ahd_inb(ahd, LQISTATE) != 0;
|
|
} else {
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
|
|
}
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
return (packetized);
|
|
}
|
|
|
|
static inline int
|
|
ahd_set_active_fifo(struct ahd_softc *ahd)
|
|
{
|
|
u_int active_fifo;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
|
|
switch (active_fifo) {
|
|
case 0:
|
|
case 1:
|
|
ahd_set_modes(ahd, active_fifo, active_fifo);
|
|
return (1);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
|
|
{
|
|
ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
|
|
}
|
|
|
|
/*
|
|
* Determine whether the sequencer reported a residual
|
|
* for this SCB/transaction.
|
|
*/
|
|
static inline void
|
|
ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
uint32_t sgptr;
|
|
|
|
sgptr = ahd_le32toh(scb->hscb->sgptr);
|
|
if ((sgptr & SG_STATUS_VALID) != 0)
|
|
ahd_calc_residual(ahd, scb);
|
|
}
|
|
|
|
static inline void
|
|
ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
uint32_t sgptr;
|
|
|
|
sgptr = ahd_le32toh(scb->hscb->sgptr);
|
|
if ((sgptr & SG_STATUS_VALID) != 0)
|
|
ahd_handle_scb_status(ahd, scb);
|
|
else
|
|
ahd_done(ahd, scb);
|
|
}
|
|
|
|
|
|
/************************* Sequencer Execution Control ************************/
|
|
/*
|
|
* Restart the sequencer program from address zero
|
|
*/
|
|
static void
|
|
ahd_restart(struct ahd_softc *ahd)
|
|
{
|
|
|
|
ahd_pause(ahd);
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
|
|
/* No more pending messages */
|
|
ahd_clear_msg_state(ahd);
|
|
ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
|
|
ahd_outb(ahd, MSG_OUT, NOP); /* No message to send */
|
|
ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
|
|
ahd_outb(ahd, SEQINTCTL, 0);
|
|
ahd_outb(ahd, LASTPHASE, P_BUSFREE);
|
|
ahd_outb(ahd, SEQ_FLAGS, 0);
|
|
ahd_outb(ahd, SAVED_SCSIID, 0xFF);
|
|
ahd_outb(ahd, SAVED_LUN, 0xFF);
|
|
|
|
/*
|
|
* Ensure that the sequencer's idea of TQINPOS
|
|
* matches our own. The sequencer increments TQINPOS
|
|
* only after it sees a DMA complete and a reset could
|
|
* occur before the increment leaving the kernel to believe
|
|
* the command arrived but the sequencer to not.
|
|
*/
|
|
ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
|
|
|
|
/* Always allow reselection */
|
|
ahd_outb(ahd, SCSISEQ1,
|
|
ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
|
|
|
|
/*
|
|
* Clear any pending sequencer interrupt. It is no
|
|
* longer relevant since we're resetting the Program
|
|
* Counter.
|
|
*/
|
|
ahd_outb(ahd, CLRINT, CLRSEQINT);
|
|
|
|
ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
|
|
ahd_unpause(ahd);
|
|
}
|
|
|
|
static void
|
|
ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
|
|
printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
|
|
#endif
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, fifo, fifo);
|
|
ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
|
|
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
|
|
ahd_outb(ahd, CCSGCTL, CCSGRESET);
|
|
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
|
|
ahd_outb(ahd, SG_STATE, 0);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
}
|
|
|
|
/************************* Input/Output Queues ********************************/
|
|
/*
|
|
* Flush and completed commands that are sitting in the command
|
|
* complete queues down on the chip but have yet to be dma'ed back up.
|
|
*/
|
|
static void
|
|
ahd_flush_qoutfifo(struct ahd_softc *ahd)
|
|
{
|
|
struct scb *scb;
|
|
ahd_mode_state saved_modes;
|
|
u_int saved_scbptr;
|
|
u_int ccscbctl;
|
|
u_int scbid;
|
|
u_int next_scbid;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
|
|
/*
|
|
* Flush the good status FIFO for completed packetized commands.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
saved_scbptr = ahd_get_scbptr(ahd);
|
|
while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
|
|
u_int fifo_mode;
|
|
u_int i;
|
|
|
|
scbid = ahd_inw(ahd, GSFIFO);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: Warning - GSFIFO SCB %d invalid\n",
|
|
ahd_name(ahd), scbid);
|
|
continue;
|
|
}
|
|
/*
|
|
* Determine if this transaction is still active in
|
|
* any FIFO. If it is, we must flush that FIFO to
|
|
* the host before completing the command.
|
|
*/
|
|
fifo_mode = 0;
|
|
rescan_fifos:
|
|
for (i = 0; i < 2; i++) {
|
|
/* Toggle to the other mode. */
|
|
fifo_mode ^= 1;
|
|
ahd_set_modes(ahd, fifo_mode, fifo_mode);
|
|
|
|
if (ahd_scb_active_in_fifo(ahd, scb) == 0)
|
|
continue;
|
|
|
|
ahd_run_data_fifo(ahd, scb);
|
|
|
|
/*
|
|
* Running this FIFO may cause a CFG4DATA for
|
|
* this same transaction to assert in the other
|
|
* FIFO or a new snapshot SAVEPTRS interrupt
|
|
* in this FIFO. Even running a FIFO may not
|
|
* clear the transaction if we are still waiting
|
|
* for data to drain to the host. We must loop
|
|
* until the transaction is not active in either
|
|
* FIFO just to be sure. Reset our loop counter
|
|
* so we will visit both FIFOs again before
|
|
* declaring this transaction finished. We
|
|
* also delay a bit so that status has a chance
|
|
* to change before we look at this FIFO again.
|
|
*/
|
|
ahd_delay(200);
|
|
goto rescan_fifos;
|
|
}
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd_set_scbptr(ahd, scbid);
|
|
if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
|
|
&& ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
|
|
|| (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
|
|
& SG_LIST_NULL) != 0)) {
|
|
u_int comp_head;
|
|
|
|
/*
|
|
* The transfer completed with a residual.
|
|
* Place this SCB on the complete DMA list
|
|
* so that we update our in-core copy of the
|
|
* SCB before completing the command.
|
|
*/
|
|
ahd_outb(ahd, SCB_SCSI_STATUS, 0);
|
|
ahd_outb(ahd, SCB_SGPTR,
|
|
ahd_inb_scbram(ahd, SCB_SGPTR)
|
|
| SG_STATUS_VALID);
|
|
ahd_outw(ahd, SCB_TAG, scbid);
|
|
ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
|
|
comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
|
|
if (SCBID_IS_NULL(comp_head)) {
|
|
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
|
|
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
|
|
} else {
|
|
u_int tail;
|
|
|
|
tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
|
|
ahd_set_scbptr(ahd, tail);
|
|
ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
|
|
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
|
|
ahd_set_scbptr(ahd, scbid);
|
|
}
|
|
} else
|
|
ahd_complete_scb(ahd, scb);
|
|
}
|
|
ahd_set_scbptr(ahd, saved_scbptr);
|
|
|
|
/*
|
|
* Setup for command channel portion of flush.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
|
|
|
|
/*
|
|
* Wait for any inprogress DMA to complete and clear DMA state
|
|
* if this is for an SCB in the qinfifo.
|
|
*/
|
|
while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
|
|
|
|
if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
|
|
if ((ccscbctl & ARRDONE) != 0)
|
|
break;
|
|
} else if ((ccscbctl & CCSCBDONE) != 0)
|
|
break;
|
|
ahd_delay(200);
|
|
}
|
|
/*
|
|
* We leave the sequencer to cleanup in the case of DMA's to
|
|
* update the qoutfifo. In all other cases (DMA's to the
|
|
* chip or a push of an SCB from the COMPLETE_DMA_SCB list),
|
|
* we disable the DMA engine so that the sequencer will not
|
|
* attempt to handle the DMA completion.
|
|
*/
|
|
if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
|
|
ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
|
|
|
|
/*
|
|
* Complete any SCBs that just finished
|
|
* being DMA'ed into the qoutfifo.
|
|
*/
|
|
ahd_run_qoutfifo(ahd);
|
|
|
|
saved_scbptr = ahd_get_scbptr(ahd);
|
|
/*
|
|
* Manually update/complete any completed SCBs that are waiting to be
|
|
* DMA'ed back up to the host.
|
|
*/
|
|
scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
|
|
while (!SCBID_IS_NULL(scbid)) {
|
|
uint8_t *hscb_ptr;
|
|
u_int i;
|
|
|
|
ahd_set_scbptr(ahd, scbid);
|
|
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: Warning - DMA-up and complete "
|
|
"SCB %d invalid\n", ahd_name(ahd), scbid);
|
|
continue;
|
|
}
|
|
hscb_ptr = (uint8_t *)scb->hscb;
|
|
for (i = 0; i < sizeof(struct hardware_scb); i++)
|
|
*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
|
|
|
|
ahd_complete_scb(ahd, scb);
|
|
scbid = next_scbid;
|
|
}
|
|
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
|
|
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
|
|
|
|
scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
|
|
while (!SCBID_IS_NULL(scbid)) {
|
|
|
|
ahd_set_scbptr(ahd, scbid);
|
|
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
|
|
ahd_name(ahd), scbid);
|
|
continue;
|
|
}
|
|
|
|
ahd_complete_scb(ahd, scb);
|
|
scbid = next_scbid;
|
|
}
|
|
ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
|
|
|
|
scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
|
|
while (!SCBID_IS_NULL(scbid)) {
|
|
|
|
ahd_set_scbptr(ahd, scbid);
|
|
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: Warning - Complete SCB %d invalid\n",
|
|
ahd_name(ahd), scbid);
|
|
continue;
|
|
}
|
|
|
|
ahd_complete_scb(ahd, scb);
|
|
scbid = next_scbid;
|
|
}
|
|
ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
|
|
|
|
/*
|
|
* Restore state.
|
|
*/
|
|
ahd_set_scbptr(ahd, saved_scbptr);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
ahd->flags |= AHD_UPDATE_PEND_CMDS;
|
|
}
|
|
|
|
/*
|
|
* Determine if an SCB for a packetized transaction
|
|
* is active in a FIFO.
|
|
*/
|
|
static int
|
|
ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
|
|
/*
|
|
* The FIFO is only active for our transaction if
|
|
* the SCBPTR matches the SCB's ID and the firmware
|
|
* has installed a handler for the FIFO or we have
|
|
* a pending SAVEPTRS or CFG4DATA interrupt.
|
|
*/
|
|
if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
|
|
|| ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
|
|
&& (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Run a data fifo to completion for a transaction we know
|
|
* has completed across the SCSI bus (good status has been
|
|
* received). We are already set to the correct FIFO mode
|
|
* on entry to this routine.
|
|
*
|
|
* This function attempts to operate exactly as the firmware
|
|
* would when running this FIFO. Care must be taken to update
|
|
* this routine any time the firmware's FIFO algorithm is
|
|
* changed.
|
|
*/
|
|
static void
|
|
ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
u_int seqintsrc;
|
|
|
|
seqintsrc = ahd_inb(ahd, SEQINTSRC);
|
|
if ((seqintsrc & CFG4DATA) != 0) {
|
|
uint32_t datacnt;
|
|
uint32_t sgptr;
|
|
|
|
/*
|
|
* Clear full residual flag.
|
|
*/
|
|
sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
|
|
ahd_outb(ahd, SCB_SGPTR, sgptr);
|
|
|
|
/*
|
|
* Load datacnt and address.
|
|
*/
|
|
datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
|
|
if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
|
|
sgptr |= LAST_SEG;
|
|
ahd_outb(ahd, SG_STATE, 0);
|
|
} else
|
|
ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
|
|
ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
|
|
ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
|
|
ahd_outb(ahd, SG_CACHE_PRE, sgptr);
|
|
ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
|
|
|
|
/*
|
|
* Initialize Residual Fields.
|
|
*/
|
|
ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
|
|
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
|
|
|
|
/*
|
|
* Mark the SCB as having a FIFO in use.
|
|
*/
|
|
ahd_outb(ahd, SCB_FIFO_USE_COUNT,
|
|
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
|
|
|
|
/*
|
|
* Install a "fake" handler for this FIFO.
|
|
*/
|
|
ahd_outw(ahd, LONGJMP_ADDR, 0);
|
|
|
|
/*
|
|
* Notify the hardware that we have satisfied
|
|
* this sequencer interrupt.
|
|
*/
|
|
ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
|
|
} else if ((seqintsrc & SAVEPTRS) != 0) {
|
|
uint32_t sgptr;
|
|
uint32_t resid;
|
|
|
|
if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
|
|
/*
|
|
* Snapshot Save Pointers. All that
|
|
* is necessary to clear the snapshot
|
|
* is a CLRCHN.
|
|
*/
|
|
goto clrchn;
|
|
}
|
|
|
|
/*
|
|
* Disable S/G fetch so the DMA engine
|
|
* is available to future users.
|
|
*/
|
|
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
|
|
ahd_outb(ahd, CCSGCTL, 0);
|
|
ahd_outb(ahd, SG_STATE, 0);
|
|
|
|
/*
|
|
* Flush the data FIFO. Strickly only
|
|
* necessary for Rev A parts.
|
|
*/
|
|
ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
|
|
|
|
/*
|
|
* Calculate residual.
|
|
*/
|
|
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
|
|
resid = ahd_inl(ahd, SHCNT);
|
|
resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
|
|
ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
|
|
if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
|
|
/*
|
|
* Must back up to the correct S/G element.
|
|
* Typically this just means resetting our
|
|
* low byte to the offset in the SG_CACHE,
|
|
* but if we wrapped, we have to correct
|
|
* the other bytes of the sgptr too.
|
|
*/
|
|
if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
|
|
&& (sgptr & 0x80) == 0)
|
|
sgptr -= 0x100;
|
|
sgptr &= ~0xFF;
|
|
sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
|
|
& SG_ADDR_MASK;
|
|
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
|
|
ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
|
|
} else if ((resid & AHD_SG_LEN_MASK) == 0) {
|
|
ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
|
|
sgptr | SG_LIST_NULL);
|
|
}
|
|
/*
|
|
* Save Pointers.
|
|
*/
|
|
ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
|
|
ahd_outl(ahd, SCB_DATACNT, resid);
|
|
ahd_outl(ahd, SCB_SGPTR, sgptr);
|
|
ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
|
|
ahd_outb(ahd, SEQIMODE,
|
|
ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
|
|
/*
|
|
* If the data is to the SCSI bus, we are
|
|
* done, otherwise wait for FIFOEMP.
|
|
*/
|
|
if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
|
|
goto clrchn;
|
|
} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
|
|
uint32_t sgptr;
|
|
uint64_t data_addr;
|
|
uint32_t data_len;
|
|
u_int dfcntrl;
|
|
|
|
/*
|
|
* Disable S/G fetch so the DMA engine
|
|
* is available to future users. We won't
|
|
* be using the DMA engine to load segments.
|
|
*/
|
|
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
|
|
ahd_outb(ahd, CCSGCTL, 0);
|
|
ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
|
|
}
|
|
|
|
/*
|
|
* Wait for the DMA engine to notice that the
|
|
* host transfer is enabled and that there is
|
|
* space in the S/G FIFO for new segments before
|
|
* loading more segments.
|
|
*/
|
|
if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
|
|
&& (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
|
|
|
|
/*
|
|
* Determine the offset of the next S/G
|
|
* element to load.
|
|
*/
|
|
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
|
|
sgptr &= SG_PTR_MASK;
|
|
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
|
|
struct ahd_dma64_seg *sg;
|
|
|
|
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
|
|
data_addr = sg->addr;
|
|
data_len = sg->len;
|
|
sgptr += sizeof(*sg);
|
|
} else {
|
|
struct ahd_dma_seg *sg;
|
|
|
|
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
|
|
data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
|
|
data_addr <<= 8;
|
|
data_addr |= sg->addr;
|
|
data_len = sg->len;
|
|
sgptr += sizeof(*sg);
|
|
}
|
|
|
|
/*
|
|
* Update residual information.
|
|
*/
|
|
ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
|
|
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
|
|
|
|
/*
|
|
* Load the S/G.
|
|
*/
|
|
if (data_len & AHD_DMA_LAST_SEG) {
|
|
sgptr |= LAST_SEG;
|
|
ahd_outb(ahd, SG_STATE, 0);
|
|
}
|
|
ahd_outq(ahd, HADDR, data_addr);
|
|
ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
|
|
ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
|
|
|
|
/*
|
|
* Advertise the segment to the hardware.
|
|
*/
|
|
dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
|
|
if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
|
|
/*
|
|
* Use SCSIENWRDIS so that SCSIEN
|
|
* is never modified by this
|
|
* operation.
|
|
*/
|
|
dfcntrl |= SCSIENWRDIS;
|
|
}
|
|
ahd_outb(ahd, DFCNTRL, dfcntrl);
|
|
}
|
|
} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
|
|
|
|
/*
|
|
* Transfer completed to the end of SG list
|
|
* and has flushed to the host.
|
|
*/
|
|
ahd_outb(ahd, SCB_SGPTR,
|
|
ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
|
|
goto clrchn;
|
|
} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
|
|
clrchn:
|
|
/*
|
|
* Clear any handler for this FIFO, decrement
|
|
* the FIFO use count for the SCB, and release
|
|
* the FIFO.
|
|
*/
|
|
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
|
|
ahd_outb(ahd, SCB_FIFO_USE_COUNT,
|
|
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
|
|
ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for entries in the QoutFIFO that have completed.
|
|
* The valid_tag completion field indicates the validity
|
|
* of the entry - the valid value toggles each time through
|
|
* the queue. We use the sg_status field in the completion
|
|
* entry to avoid referencing the hscb if the completion
|
|
* occurred with no errors and no residual. sg_status is
|
|
* a copy of the first byte (little endian) of the sgptr
|
|
* hscb field.
|
|
*/
|
|
static void
|
|
ahd_run_qoutfifo(struct ahd_softc *ahd)
|
|
{
|
|
struct ahd_completion *completion;
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
|
|
if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
|
|
panic("ahd_run_qoutfifo recursion");
|
|
ahd->flags |= AHD_RUNNING_QOUTFIFO;
|
|
ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
|
|
for (;;) {
|
|
completion = &ahd->qoutfifo[ahd->qoutfifonext];
|
|
|
|
if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
|
|
break;
|
|
|
|
scb_index = ahd_le16toh(completion->tag);
|
|
scb = ahd_lookup_scb(ahd, scb_index);
|
|
if (scb == NULL) {
|
|
printk("%s: WARNING no command for scb %d "
|
|
"(cmdcmplt)\nQOUTPOS = %d\n",
|
|
ahd_name(ahd), scb_index,
|
|
ahd->qoutfifonext);
|
|
ahd_dump_card_state(ahd);
|
|
} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
|
|
ahd_handle_scb_status(ahd, scb);
|
|
} else {
|
|
ahd_done(ahd, scb);
|
|
}
|
|
|
|
ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
|
|
if (ahd->qoutfifonext == 0)
|
|
ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
|
|
}
|
|
ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
|
|
}
|
|
|
|
/************************* Interrupt Handling *********************************/
|
|
static void
|
|
ahd_handle_hwerrint(struct ahd_softc *ahd)
|
|
{
|
|
/*
|
|
* Some catastrophic hardware error has occurred.
|
|
* Print it for the user and disable the controller.
|
|
*/
|
|
int i;
|
|
int error;
|
|
|
|
error = ahd_inb(ahd, ERROR);
|
|
for (i = 0; i < num_errors; i++) {
|
|
if ((error & ahd_hard_errors[i].errno) != 0)
|
|
printk("%s: hwerrint, %s\n",
|
|
ahd_name(ahd), ahd_hard_errors[i].errmesg);
|
|
}
|
|
|
|
ahd_dump_card_state(ahd);
|
|
panic("BRKADRINT");
|
|
|
|
/* Tell everyone that this HBA is no longer available */
|
|
ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
|
|
CAM_NO_HBA);
|
|
|
|
/* Tell the system that this controller has gone away. */
|
|
ahd_free(ahd);
|
|
}
|
|
|
|
#ifdef AHD_DEBUG
|
|
static void
|
|
ahd_dump_sglist(struct scb *scb)
|
|
{
|
|
int i;
|
|
|
|
if (scb->sg_count > 0) {
|
|
if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
|
|
struct ahd_dma64_seg *sg_list;
|
|
|
|
sg_list = (struct ahd_dma64_seg*)scb->sg_list;
|
|
for (i = 0; i < scb->sg_count; i++) {
|
|
uint64_t addr;
|
|
|
|
addr = ahd_le64toh(sg_list[i].addr);
|
|
printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
|
|
i,
|
|
(uint32_t)((addr >> 32) & 0xFFFFFFFF),
|
|
(uint32_t)(addr & 0xFFFFFFFF),
|
|
sg_list[i].len & AHD_SG_LEN_MASK,
|
|
(sg_list[i].len & AHD_DMA_LAST_SEG)
|
|
? " Last" : "");
|
|
}
|
|
} else {
|
|
struct ahd_dma_seg *sg_list;
|
|
|
|
sg_list = (struct ahd_dma_seg*)scb->sg_list;
|
|
for (i = 0; i < scb->sg_count; i++) {
|
|
uint32_t len;
|
|
|
|
len = ahd_le32toh(sg_list[i].len);
|
|
printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
|
|
i,
|
|
(len & AHD_SG_HIGH_ADDR_MASK) >> 24,
|
|
ahd_le32toh(sg_list[i].addr),
|
|
len & AHD_SG_LEN_MASK,
|
|
len & AHD_DMA_LAST_SEG ? " Last" : "");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* AHD_DEBUG */
|
|
|
|
static void
|
|
ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
|
|
{
|
|
u_int seqintcode;
|
|
|
|
/*
|
|
* Save the sequencer interrupt code and clear the SEQINT
|
|
* bit. We will unpause the sequencer, if appropriate,
|
|
* after servicing the request.
|
|
*/
|
|
seqintcode = ahd_inb(ahd, SEQINTCODE);
|
|
ahd_outb(ahd, CLRINT, CLRSEQINT);
|
|
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
|
|
/*
|
|
* Unpause the sequencer and let it clear
|
|
* SEQINT by writing NO_SEQINT to it. This
|
|
* will cause the sequencer to be paused again,
|
|
* which is the expected state of this routine.
|
|
*/
|
|
ahd_unpause(ahd);
|
|
while (!ahd_is_paused(ahd))
|
|
;
|
|
ahd_outb(ahd, CLRINT, CLRSEQINT);
|
|
}
|
|
ahd_update_modes(ahd);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("%s: Handle Seqint Called for code %d\n",
|
|
ahd_name(ahd), seqintcode);
|
|
#endif
|
|
switch (seqintcode) {
|
|
case ENTERING_NONPACK:
|
|
{
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
|
|
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
|
|
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
/*
|
|
* Somehow need to know if this
|
|
* is from a selection or reselection.
|
|
* From that, we can determine target
|
|
* ID so we at least have an I_T nexus.
|
|
*/
|
|
} else {
|
|
ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
|
|
ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
|
|
ahd_outb(ahd, SEQ_FLAGS, 0x0);
|
|
}
|
|
if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
|
|
&& (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
|
|
/*
|
|
* Phase change after read stream with
|
|
* CRC error with P0 asserted on last
|
|
* packet.
|
|
*/
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
|
|
printk("%s: Assuming LQIPHASE_NLQ with "
|
|
"P0 assertion\n", ahd_name(ahd));
|
|
#endif
|
|
}
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
|
|
printk("%s: Entering NONPACK\n", ahd_name(ahd));
|
|
#endif
|
|
break;
|
|
}
|
|
case INVALID_SEQINT:
|
|
printk("%s: Invalid Sequencer interrupt occurred, "
|
|
"resetting channel.\n",
|
|
ahd_name(ahd));
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
|
|
ahd_dump_card_state(ahd);
|
|
#endif
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
break;
|
|
case STATUS_OVERRUN:
|
|
{
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb != NULL)
|
|
ahd_print_path(ahd, scb);
|
|
else
|
|
printk("%s: ", ahd_name(ahd));
|
|
printk("SCB %d Packetized Status Overrun", scbid);
|
|
ahd_dump_card_state(ahd);
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
break;
|
|
}
|
|
case CFG4ISTAT_INTR:
|
|
{
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
ahd_dump_card_state(ahd);
|
|
printk("CFG4ISTAT: Free SCB %d referenced", scbid);
|
|
panic("For safety");
|
|
}
|
|
ahd_outq(ahd, HADDR, scb->sense_busaddr);
|
|
ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
|
|
ahd_outb(ahd, HCNT + 2, 0);
|
|
ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
|
|
ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
|
|
break;
|
|
}
|
|
case ILLEGAL_PHASE:
|
|
{
|
|
u_int bus_phase;
|
|
|
|
bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
|
|
printk("%s: ILLEGAL_PHASE 0x%x\n",
|
|
ahd_name(ahd), bus_phase);
|
|
|
|
switch (bus_phase) {
|
|
case P_DATAOUT:
|
|
case P_DATAIN:
|
|
case P_DATAOUT_DT:
|
|
case P_DATAIN_DT:
|
|
case P_MESGOUT:
|
|
case P_STATUS:
|
|
case P_MESGIN:
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
|
|
break;
|
|
case P_COMMAND:
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
|
|
/*
|
|
* If a target takes us into the command phase
|
|
* assume that it has been externally reset and
|
|
* has thus lost our previous packetized negotiation
|
|
* agreement. Since we have not sent an identify
|
|
* message and may not have fully qualified the
|
|
* connection, we change our command to TUR, assert
|
|
* ATN and ABORT the task when we go to message in
|
|
* phase. The OSM will see the REQUEUE_REQUEST
|
|
* status and retry the command.
|
|
*/
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("Invalid phase with no valid SCB. "
|
|
"Resetting bus.\n");
|
|
ahd_reset_channel(ahd, 'A',
|
|
/*Initiate Reset*/TRUE);
|
|
break;
|
|
}
|
|
ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
|
|
SCB_GET_TARGET(ahd, scb),
|
|
SCB_GET_LUN(scb),
|
|
SCB_GET_CHANNEL(ahd, scb),
|
|
ROLE_INITIATOR);
|
|
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_ACTIVE, /*paused*/TRUE);
|
|
ahd_set_syncrate(ahd, &devinfo, /*period*/0,
|
|
/*offset*/0, /*ppr_options*/0,
|
|
AHD_TRANS_ACTIVE, /*paused*/TRUE);
|
|
/* Hand-craft TUR command */
|
|
ahd_outb(ahd, SCB_CDB_STORE, 0);
|
|
ahd_outb(ahd, SCB_CDB_STORE+1, 0);
|
|
ahd_outb(ahd, SCB_CDB_STORE+2, 0);
|
|
ahd_outb(ahd, SCB_CDB_STORE+3, 0);
|
|
ahd_outb(ahd, SCB_CDB_STORE+4, 0);
|
|
ahd_outb(ahd, SCB_CDB_STORE+5, 0);
|
|
ahd_outb(ahd, SCB_CDB_LEN, 6);
|
|
scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
|
|
scb->hscb->control |= MK_MESSAGE;
|
|
ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
|
|
ahd_outb(ahd, MSG_OUT, HOST_MSG);
|
|
ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
|
|
/*
|
|
* The lun is 0, regardless of the SCB's lun
|
|
* as we have not sent an identify message.
|
|
*/
|
|
ahd_outb(ahd, SAVED_LUN, 0);
|
|
ahd_outb(ahd, SEQ_FLAGS, 0);
|
|
ahd_assert_atn(ahd);
|
|
scb->flags &= ~SCB_PACKETIZED;
|
|
scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
|
|
ahd_freeze_scb(scb);
|
|
|
|
/* Notify XPT */
|
|
ahd_send_async(ahd, devinfo.channel, devinfo.target,
|
|
CAM_LUN_WILDCARD, AC_SENT_BDR);
|
|
|
|
/*
|
|
* Allow the sequencer to continue with
|
|
* non-pack processing.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
|
|
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
|
|
ahd_outb(ahd, CLRLQOINT1, 0);
|
|
}
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("Unexpected command phase from "
|
|
"packetized target\n");
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case CFG4OVERRUN:
|
|
{
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
|
|
printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
|
|
ahd_inb(ahd, MODE_PTR));
|
|
}
|
|
#endif
|
|
scb_index = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scb_index);
|
|
if (scb == NULL) {
|
|
/*
|
|
* Attempt to transfer to an SCB that is
|
|
* not outstanding.
|
|
*/
|
|
ahd_assert_atn(ahd);
|
|
ahd_outb(ahd, MSG_OUT, HOST_MSG);
|
|
ahd->msgout_buf[0] = ABORT_TASK;
|
|
ahd->msgout_len = 1;
|
|
ahd->msgout_index = 0;
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
/*
|
|
* Clear status received flag to prevent any
|
|
* attempt to complete this bogus SCB.
|
|
*/
|
|
ahd_outb(ahd, SCB_CONTROL,
|
|
ahd_inb_scbram(ahd, SCB_CONTROL)
|
|
& ~STATUS_RCVD);
|
|
}
|
|
break;
|
|
}
|
|
case DUMP_CARD_STATE:
|
|
{
|
|
ahd_dump_card_state(ahd);
|
|
break;
|
|
}
|
|
case PDATA_REINIT:
|
|
{
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
|
|
printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
|
|
"SG_CACHE_SHADOW = 0x%x\n",
|
|
ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
|
|
ahd_inb(ahd, SG_CACHE_SHADOW));
|
|
}
|
|
#endif
|
|
ahd_reinitialize_dataptrs(ahd);
|
|
break;
|
|
}
|
|
case HOST_MSG_LOOP:
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
|
|
/*
|
|
* The sequencer has encountered a message phase
|
|
* that requires host assistance for completion.
|
|
* While handling the message phase(s), we will be
|
|
* notified by the sequencer after each byte is
|
|
* transferred so we can track bus phase changes.
|
|
*
|
|
* If this is the first time we've seen a HOST_MSG_LOOP
|
|
* interrupt, initialize the state of the host message
|
|
* loop.
|
|
*/
|
|
ahd_fetch_devinfo(ahd, &devinfo);
|
|
if (ahd->msg_type == MSG_TYPE_NONE) {
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
u_int bus_phase;
|
|
|
|
bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
|
|
if (bus_phase != P_MESGIN
|
|
&& bus_phase != P_MESGOUT) {
|
|
printk("ahd_intr: HOST_MSG_LOOP bad "
|
|
"phase 0x%x\n", bus_phase);
|
|
/*
|
|
* Probably transitioned to bus free before
|
|
* we got here. Just punt the message.
|
|
*/
|
|
ahd_dump_card_state(ahd);
|
|
ahd_clear_intstat(ahd);
|
|
ahd_restart(ahd);
|
|
return;
|
|
}
|
|
|
|
scb_index = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scb_index);
|
|
if (devinfo.role == ROLE_INITIATOR) {
|
|
if (bus_phase == P_MESGOUT)
|
|
ahd_setup_initiator_msgout(ahd,
|
|
&devinfo,
|
|
scb);
|
|
else {
|
|
ahd->msg_type =
|
|
MSG_TYPE_INITIATOR_MSGIN;
|
|
ahd->msgin_index = 0;
|
|
}
|
|
}
|
|
#ifdef AHD_TARGET_MODE
|
|
else {
|
|
if (bus_phase == P_MESGOUT) {
|
|
ahd->msg_type =
|
|
MSG_TYPE_TARGET_MSGOUT;
|
|
ahd->msgin_index = 0;
|
|
} else
|
|
ahd_setup_target_msgin(ahd,
|
|
&devinfo,
|
|
scb);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ahd_handle_message_phase(ahd);
|
|
break;
|
|
}
|
|
case NO_MATCH:
|
|
{
|
|
/* Ensure we don't leave the selection hardware on */
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
|
|
|
|
printk("%s:%c:%d: no active SCB for reconnecting "
|
|
"target - issuing BUS DEVICE RESET\n",
|
|
ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
|
|
printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
|
|
"REG0 == 0x%x ACCUM = 0x%x\n",
|
|
ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
|
|
ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
|
|
printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
|
|
"SINDEX == 0x%x\n",
|
|
ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
|
|
ahd_find_busy_tcl(ahd,
|
|
BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
|
|
ahd_inb(ahd, SAVED_LUN))),
|
|
ahd_inw(ahd, SINDEX));
|
|
printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
|
|
"SCB_CONTROL == 0x%x\n",
|
|
ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
|
|
ahd_inb_scbram(ahd, SCB_LUN),
|
|
ahd_inb_scbram(ahd, SCB_CONTROL));
|
|
printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
|
|
ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
|
|
printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
|
|
printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
|
|
ahd_dump_card_state(ahd);
|
|
ahd->msgout_buf[0] = TARGET_RESET;
|
|
ahd->msgout_len = 1;
|
|
ahd->msgout_index = 0;
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
ahd_outb(ahd, MSG_OUT, HOST_MSG);
|
|
ahd_assert_atn(ahd);
|
|
break;
|
|
}
|
|
case PROTO_VIOLATION:
|
|
{
|
|
ahd_handle_proto_violation(ahd);
|
|
break;
|
|
}
|
|
case IGN_WIDE_RES:
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
|
|
ahd_fetch_devinfo(ahd, &devinfo);
|
|
ahd_handle_ign_wide_residue(ahd, &devinfo);
|
|
break;
|
|
}
|
|
case BAD_PHASE:
|
|
{
|
|
u_int lastphase;
|
|
|
|
lastphase = ahd_inb(ahd, LASTPHASE);
|
|
printk("%s:%c:%d: unknown scsi bus phase %x, "
|
|
"lastphase = 0x%x. Attempting to continue\n",
|
|
ahd_name(ahd), 'A',
|
|
SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
|
|
lastphase, ahd_inb(ahd, SCSISIGI));
|
|
break;
|
|
}
|
|
case MISSED_BUSFREE:
|
|
{
|
|
u_int lastphase;
|
|
|
|
lastphase = ahd_inb(ahd, LASTPHASE);
|
|
printk("%s:%c:%d: Missed busfree. "
|
|
"Lastphase = 0x%x, Curphase = 0x%x\n",
|
|
ahd_name(ahd), 'A',
|
|
SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
|
|
lastphase, ahd_inb(ahd, SCSISIGI));
|
|
ahd_restart(ahd);
|
|
return;
|
|
}
|
|
case DATA_OVERRUN:
|
|
{
|
|
/*
|
|
* When the sequencer detects an overrun, it
|
|
* places the controller in "BITBUCKET" mode
|
|
* and allows the target to complete its transfer.
|
|
* Unfortunately, none of the counters get updated
|
|
* when the controller is in this mode, so we have
|
|
* no way of knowing how large the overrun was.
|
|
*/
|
|
struct scb *scb;
|
|
u_int scbindex;
|
|
#ifdef AHD_DEBUG
|
|
u_int lastphase;
|
|
#endif
|
|
|
|
scbindex = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbindex);
|
|
#ifdef AHD_DEBUG
|
|
lastphase = ahd_inb(ahd, LASTPHASE);
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("data overrun detected %s. Tag == 0x%x.\n",
|
|
ahd_lookup_phase_entry(lastphase)->phasemsg,
|
|
SCB_GET_TAG(scb));
|
|
ahd_print_path(ahd, scb);
|
|
printk("%s seen Data Phase. Length = %ld. "
|
|
"NumSGs = %d.\n",
|
|
ahd_inb(ahd, SEQ_FLAGS) & DPHASE
|
|
? "Have" : "Haven't",
|
|
ahd_get_transfer_length(scb), scb->sg_count);
|
|
ahd_dump_sglist(scb);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set this and it will take effect when the
|
|
* target does a command complete.
|
|
*/
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
|
|
ahd_freeze_scb(scb);
|
|
break;
|
|
}
|
|
case MKMSG_FAILED:
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
|
|
ahd_fetch_devinfo(ahd, &devinfo);
|
|
printk("%s:%c:%d:%d: Attempt to issue message failed\n",
|
|
ahd_name(ahd), devinfo.channel, devinfo.target,
|
|
devinfo.lun);
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb != NULL
|
|
&& (scb->flags & SCB_RECOVERY_SCB) != 0)
|
|
/*
|
|
* Ensure that we didn't put a second instance of this
|
|
* SCB into the QINFIFO.
|
|
*/
|
|
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
|
|
SCB_GET_CHANNEL(ahd, scb),
|
|
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
|
|
ROLE_INITIATOR, /*status*/0,
|
|
SEARCH_REMOVE);
|
|
ahd_outb(ahd, SCB_CONTROL,
|
|
ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
|
|
break;
|
|
}
|
|
case TASKMGMT_FUNC_COMPLETE:
|
|
{
|
|
u_int scbid;
|
|
struct scb *scb;
|
|
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb != NULL) {
|
|
u_int lun;
|
|
u_int tag;
|
|
cam_status error;
|
|
|
|
ahd_print_path(ahd, scb);
|
|
printk("Task Management Func 0x%x Complete\n",
|
|
scb->hscb->task_management);
|
|
lun = CAM_LUN_WILDCARD;
|
|
tag = SCB_LIST_NULL;
|
|
|
|
switch (scb->hscb->task_management) {
|
|
case SIU_TASKMGMT_ABORT_TASK:
|
|
tag = SCB_GET_TAG(scb);
|
|
fallthrough;
|
|
case SIU_TASKMGMT_ABORT_TASK_SET:
|
|
case SIU_TASKMGMT_CLEAR_TASK_SET:
|
|
lun = scb->hscb->lun;
|
|
error = CAM_REQ_ABORTED;
|
|
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
|
|
'A', lun, tag, ROLE_INITIATOR,
|
|
error);
|
|
break;
|
|
case SIU_TASKMGMT_LUN_RESET:
|
|
lun = scb->hscb->lun;
|
|
fallthrough;
|
|
case SIU_TASKMGMT_TARGET_RESET:
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
|
|
ahd_scb_devinfo(ahd, &devinfo, scb);
|
|
error = CAM_BDR_SENT;
|
|
ahd_handle_devreset(ahd, &devinfo, lun,
|
|
CAM_BDR_SENT,
|
|
lun != CAM_LUN_WILDCARD
|
|
? "Lun Reset"
|
|
: "Target Reset",
|
|
/*verbose_level*/0);
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unexpected TaskMgmt Func\n");
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TASKMGMT_CMD_CMPLT_OKAY:
|
|
{
|
|
u_int scbid;
|
|
struct scb *scb;
|
|
|
|
/*
|
|
* An ABORT TASK TMF failed to be delivered before
|
|
* the targeted command completed normally.
|
|
*/
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb != NULL) {
|
|
/*
|
|
* Remove the second instance of this SCB from
|
|
* the QINFIFO if it is still there.
|
|
*/
|
|
ahd_print_path(ahd, scb);
|
|
printk("SCB completes before TMF\n");
|
|
/*
|
|
* Handle losing the race. Wait until any
|
|
* current selection completes. We will then
|
|
* set the TMF back to zero in this SCB so that
|
|
* the sequencer doesn't bother to issue another
|
|
* sequencer interrupt for its completion.
|
|
*/
|
|
while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
|
|
&& (ahd_inb(ahd, SSTAT0) & SELDO) == 0
|
|
&& (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
|
|
;
|
|
ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
|
|
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
|
|
SCB_GET_CHANNEL(ahd, scb),
|
|
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
|
|
ROLE_INITIATOR, /*status*/0,
|
|
SEARCH_REMOVE);
|
|
}
|
|
break;
|
|
}
|
|
case TRACEPOINT0:
|
|
case TRACEPOINT1:
|
|
case TRACEPOINT2:
|
|
case TRACEPOINT3:
|
|
printk("%s: Tracepoint %d\n", ahd_name(ahd),
|
|
seqintcode - TRACEPOINT0);
|
|
break;
|
|
case NO_SEQINT:
|
|
break;
|
|
case SAW_HWERR:
|
|
ahd_handle_hwerrint(ahd);
|
|
break;
|
|
default:
|
|
printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
|
|
seqintcode);
|
|
break;
|
|
}
|
|
/*
|
|
* The sequencer is paused immediately on
|
|
* a SEQINT, so we should restart it when
|
|
* we're done.
|
|
*/
|
|
ahd_unpause(ahd);
|
|
}
|
|
|
|
static void
|
|
ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
|
|
{
|
|
struct scb *scb;
|
|
u_int status0;
|
|
u_int status3;
|
|
u_int status;
|
|
u_int lqistat1;
|
|
u_int lqostat0;
|
|
u_int scbid;
|
|
u_int busfreetime;
|
|
|
|
ahd_update_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
|
|
status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
|
|
status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
|
|
status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
|
|
lqistat1 = ahd_inb(ahd, LQISTAT1);
|
|
lqostat0 = ahd_inb(ahd, LQOSTAT0);
|
|
busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
|
|
|
|
/*
|
|
* Ignore external resets after a bus reset.
|
|
*/
|
|
if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
|
|
ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clear bus reset flag
|
|
*/
|
|
ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
|
|
|
|
if ((status0 & (SELDI|SELDO)) != 0) {
|
|
u_int simode0;
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
simode0 = ahd_inb(ahd, SIMODE0);
|
|
status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
}
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb != NULL
|
|
&& (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
|
|
scb = NULL;
|
|
|
|
if ((status0 & IOERR) != 0) {
|
|
u_int now_lvd;
|
|
|
|
now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
|
|
printk("%s: Transceiver State Has Changed to %s mode\n",
|
|
ahd_name(ahd), now_lvd ? "LVD" : "SE");
|
|
ahd_outb(ahd, CLRSINT0, CLRIOERR);
|
|
/*
|
|
* A change in I/O mode is equivalent to a bus reset.
|
|
*/
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
ahd_pause(ahd);
|
|
ahd_setup_iocell_workaround(ahd);
|
|
ahd_unpause(ahd);
|
|
} else if ((status0 & OVERRUN) != 0) {
|
|
|
|
printk("%s: SCSI offset overrun detected. Resetting bus.\n",
|
|
ahd_name(ahd));
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
} else if ((status & SCSIRSTI) != 0) {
|
|
|
|
printk("%s: Someone reset channel A\n", ahd_name(ahd));
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
|
|
} else if ((status & SCSIPERR) != 0) {
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahd_clear_critical_section(ahd);
|
|
|
|
ahd_handle_transmission_error(ahd);
|
|
} else if (lqostat0 != 0) {
|
|
|
|
printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
|
|
ahd_outb(ahd, CLRLQOINT0, lqostat0);
|
|
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
|
|
ahd_outb(ahd, CLRLQOINT1, 0);
|
|
} else if ((status & SELTO) != 0) {
|
|
/* Stop the selection */
|
|
ahd_outb(ahd, SCSISEQ0, 0);
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahd_clear_critical_section(ahd);
|
|
|
|
/* No more pending messages */
|
|
ahd_clear_msg_state(ahd);
|
|
|
|
/* Clear interrupt state */
|
|
ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
|
|
|
|
/*
|
|
* Although the driver does not care about the
|
|
* 'Selection in Progress' status bit, the busy
|
|
* LED does. SELINGO is only cleared by a successful
|
|
* selection, so we must manually clear it to insure
|
|
* the LED turns off just incase no future successful
|
|
* selections occur (e.g. no devices on the bus).
|
|
*/
|
|
ahd_outb(ahd, CLRSINT0, CLRSELINGO);
|
|
|
|
scbid = ahd_inw(ahd, WAITING_TID_HEAD);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: ahd_intr - referenced scb not "
|
|
"valid during SELTO scb(0x%x)\n",
|
|
ahd_name(ahd), scbid);
|
|
ahd_dump_card_state(ahd);
|
|
} else {
|
|
struct ahd_devinfo devinfo;
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("Saw Selection Timeout for SCB 0x%x\n",
|
|
scbid);
|
|
}
|
|
#endif
|
|
ahd_scb_devinfo(ahd, &devinfo, scb);
|
|
ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
|
|
ahd_freeze_devq(ahd, scb);
|
|
|
|
/*
|
|
* Cancel any pending transactions on the device
|
|
* now that it seems to be missing. This will
|
|
* also revert us to async/narrow transfers until
|
|
* we can renegotiate with the device.
|
|
*/
|
|
ahd_handle_devreset(ahd, &devinfo,
|
|
CAM_LUN_WILDCARD,
|
|
CAM_SEL_TIMEOUT,
|
|
"Selection Timeout",
|
|
/*verbose_level*/1);
|
|
}
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
ahd_iocell_first_selection(ahd);
|
|
ahd_unpause(ahd);
|
|
} else if ((status0 & (SELDI|SELDO)) != 0) {
|
|
|
|
ahd_iocell_first_selection(ahd);
|
|
ahd_unpause(ahd);
|
|
} else if (status3 != 0) {
|
|
printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
|
|
ahd_name(ahd), status3);
|
|
ahd_outb(ahd, CLRSINT3, status3);
|
|
} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahd_clear_critical_section(ahd);
|
|
|
|
ahd_handle_lqiphase_error(ahd, lqistat1);
|
|
} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
|
|
/*
|
|
* This status can be delayed during some
|
|
* streaming operations. The SCSIPHASE
|
|
* handler has already dealt with this case
|
|
* so just clear the error.
|
|
*/
|
|
ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
|
|
} else if ((status & BUSFREE) != 0
|
|
|| (lqistat1 & LQOBUSFREE) != 0) {
|
|
u_int lqostat1;
|
|
int restart;
|
|
int clear_fifo;
|
|
int packetized;
|
|
u_int mode;
|
|
|
|
/*
|
|
* Clear our selection hardware as soon as possible.
|
|
* We may have an entry in the waiting Q for this target,
|
|
* that is affected by this busfree and we don't want to
|
|
* go about selecting the target while we handle the event.
|
|
*/
|
|
ahd_outb(ahd, SCSISEQ0, 0);
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahd_clear_critical_section(ahd);
|
|
|
|
/*
|
|
* Determine what we were up to at the time of
|
|
* the busfree.
|
|
*/
|
|
mode = AHD_MODE_SCSI;
|
|
busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
|
|
lqostat1 = ahd_inb(ahd, LQOSTAT1);
|
|
switch (busfreetime) {
|
|
case BUSFREE_DFF0:
|
|
case BUSFREE_DFF1:
|
|
{
|
|
mode = busfreetime == BUSFREE_DFF0
|
|
? AHD_MODE_DFF0 : AHD_MODE_DFF1;
|
|
ahd_set_modes(ahd, mode, mode);
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: Invalid SCB %d in DFF%d "
|
|
"during unexpected busfree\n",
|
|
ahd_name(ahd), scbid, mode);
|
|
packetized = 0;
|
|
} else
|
|
packetized = (scb->flags & SCB_PACKETIZED) != 0;
|
|
clear_fifo = 1;
|
|
break;
|
|
}
|
|
case BUSFREE_LQO:
|
|
clear_fifo = 0;
|
|
packetized = 1;
|
|
break;
|
|
default:
|
|
clear_fifo = 0;
|
|
packetized = (lqostat1 & LQOBUSFREE) != 0;
|
|
if (!packetized
|
|
&& ahd_inb(ahd, LASTPHASE) == P_BUSFREE
|
|
&& (ahd_inb(ahd, SSTAT0) & SELDI) == 0
|
|
&& ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
|
|
|| (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
|
|
/*
|
|
* Assume packetized if we are not
|
|
* on the bus in a non-packetized
|
|
* capacity and any pending selection
|
|
* was a packetized selection.
|
|
*/
|
|
packetized = 1;
|
|
break;
|
|
}
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("Saw Busfree. Busfreetime = 0x%x.\n",
|
|
busfreetime);
|
|
#endif
|
|
/*
|
|
* Busfrees that occur in non-packetized phases are
|
|
* handled by the nonpkt_busfree handler.
|
|
*/
|
|
if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
|
|
restart = ahd_handle_pkt_busfree(ahd, busfreetime);
|
|
} else {
|
|
packetized = 0;
|
|
restart = ahd_handle_nonpkt_busfree(ahd);
|
|
}
|
|
/*
|
|
* Clear the busfree interrupt status. The setting of
|
|
* the interrupt is a pulse, so in a perfect world, we
|
|
* would not need to muck with the ENBUSFREE logic. This
|
|
* would ensure that if the bus moves on to another
|
|
* connection, busfree protection is still in force. If
|
|
* BUSFREEREV is broken, however, we must manually clear
|
|
* the ENBUSFREE if the busfree occurred during a non-pack
|
|
* connection so that we don't get false positives during
|
|
* future, packetized, connections.
|
|
*/
|
|
ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
|
|
if (packetized == 0
|
|
&& (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
|
|
ahd_outb(ahd, SIMODE1,
|
|
ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
|
|
|
|
if (clear_fifo)
|
|
ahd_clear_fifo(ahd, mode);
|
|
|
|
ahd_clear_msg_state(ahd);
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
if (restart) {
|
|
ahd_restart(ahd);
|
|
} else {
|
|
ahd_unpause(ahd);
|
|
}
|
|
} else {
|
|
printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
|
|
ahd_name(ahd), status);
|
|
ahd_dump_card_state(ahd);
|
|
ahd_clear_intstat(ahd);
|
|
ahd_unpause(ahd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahd_handle_transmission_error(struct ahd_softc *ahd)
|
|
{
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
u_int lqistat1;
|
|
u_int msg_out;
|
|
u_int curphase;
|
|
u_int lastphase;
|
|
u_int perrdiag;
|
|
u_int cur_col;
|
|
int silent;
|
|
|
|
scb = NULL;
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
|
|
ahd_inb(ahd, LQISTAT2);
|
|
if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
|
|
&& (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
|
|
u_int lqistate;
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
lqistate = ahd_inb(ahd, LQISTATE);
|
|
if ((lqistate >= 0x1E && lqistate <= 0x24)
|
|
|| (lqistate == 0x29)) {
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
|
|
printk("%s: NLQCRC found via LQISTATE\n",
|
|
ahd_name(ahd));
|
|
}
|
|
#endif
|
|
lqistat1 |= LQICRCI_NLQ;
|
|
}
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
}
|
|
|
|
ahd_outb(ahd, CLRLQIINT1, lqistat1);
|
|
lastphase = ahd_inb(ahd, LASTPHASE);
|
|
curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
|
|
perrdiag = ahd_inb(ahd, PERRDIAG);
|
|
msg_out = INITIATOR_ERROR;
|
|
ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
|
|
|
|
/*
|
|
* Try to find the SCB associated with this error.
|
|
*/
|
|
silent = FALSE;
|
|
if (lqistat1 == 0
|
|
|| (lqistat1 & LQICRCI_NLQ) != 0) {
|
|
if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
|
|
ahd_set_active_fifo(ahd);
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb != NULL && SCB_IS_SILENT(scb))
|
|
silent = TRUE;
|
|
}
|
|
|
|
cur_col = 0;
|
|
if (silent == FALSE) {
|
|
printk("%s: Transmission error detected\n", ahd_name(ahd));
|
|
ahd_lqistat1_print(lqistat1, &cur_col, 50);
|
|
ahd_lastphase_print(lastphase, &cur_col, 50);
|
|
ahd_scsisigi_print(curphase, &cur_col, 50);
|
|
ahd_perrdiag_print(perrdiag, &cur_col, 50);
|
|
printk("\n");
|
|
ahd_dump_card_state(ahd);
|
|
}
|
|
|
|
if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
|
|
if (silent == FALSE) {
|
|
printk("%s: Gross protocol error during incoming "
|
|
"packet. lqistat1 == 0x%x. Resetting bus.\n",
|
|
ahd_name(ahd), lqistat1);
|
|
}
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
return;
|
|
} else if ((lqistat1 & LQICRCI_LQ) != 0) {
|
|
/*
|
|
* A CRC error has been detected on an incoming LQ.
|
|
* The bus is currently hung on the last ACK.
|
|
* Hit LQIRETRY to release the last ack, and
|
|
* wait for the sequencer to determine that ATNO
|
|
* is asserted while in message out to take us
|
|
* to our host message loop. No NONPACKREQ or
|
|
* LQIPHASE type errors will occur in this
|
|
* scenario. After this first LQIRETRY, the LQI
|
|
* manager will be in ISELO where it will
|
|
* happily sit until another packet phase begins.
|
|
* Unexpected bus free detection is enabled
|
|
* through any phases that occur after we release
|
|
* this last ack until the LQI manager sees a
|
|
* packet phase. This implies we may have to
|
|
* ignore a perfectly valid "unexected busfree"
|
|
* after our "initiator detected error" message is
|
|
* sent. A busfree is the expected response after
|
|
* we tell the target that it's L_Q was corrupted.
|
|
* (SPI4R09 10.7.3.3.3)
|
|
*/
|
|
ahd_outb(ahd, LQCTL2, LQIRETRY);
|
|
printk("LQIRetry for LQICRCI_LQ to release ACK\n");
|
|
} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
|
|
/*
|
|
* We detected a CRC error in a NON-LQ packet.
|
|
* The hardware has varying behavior in this situation
|
|
* depending on whether this packet was part of a
|
|
* stream or not.
|
|
*
|
|
* PKT by PKT mode:
|
|
* The hardware has already acked the complete packet.
|
|
* If the target honors our outstanding ATN condition,
|
|
* we should be (or soon will be) in MSGOUT phase.
|
|
* This will trigger the LQIPHASE_LQ status bit as the
|
|
* hardware was expecting another LQ. Unexpected
|
|
* busfree detection is enabled. Once LQIPHASE_LQ is
|
|
* true (first entry into host message loop is much
|
|
* the same), we must clear LQIPHASE_LQ and hit
|
|
* LQIRETRY so the hardware is ready to handle
|
|
* a future LQ. NONPACKREQ will not be asserted again
|
|
* once we hit LQIRETRY until another packet is
|
|
* processed. The target may either go busfree
|
|
* or start another packet in response to our message.
|
|
*
|
|
* Read Streaming P0 asserted:
|
|
* If we raise ATN and the target completes the entire
|
|
* stream (P0 asserted during the last packet), the
|
|
* hardware will ack all data and return to the ISTART
|
|
* state. When the target reponds to our ATN condition,
|
|
* LQIPHASE_LQ will be asserted. We should respond to
|
|
* this with an LQIRETRY to prepare for any future
|
|
* packets. NONPACKREQ will not be asserted again
|
|
* once we hit LQIRETRY until another packet is
|
|
* processed. The target may either go busfree or
|
|
* start another packet in response to our message.
|
|
* Busfree detection is enabled.
|
|
*
|
|
* Read Streaming P0 not asserted:
|
|
* If we raise ATN and the target transitions to
|
|
* MSGOUT in or after a packet where P0 is not
|
|
* asserted, the hardware will assert LQIPHASE_NLQ.
|
|
* We should respond to the LQIPHASE_NLQ with an
|
|
* LQIRETRY. Should the target stay in a non-pkt
|
|
* phase after we send our message, the hardware
|
|
* will assert LQIPHASE_LQ. Recovery is then just as
|
|
* listed above for the read streaming with P0 asserted.
|
|
* Busfree detection is enabled.
|
|
*/
|
|
if (silent == FALSE)
|
|
printk("LQICRC_NLQ\n");
|
|
if (scb == NULL) {
|
|
printk("%s: No SCB valid for LQICRC_NLQ. "
|
|
"Resetting bus\n", ahd_name(ahd));
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
return;
|
|
}
|
|
} else if ((lqistat1 & LQIBADLQI) != 0) {
|
|
printk("Need to handle BADLQI!\n");
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
return;
|
|
} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
|
|
if ((curphase & ~P_DATAIN_DT) != 0) {
|
|
/* Ack the byte. So we can continue. */
|
|
if (silent == FALSE)
|
|
printk("Acking %s to clear perror\n",
|
|
ahd_lookup_phase_entry(curphase)->phasemsg);
|
|
ahd_inb(ahd, SCSIDAT);
|
|
}
|
|
|
|
if (curphase == P_MESGIN)
|
|
msg_out = MSG_PARITY_ERROR;
|
|
}
|
|
|
|
/*
|
|
* We've set the hardware to assert ATN if we
|
|
* get a parity error on "in" phases, so all we
|
|
* need to do is stuff the message buffer with
|
|
* the appropriate message. "In" phases have set
|
|
* mesg_out to something other than NOP.
|
|
*/
|
|
ahd->send_msg_perror = msg_out;
|
|
if (scb != NULL && msg_out == INITIATOR_ERROR)
|
|
scb->flags |= SCB_TRANSMISSION_ERROR;
|
|
ahd_outb(ahd, MSG_OUT, HOST_MSG);
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
ahd_unpause(ahd);
|
|
}
|
|
|
|
static void
|
|
ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
|
|
{
|
|
/*
|
|
* Clear the sources of the interrupts.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd_outb(ahd, CLRLQIINT1, lqistat1);
|
|
|
|
/*
|
|
* If the "illegal" phase changes were in response
|
|
* to our ATN to flag a CRC error, AND we ended up
|
|
* on packet boundaries, clear the error, restart the
|
|
* LQI manager as appropriate, and go on our merry
|
|
* way toward sending the message. Otherwise, reset
|
|
* the bus to clear the error.
|
|
*/
|
|
ahd_set_active_fifo(ahd);
|
|
if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
|
|
&& (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
|
|
if ((lqistat1 & LQIPHASE_LQ) != 0) {
|
|
printk("LQIRETRY for LQIPHASE_LQ\n");
|
|
ahd_outb(ahd, LQCTL2, LQIRETRY);
|
|
} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
|
|
printk("LQIRETRY for LQIPHASE_NLQ\n");
|
|
ahd_outb(ahd, LQCTL2, LQIRETRY);
|
|
} else
|
|
panic("ahd_handle_lqiphase_error: No phase errors\n");
|
|
ahd_dump_card_state(ahd);
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
ahd_unpause(ahd);
|
|
} else {
|
|
printk("Resetting Channel for LQI Phase error\n");
|
|
ahd_dump_card_state(ahd);
|
|
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Packetized unexpected or expected busfree.
|
|
* Entered in mode based on busfreetime.
|
|
*/
|
|
static int
|
|
ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
|
|
{
|
|
u_int lqostat1;
|
|
|
|
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
|
|
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
|
|
lqostat1 = ahd_inb(ahd, LQOSTAT1);
|
|
if ((lqostat1 & LQOBUSFREE) != 0) {
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
u_int saved_scbptr;
|
|
u_int waiting_h;
|
|
u_int waiting_t;
|
|
u_int next;
|
|
|
|
/*
|
|
* The LQO manager detected an unexpected busfree
|
|
* either:
|
|
*
|
|
* 1) During an outgoing LQ.
|
|
* 2) After an outgoing LQ but before the first
|
|
* REQ of the command packet.
|
|
* 3) During an outgoing command packet.
|
|
*
|
|
* In all cases, CURRSCB is pointing to the
|
|
* SCB that encountered the failure. Clean
|
|
* up the queue, clear SELDO and LQOBUSFREE,
|
|
* and allow the sequencer to restart the select
|
|
* out at its lesure.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
scbid = ahd_inw(ahd, CURRSCB);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL)
|
|
panic("SCB not valid during LQOBUSFREE");
|
|
/*
|
|
* Clear the status.
|
|
*/
|
|
ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
|
|
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
|
|
ahd_outb(ahd, CLRLQOINT1, 0);
|
|
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
|
|
ahd_flush_device_writes(ahd);
|
|
ahd_outb(ahd, CLRSINT0, CLRSELDO);
|
|
|
|
/*
|
|
* Return the LQO manager to its idle loop. It will
|
|
* not do this automatically if the busfree occurs
|
|
* after the first REQ of either the LQ or command
|
|
* packet or between the LQ and command packet.
|
|
*/
|
|
ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
|
|
|
|
/*
|
|
* Update the waiting for selection queue so
|
|
* we restart on the correct SCB.
|
|
*/
|
|
waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
|
|
saved_scbptr = ahd_get_scbptr(ahd);
|
|
if (waiting_h != scbid) {
|
|
|
|
ahd_outw(ahd, WAITING_TID_HEAD, scbid);
|
|
waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
|
|
if (waiting_t == waiting_h) {
|
|
ahd_outw(ahd, WAITING_TID_TAIL, scbid);
|
|
next = SCB_LIST_NULL;
|
|
} else {
|
|
ahd_set_scbptr(ahd, waiting_h);
|
|
next = ahd_inw_scbram(ahd, SCB_NEXT2);
|
|
}
|
|
ahd_set_scbptr(ahd, scbid);
|
|
ahd_outw(ahd, SCB_NEXT2, next);
|
|
}
|
|
ahd_set_scbptr(ahd, saved_scbptr);
|
|
if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
|
|
if (SCB_IS_SILENT(scb) == FALSE) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("Probable outgoing LQ CRC error. "
|
|
"Retrying command\n");
|
|
}
|
|
scb->crc_retry_count++;
|
|
} else {
|
|
ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
|
|
ahd_freeze_scb(scb);
|
|
ahd_freeze_devq(ahd, scb);
|
|
}
|
|
/* Return unpausing the sequencer. */
|
|
return (0);
|
|
} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
|
|
/*
|
|
* Ignore what are really parity errors that
|
|
* occur on the last REQ of a free running
|
|
* clock prior to going busfree. Some drives
|
|
* do not properly active negate just before
|
|
* going busfree resulting in a parity glitch.
|
|
*/
|
|
ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
|
|
printk("%s: Parity on last REQ detected "
|
|
"during busfree phase.\n",
|
|
ahd_name(ahd));
|
|
#endif
|
|
/* Return unpausing the sequencer. */
|
|
return (0);
|
|
}
|
|
if (ahd->src_mode != AHD_MODE_SCSI) {
|
|
u_int scbid;
|
|
struct scb *scb;
|
|
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
ahd_print_path(ahd, scb);
|
|
printk("Unexpected PKT busfree condition\n");
|
|
ahd_dump_card_state(ahd);
|
|
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
|
|
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
|
|
ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
|
|
|
|
/* Return restarting the sequencer. */
|
|
return (1);
|
|
}
|
|
printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
|
|
ahd_dump_card_state(ahd);
|
|
/* Restart the sequencer. */
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Non-packetized unexpected or expected busfree.
|
|
*/
|
|
static int
|
|
ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
struct scb *scb;
|
|
u_int lastphase;
|
|
u_int saved_scsiid;
|
|
u_int saved_lun;
|
|
u_int target;
|
|
u_int initiator_role_id;
|
|
u_int scbid;
|
|
u_int ppr_busfree;
|
|
int printerror;
|
|
|
|
/*
|
|
* Look at what phase we were last in. If its message out,
|
|
* chances are pretty good that the busfree was in response
|
|
* to one of our abort requests.
|
|
*/
|
|
lastphase = ahd_inb(ahd, LASTPHASE);
|
|
saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
|
|
saved_lun = ahd_inb(ahd, SAVED_LUN);
|
|
target = SCSIID_TARGET(ahd, saved_scsiid);
|
|
initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
|
|
ahd_compile_devinfo(&devinfo, initiator_role_id,
|
|
target, saved_lun, 'A', ROLE_INITIATOR);
|
|
printerror = 1;
|
|
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb != NULL
|
|
&& (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
|
|
scb = NULL;
|
|
|
|
ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
|
|
if (lastphase == P_MESGOUT) {
|
|
u_int tag;
|
|
|
|
tag = SCB_LIST_NULL;
|
|
if (ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK, TRUE)
|
|
|| ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK_SET, TRUE)) {
|
|
int found;
|
|
int sent_msg;
|
|
|
|
if (scb == NULL) {
|
|
ahd_print_devinfo(ahd, &devinfo);
|
|
printk("Abort for unidentified "
|
|
"connection completed.\n");
|
|
/* restart the sequencer. */
|
|
return (1);
|
|
}
|
|
sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
|
|
ahd_print_path(ahd, scb);
|
|
printk("SCB %d - Abort%s Completed.\n",
|
|
SCB_GET_TAG(scb),
|
|
sent_msg == ABORT_TASK ? "" : " Tag");
|
|
|
|
if (sent_msg == ABORT_TASK)
|
|
tag = SCB_GET_TAG(scb);
|
|
|
|
if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
|
|
/*
|
|
* This abort is in response to an
|
|
* unexpected switch to command phase
|
|
* for a packetized connection. Since
|
|
* the identify message was never sent,
|
|
* "saved lun" is 0. We really want to
|
|
* abort only the SCB that encountered
|
|
* this error, which could have a different
|
|
* lun. The SCB will be retried so the OS
|
|
* will see the UA after renegotiating to
|
|
* packetized.
|
|
*/
|
|
tag = SCB_GET_TAG(scb);
|
|
saved_lun = scb->hscb->lun;
|
|
}
|
|
found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
|
|
tag, ROLE_INITIATOR,
|
|
CAM_REQ_ABORTED);
|
|
printk("found == 0x%x\n", found);
|
|
printerror = 0;
|
|
} else if (ahd_sent_msg(ahd, AHDMSG_1B,
|
|
TARGET_RESET, TRUE)) {
|
|
ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
|
|
CAM_BDR_SENT, "Bus Device Reset",
|
|
/*verbose_level*/0);
|
|
printerror = 0;
|
|
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, FALSE)
|
|
&& ppr_busfree == 0) {
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
|
|
/*
|
|
* PPR Rejected.
|
|
*
|
|
* If the previous negotiation was packetized,
|
|
* this could be because the device has been
|
|
* reset without our knowledge. Force our
|
|
* current negotiation to async and retry the
|
|
* negotiation. Otherwise retry the command
|
|
* with non-ppr negotiation.
|
|
*/
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("PPR negotiation rejected busfree.\n");
|
|
#endif
|
|
tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target, &tstate);
|
|
if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
|
|
ahd_set_width(ahd, &devinfo,
|
|
MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_CUR,
|
|
/*paused*/TRUE);
|
|
ahd_set_syncrate(ahd, &devinfo,
|
|
/*period*/0, /*offset*/0,
|
|
/*ppr_options*/0,
|
|
AHD_TRANS_CUR,
|
|
/*paused*/TRUE);
|
|
/*
|
|
* The expect PPR busfree handler below
|
|
* will effect the retry and necessary
|
|
* abort.
|
|
*/
|
|
} else {
|
|
tinfo->curr.transport_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
tinfo->goal.ppr_options = 0;
|
|
if (scb != NULL) {
|
|
/*
|
|
* Remove any SCBs in the waiting
|
|
* for selection queue that may
|
|
* also be for this target so that
|
|
* command ordering is preserved.
|
|
*/
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_qinfifo_requeue_tail(ahd, scb);
|
|
}
|
|
printerror = 0;
|
|
}
|
|
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, FALSE)
|
|
&& ppr_busfree == 0) {
|
|
/*
|
|
* Negotiation Rejected. Go-narrow and
|
|
* retry command.
|
|
*/
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("WDTR negotiation rejected busfree.\n");
|
|
#endif
|
|
ahd_set_width(ahd, &devinfo,
|
|
MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_CUR|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
if (scb != NULL) {
|
|
/*
|
|
* Remove any SCBs in the waiting for
|
|
* selection queue that may also be for
|
|
* this target so that command ordering
|
|
* is preserved.
|
|
*/
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_qinfifo_requeue_tail(ahd, scb);
|
|
}
|
|
printerror = 0;
|
|
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, FALSE)
|
|
&& ppr_busfree == 0) {
|
|
/*
|
|
* Negotiation Rejected. Go-async and
|
|
* retry command.
|
|
*/
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("SDTR negotiation rejected busfree.\n");
|
|
#endif
|
|
ahd_set_syncrate(ahd, &devinfo,
|
|
/*period*/0, /*offset*/0,
|
|
/*ppr_options*/0,
|
|
AHD_TRANS_CUR|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
if (scb != NULL) {
|
|
/*
|
|
* Remove any SCBs in the waiting for
|
|
* selection queue that may also be for
|
|
* this target so that command ordering
|
|
* is preserved.
|
|
*/
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_qinfifo_requeue_tail(ahd, scb);
|
|
}
|
|
printerror = 0;
|
|
} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
|
|
&& ahd_sent_msg(ahd, AHDMSG_1B,
|
|
INITIATOR_ERROR, TRUE)) {
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("Expected IDE Busfree\n");
|
|
#endif
|
|
printerror = 0;
|
|
} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
|
|
&& ahd_sent_msg(ahd, AHDMSG_1B,
|
|
MESSAGE_REJECT, TRUE)) {
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("Expected QAS Reject Busfree\n");
|
|
#endif
|
|
printerror = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The busfree required flag is honored at the end of
|
|
* the message phases. We check it last in case we
|
|
* had to send some other message that caused a busfree.
|
|
*/
|
|
if (scb != NULL && printerror != 0
|
|
&& (lastphase == P_MESGIN || lastphase == P_MESGOUT)
|
|
&& ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
|
|
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
|
|
ahd_freeze_scb(scb);
|
|
if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
|
|
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
|
|
SCB_GET_CHANNEL(ahd, scb),
|
|
SCB_GET_LUN(scb), SCB_LIST_NULL,
|
|
ROLE_INITIATOR, CAM_REQ_ABORTED);
|
|
} else {
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("PPR Negotiation Busfree.\n");
|
|
#endif
|
|
ahd_done(ahd, scb);
|
|
}
|
|
printerror = 0;
|
|
}
|
|
if (printerror != 0) {
|
|
int aborted;
|
|
|
|
aborted = 0;
|
|
if (scb != NULL) {
|
|
u_int tag;
|
|
|
|
if ((scb->hscb->control & TAG_ENB) != 0)
|
|
tag = SCB_GET_TAG(scb);
|
|
else
|
|
tag = SCB_LIST_NULL;
|
|
ahd_print_path(ahd, scb);
|
|
aborted = ahd_abort_scbs(ahd, target, 'A',
|
|
SCB_GET_LUN(scb), tag,
|
|
ROLE_INITIATOR,
|
|
CAM_UNEXP_BUSFREE);
|
|
} else {
|
|
/*
|
|
* We had not fully identified this connection,
|
|
* so we cannot abort anything.
|
|
*/
|
|
printk("%s: ", ahd_name(ahd));
|
|
}
|
|
printk("Unexpected busfree %s, %d SCBs aborted, "
|
|
"PRGMCNT == 0x%x\n",
|
|
ahd_lookup_phase_entry(lastphase)->phasemsg,
|
|
aborted,
|
|
ahd_inw(ahd, PRGMCNT));
|
|
ahd_dump_card_state(ahd);
|
|
if (lastphase != P_BUSFREE)
|
|
ahd_force_renegotiation(ahd, &devinfo);
|
|
}
|
|
/* Always restart the sequencer. */
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
ahd_handle_proto_violation(struct ahd_softc *ahd)
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
u_int seq_flags;
|
|
u_int curphase;
|
|
u_int lastphase;
|
|
int found;
|
|
|
|
ahd_fetch_devinfo(ahd, &devinfo);
|
|
scbid = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
seq_flags = ahd_inb(ahd, SEQ_FLAGS);
|
|
curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
|
|
lastphase = ahd_inb(ahd, LASTPHASE);
|
|
if ((seq_flags & NOT_IDENTIFIED) != 0) {
|
|
|
|
/*
|
|
* The reconnecting target either did not send an
|
|
* identify message, or did, but we didn't find an SCB
|
|
* to match.
|
|
*/
|
|
ahd_print_devinfo(ahd, &devinfo);
|
|
printk("Target did not send an IDENTIFY message. "
|
|
"LASTPHASE = 0x%x.\n", lastphase);
|
|
scb = NULL;
|
|
} else if (scb == NULL) {
|
|
/*
|
|
* We don't seem to have an SCB active for this
|
|
* transaction. Print an error and reset the bus.
|
|
*/
|
|
ahd_print_devinfo(ahd, &devinfo);
|
|
printk("No SCB found during protocol violation\n");
|
|
goto proto_violation_reset;
|
|
} else {
|
|
ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
|
|
if ((seq_flags & NO_CDB_SENT) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("No or incomplete CDB sent to device.\n");
|
|
} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
|
|
& STATUS_RCVD) == 0) {
|
|
/*
|
|
* The target never bothered to provide status to
|
|
* us prior to completing the command. Since we don't
|
|
* know the disposition of this command, we must attempt
|
|
* to abort it. Assert ATN and prepare to send an abort
|
|
* message.
|
|
*/
|
|
ahd_print_path(ahd, scb);
|
|
printk("Completed command without status.\n");
|
|
} else {
|
|
ahd_print_path(ahd, scb);
|
|
printk("Unknown protocol violation.\n");
|
|
ahd_dump_card_state(ahd);
|
|
}
|
|
}
|
|
if ((lastphase & ~P_DATAIN_DT) == 0
|
|
|| lastphase == P_COMMAND) {
|
|
proto_violation_reset:
|
|
/*
|
|
* Target either went directly to data
|
|
* phase or didn't respond to our ATN.
|
|
* The only safe thing to do is to blow
|
|
* it away with a bus reset.
|
|
*/
|
|
found = ahd_reset_channel(ahd, 'A', TRUE);
|
|
printk("%s: Issued Channel %c Bus Reset. "
|
|
"%d SCBs aborted\n", ahd_name(ahd), 'A', found);
|
|
} else {
|
|
/*
|
|
* Leave the selection hardware off in case
|
|
* this abort attempt will affect yet to
|
|
* be sent commands.
|
|
*/
|
|
ahd_outb(ahd, SCSISEQ0,
|
|
ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
|
|
ahd_assert_atn(ahd);
|
|
ahd_outb(ahd, MSG_OUT, HOST_MSG);
|
|
if (scb == NULL) {
|
|
ahd_print_devinfo(ahd, &devinfo);
|
|
ahd->msgout_buf[0] = ABORT_TASK;
|
|
ahd->msgout_len = 1;
|
|
ahd->msgout_index = 0;
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
} else {
|
|
ahd_print_path(ahd, scb);
|
|
scb->flags |= SCB_ABORT;
|
|
}
|
|
printk("Protocol violation %s. Attempting to abort.\n",
|
|
ahd_lookup_phase_entry(curphase)->phasemsg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force renegotiation to occur the next time we initiate
|
|
* a command to the current device.
|
|
*/
|
|
static void
|
|
ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
|
|
{
|
|
struct ahd_initiator_tinfo *targ_info;
|
|
struct ahd_tmode_tstate *tstate;
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
|
|
ahd_print_devinfo(ahd, devinfo);
|
|
printk("Forcing renegotiation\n");
|
|
}
|
|
#endif
|
|
targ_info = ahd_fetch_transinfo(ahd,
|
|
devinfo->channel,
|
|
devinfo->our_scsiid,
|
|
devinfo->target,
|
|
&tstate);
|
|
ahd_update_neg_request(ahd, devinfo, tstate,
|
|
targ_info, AHD_NEG_IF_NON_ASYNC);
|
|
}
|
|
|
|
#define AHD_MAX_STEPS 2000
|
|
static void
|
|
ahd_clear_critical_section(struct ahd_softc *ahd)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
int stepping;
|
|
int steps;
|
|
int first_instr;
|
|
u_int simode0;
|
|
u_int simode1;
|
|
u_int simode3;
|
|
u_int lqimode0;
|
|
u_int lqimode1;
|
|
u_int lqomode0;
|
|
u_int lqomode1;
|
|
|
|
if (ahd->num_critical_sections == 0)
|
|
return;
|
|
|
|
stepping = FALSE;
|
|
steps = 0;
|
|
first_instr = 0;
|
|
simode0 = 0;
|
|
simode1 = 0;
|
|
simode3 = 0;
|
|
lqimode0 = 0;
|
|
lqimode1 = 0;
|
|
lqomode0 = 0;
|
|
lqomode1 = 0;
|
|
saved_modes = ahd_save_modes(ahd);
|
|
for (;;) {
|
|
struct cs *cs;
|
|
u_int seqaddr;
|
|
u_int i;
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
seqaddr = ahd_inw(ahd, CURADDR);
|
|
|
|
cs = ahd->critical_sections;
|
|
for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
|
|
if (cs->begin < seqaddr && cs->end >= seqaddr)
|
|
break;
|
|
}
|
|
|
|
if (i == ahd->num_critical_sections)
|
|
break;
|
|
|
|
if (steps > AHD_MAX_STEPS) {
|
|
printk("%s: Infinite loop in critical section\n"
|
|
"%s: First Instruction 0x%x now 0x%x\n",
|
|
ahd_name(ahd), ahd_name(ahd), first_instr,
|
|
seqaddr);
|
|
ahd_dump_card_state(ahd);
|
|
panic("critical section loop");
|
|
}
|
|
|
|
steps++;
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
|
|
seqaddr);
|
|
#endif
|
|
if (stepping == FALSE) {
|
|
|
|
first_instr = seqaddr;
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
simode0 = ahd_inb(ahd, SIMODE0);
|
|
simode3 = ahd_inb(ahd, SIMODE3);
|
|
lqimode0 = ahd_inb(ahd, LQIMODE0);
|
|
lqimode1 = ahd_inb(ahd, LQIMODE1);
|
|
lqomode0 = ahd_inb(ahd, LQOMODE0);
|
|
lqomode1 = ahd_inb(ahd, LQOMODE1);
|
|
ahd_outb(ahd, SIMODE0, 0);
|
|
ahd_outb(ahd, SIMODE3, 0);
|
|
ahd_outb(ahd, LQIMODE0, 0);
|
|
ahd_outb(ahd, LQIMODE1, 0);
|
|
ahd_outb(ahd, LQOMODE0, 0);
|
|
ahd_outb(ahd, LQOMODE1, 0);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
simode1 = ahd_inb(ahd, SIMODE1);
|
|
/*
|
|
* We don't clear ENBUSFREE. Unfortunately
|
|
* we cannot re-enable busfree detection within
|
|
* the current connection, so we must leave it
|
|
* on while single stepping.
|
|
*/
|
|
ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
|
|
ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
|
|
stepping = TRUE;
|
|
}
|
|
ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
|
|
ahd_outb(ahd, HCNTRL, ahd->unpause);
|
|
while (!ahd_is_paused(ahd))
|
|
ahd_delay(200);
|
|
ahd_update_modes(ahd);
|
|
}
|
|
if (stepping) {
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
ahd_outb(ahd, SIMODE0, simode0);
|
|
ahd_outb(ahd, SIMODE3, simode3);
|
|
ahd_outb(ahd, LQIMODE0, lqimode0);
|
|
ahd_outb(ahd, LQIMODE1, lqimode1);
|
|
ahd_outb(ahd, LQOMODE0, lqomode0);
|
|
ahd_outb(ahd, LQOMODE1, lqomode1);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
|
|
ahd_outb(ahd, SIMODE1, simode1);
|
|
/*
|
|
* SCSIINT seems to glitch occasionally when
|
|
* the interrupt masks are restored. Clear SCSIINT
|
|
* one more time so that only persistent errors
|
|
* are seen as a real interrupt.
|
|
*/
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
}
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
}
|
|
|
|
/*
|
|
* Clear any pending interrupt status.
|
|
*/
|
|
static void
|
|
ahd_clear_intstat(struct ahd_softc *ahd)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
|
|
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
|
|
/* Clear any interrupt conditions this may have caused */
|
|
ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
|
|
|CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
|
|
ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
|
|
|CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
|
|
|CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
|
|
ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
|
|
|CLRLQOATNPKT|CLRLQOTCRC);
|
|
ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
|
|
|CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
|
|
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
|
|
ahd_outb(ahd, CLRLQOINT0, 0);
|
|
ahd_outb(ahd, CLRLQOINT1, 0);
|
|
}
|
|
ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
|
|
ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|
|
|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
|
|
ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
|
|
|CLRIOERR|CLROVERRUN);
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
}
|
|
|
|
/**************************** Debugging Routines ******************************/
|
|
#ifdef AHD_DEBUG
|
|
uint32_t ahd_debug = AHD_DEBUG_OPTS;
|
|
#endif
|
|
|
|
#if 0
|
|
void
|
|
ahd_print_scb(struct scb *scb)
|
|
{
|
|
struct hardware_scb *hscb;
|
|
int i;
|
|
|
|
hscb = scb->hscb;
|
|
printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
|
|
(void *)scb,
|
|
hscb->control,
|
|
hscb->scsiid,
|
|
hscb->lun,
|
|
hscb->cdb_len);
|
|
printk("Shared Data: ");
|
|
for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
|
|
printk("%#02x", hscb->shared_data.idata.cdb[i]);
|
|
printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
|
|
(uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
|
|
(uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
|
|
ahd_le32toh(hscb->datacnt),
|
|
ahd_le32toh(hscb->sgptr),
|
|
SCB_GET_TAG(scb));
|
|
ahd_dump_sglist(scb);
|
|
}
|
|
#endif /* 0 */
|
|
|
|
/************************* Transfer Negotiation *******************************/
|
|
/*
|
|
* Allocate per target mode instance (ID we respond to as a target)
|
|
* transfer negotiation data structures.
|
|
*/
|
|
static struct ahd_tmode_tstate *
|
|
ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
|
|
{
|
|
struct ahd_tmode_tstate *master_tstate;
|
|
struct ahd_tmode_tstate *tstate;
|
|
int i;
|
|
|
|
master_tstate = ahd->enabled_targets[ahd->our_id];
|
|
if (ahd->enabled_targets[scsi_id] != NULL
|
|
&& ahd->enabled_targets[scsi_id] != master_tstate)
|
|
panic("%s: ahd_alloc_tstate - Target already allocated",
|
|
ahd_name(ahd));
|
|
tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
|
|
if (tstate == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* If we have allocated a master tstate, copy user settings from
|
|
* the master tstate (taken from SRAM or the EEPROM) for this
|
|
* channel, but reset our current and goal settings to async/narrow
|
|
* until an initiator talks to us.
|
|
*/
|
|
if (master_tstate != NULL) {
|
|
memcpy(tstate, master_tstate, sizeof(*tstate));
|
|
memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
|
|
for (i = 0; i < 16; i++) {
|
|
memset(&tstate->transinfo[i].curr, 0,
|
|
sizeof(tstate->transinfo[i].curr));
|
|
memset(&tstate->transinfo[i].goal, 0,
|
|
sizeof(tstate->transinfo[i].goal));
|
|
}
|
|
} else
|
|
memset(tstate, 0, sizeof(*tstate));
|
|
ahd->enabled_targets[scsi_id] = tstate;
|
|
return (tstate);
|
|
}
|
|
|
|
#ifdef AHD_TARGET_MODE
|
|
/*
|
|
* Free per target mode instance (ID we respond to as a target)
|
|
* transfer negotiation data structures.
|
|
*/
|
|
static void
|
|
ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
|
|
{
|
|
struct ahd_tmode_tstate *tstate;
|
|
|
|
/*
|
|
* Don't clean up our "master" tstate.
|
|
* It has our default user settings.
|
|
*/
|
|
if (scsi_id == ahd->our_id
|
|
&& force == FALSE)
|
|
return;
|
|
|
|
tstate = ahd->enabled_targets[scsi_id];
|
|
kfree(tstate);
|
|
ahd->enabled_targets[scsi_id] = NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called when we have an active connection to a target on the bus,
|
|
* this function finds the nearest period to the input period limited
|
|
* by the capabilities of the bus connectivity of and sync settings for
|
|
* the target.
|
|
*/
|
|
static void
|
|
ahd_devlimited_syncrate(struct ahd_softc *ahd,
|
|
struct ahd_initiator_tinfo *tinfo,
|
|
u_int *period, u_int *ppr_options, role_t role)
|
|
{
|
|
struct ahd_transinfo *transinfo;
|
|
u_int maxsync;
|
|
|
|
if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
|
|
&& (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
|
|
maxsync = AHD_SYNCRATE_PACED;
|
|
} else {
|
|
maxsync = AHD_SYNCRATE_ULTRA;
|
|
/* Can't do DT related options on an SE bus */
|
|
*ppr_options &= MSG_EXT_PPR_QAS_REQ;
|
|
}
|
|
/*
|
|
* Never allow a value higher than our current goal
|
|
* period otherwise we may allow a target initiated
|
|
* negotiation to go above the limit as set by the
|
|
* user. In the case of an initiator initiated
|
|
* sync negotiation, we limit based on the user
|
|
* setting. This allows the system to still accept
|
|
* incoming negotiations even if target initiated
|
|
* negotiation is not performed.
|
|
*/
|
|
if (role == ROLE_TARGET)
|
|
transinfo = &tinfo->user;
|
|
else
|
|
transinfo = &tinfo->goal;
|
|
*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
|
|
if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
|
|
maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
}
|
|
if (transinfo->period == 0) {
|
|
*period = 0;
|
|
*ppr_options = 0;
|
|
} else {
|
|
*period = max(*period, (u_int)transinfo->period);
|
|
ahd_find_syncrate(ahd, period, ppr_options, maxsync);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look up the valid period to SCSIRATE conversion in our table.
|
|
* Return the period and offset that should be sent to the target
|
|
* if this was the beginning of an SDTR.
|
|
*/
|
|
void
|
|
ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
|
|
u_int *ppr_options, u_int maxsync)
|
|
{
|
|
if (*period < maxsync)
|
|
*period = maxsync;
|
|
|
|
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
|
|
&& *period > AHD_SYNCRATE_MIN_DT)
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
|
|
if (*period > AHD_SYNCRATE_MIN)
|
|
*period = 0;
|
|
|
|
/* Honor PPR option conformance rules. */
|
|
if (*period > AHD_SYNCRATE_PACED)
|
|
*ppr_options &= ~MSG_EXT_PPR_RTI;
|
|
|
|
if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
|
|
*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
|
|
|
|
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
|
|
*ppr_options &= MSG_EXT_PPR_QAS_REQ;
|
|
|
|
/* Skip all PACED only entries if IU is not available */
|
|
if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
|
|
&& *period < AHD_SYNCRATE_DT)
|
|
*period = AHD_SYNCRATE_DT;
|
|
|
|
/* Skip all DT only entries if DT is not available */
|
|
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
|
|
&& *period < AHD_SYNCRATE_ULTRA2)
|
|
*period = AHD_SYNCRATE_ULTRA2;
|
|
}
|
|
|
|
/*
|
|
* Truncate the given synchronous offset to a value the
|
|
* current adapter type and syncrate are capable of.
|
|
*/
|
|
static void
|
|
ahd_validate_offset(struct ahd_softc *ahd,
|
|
struct ahd_initiator_tinfo *tinfo,
|
|
u_int period, u_int *offset, int wide,
|
|
role_t role)
|
|
{
|
|
u_int maxoffset;
|
|
|
|
/* Limit offset to what we can do */
|
|
if (period == 0)
|
|
maxoffset = 0;
|
|
else if (period <= AHD_SYNCRATE_PACED) {
|
|
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
|
|
maxoffset = MAX_OFFSET_PACED_BUG;
|
|
else
|
|
maxoffset = MAX_OFFSET_PACED;
|
|
} else
|
|
maxoffset = MAX_OFFSET_NON_PACED;
|
|
*offset = min(*offset, maxoffset);
|
|
if (tinfo != NULL) {
|
|
if (role == ROLE_TARGET)
|
|
*offset = min(*offset, (u_int)tinfo->user.offset);
|
|
else
|
|
*offset = min(*offset, (u_int)tinfo->goal.offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Truncate the given transfer width parameter to a value the
|
|
* current adapter type is capable of.
|
|
*/
|
|
static void
|
|
ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
|
|
u_int *bus_width, role_t role)
|
|
{
|
|
switch (*bus_width) {
|
|
default:
|
|
if (ahd->features & AHD_WIDE) {
|
|
/* Respond Wide */
|
|
*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case MSG_EXT_WDTR_BUS_8_BIT:
|
|
*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
|
|
break;
|
|
}
|
|
if (tinfo != NULL) {
|
|
if (role == ROLE_TARGET)
|
|
*bus_width = min((u_int)tinfo->user.width, *bus_width);
|
|
else
|
|
*bus_width = min((u_int)tinfo->goal.width, *bus_width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the bitmask of targets for which the controller should
|
|
* negotiate with at the next convenient opportunity. This currently
|
|
* means the next time we send the initial identify messages for
|
|
* a new transaction.
|
|
*/
|
|
int
|
|
ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
struct ahd_tmode_tstate *tstate,
|
|
struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
|
|
{
|
|
u_int auto_negotiate_orig;
|
|
|
|
auto_negotiate_orig = tstate->auto_negotiate;
|
|
if (neg_type == AHD_NEG_ALWAYS) {
|
|
/*
|
|
* Force our "current" settings to be
|
|
* unknown so that unless a bus reset
|
|
* occurs the need to renegotiate is
|
|
* recorded persistently.
|
|
*/
|
|
if ((ahd->features & AHD_WIDE) != 0)
|
|
tinfo->curr.width = AHD_WIDTH_UNKNOWN;
|
|
tinfo->curr.period = AHD_PERIOD_UNKNOWN;
|
|
tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
|
|
}
|
|
if (tinfo->curr.period != tinfo->goal.period
|
|
|| tinfo->curr.width != tinfo->goal.width
|
|
|| tinfo->curr.offset != tinfo->goal.offset
|
|
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options
|
|
|| (neg_type == AHD_NEG_IF_NON_ASYNC
|
|
&& (tinfo->goal.offset != 0
|
|
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
|
|
|| tinfo->goal.ppr_options != 0)))
|
|
tstate->auto_negotiate |= devinfo->target_mask;
|
|
else
|
|
tstate->auto_negotiate &= ~devinfo->target_mask;
|
|
|
|
return (auto_negotiate_orig != tstate->auto_negotiate);
|
|
}
|
|
|
|
/*
|
|
* Update the user/goal/curr tables of synchronous negotiation
|
|
* parameters as well as, in the case of a current or active update,
|
|
* any data structures on the host controller. In the case of an
|
|
* active update, the specified target is currently talking to us on
|
|
* the bus, so the transfer parameter update must take effect
|
|
* immediately.
|
|
*/
|
|
void
|
|
ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
u_int period, u_int offset, u_int ppr_options,
|
|
u_int type, int paused)
|
|
{
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
u_int old_period;
|
|
u_int old_offset;
|
|
u_int old_ppr;
|
|
int active;
|
|
int update_needed;
|
|
|
|
active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
|
|
update_needed = 0;
|
|
|
|
if (period == 0 || offset == 0) {
|
|
period = 0;
|
|
offset = 0;
|
|
}
|
|
|
|
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
|
|
if ((type & AHD_TRANS_USER) != 0) {
|
|
tinfo->user.period = period;
|
|
tinfo->user.offset = offset;
|
|
tinfo->user.ppr_options = ppr_options;
|
|
}
|
|
|
|
if ((type & AHD_TRANS_GOAL) != 0) {
|
|
tinfo->goal.period = period;
|
|
tinfo->goal.offset = offset;
|
|
tinfo->goal.ppr_options = ppr_options;
|
|
}
|
|
|
|
old_period = tinfo->curr.period;
|
|
old_offset = tinfo->curr.offset;
|
|
old_ppr = tinfo->curr.ppr_options;
|
|
|
|
if ((type & AHD_TRANS_CUR) != 0
|
|
&& (old_period != period
|
|
|| old_offset != offset
|
|
|| old_ppr != ppr_options)) {
|
|
|
|
update_needed++;
|
|
|
|
tinfo->curr.period = period;
|
|
tinfo->curr.offset = offset;
|
|
tinfo->curr.ppr_options = ppr_options;
|
|
|
|
ahd_send_async(ahd, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
|
|
if (bootverbose) {
|
|
if (offset != 0) {
|
|
int options;
|
|
|
|
printk("%s: target %d synchronous with "
|
|
"period = 0x%x, offset = 0x%x",
|
|
ahd_name(ahd), devinfo->target,
|
|
period, offset);
|
|
options = 0;
|
|
if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
|
|
printk("(RDSTRM");
|
|
options++;
|
|
}
|
|
if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
|
|
printk("%s", options ? "|DT" : "(DT");
|
|
options++;
|
|
}
|
|
if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
|
|
printk("%s", options ? "|IU" : "(IU");
|
|
options++;
|
|
}
|
|
if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
|
|
printk("%s", options ? "|RTI" : "(RTI");
|
|
options++;
|
|
}
|
|
if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
|
|
printk("%s", options ? "|QAS" : "(QAS");
|
|
options++;
|
|
}
|
|
if (options != 0)
|
|
printk(")\n");
|
|
else
|
|
printk("\n");
|
|
} else {
|
|
printk("%s: target %d using "
|
|
"asynchronous transfers%s\n",
|
|
ahd_name(ahd), devinfo->target,
|
|
(ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
|
|
? "(QAS)" : "");
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Always refresh the neg-table to handle the case of the
|
|
* sequencer setting the ENATNO bit for a MK_MESSAGE request.
|
|
* We will always renegotiate in that case if this is a
|
|
* packetized request. Also manage the busfree expected flag
|
|
* from this common routine so that we catch changes due to
|
|
* WDTR or SDTR messages.
|
|
*/
|
|
if ((type & AHD_TRANS_CUR) != 0) {
|
|
if (!paused)
|
|
ahd_pause(ahd);
|
|
ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
|
|
if (!paused)
|
|
ahd_unpause(ahd);
|
|
if (ahd->msg_type != MSG_TYPE_NONE) {
|
|
if ((old_ppr & MSG_EXT_PPR_IU_REQ)
|
|
!= (ppr_options & MSG_EXT_PPR_IU_REQ)) {
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
|
|
ahd_print_devinfo(ahd, devinfo);
|
|
printk("Expecting IU Change busfree\n");
|
|
}
|
|
#endif
|
|
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
|
|
| MSG_FLAG_IU_REQ_CHANGED;
|
|
}
|
|
if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("PPR with IU_REQ outstanding\n");
|
|
#endif
|
|
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
|
|
}
|
|
}
|
|
}
|
|
|
|
update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
|
|
tinfo, AHD_NEG_TO_GOAL);
|
|
|
|
if (update_needed && active)
|
|
ahd_update_pending_scbs(ahd);
|
|
}
|
|
|
|
/*
|
|
* Update the user/goal/curr tables of wide negotiation
|
|
* parameters as well as, in the case of a current or active update,
|
|
* any data structures on the host controller. In the case of an
|
|
* active update, the specified target is currently talking to us on
|
|
* the bus, so the transfer parameter update must take effect
|
|
* immediately.
|
|
*/
|
|
void
|
|
ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
u_int width, u_int type, int paused)
|
|
{
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
u_int oldwidth;
|
|
int active;
|
|
int update_needed;
|
|
|
|
active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
|
|
update_needed = 0;
|
|
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
|
|
if ((type & AHD_TRANS_USER) != 0)
|
|
tinfo->user.width = width;
|
|
|
|
if ((type & AHD_TRANS_GOAL) != 0)
|
|
tinfo->goal.width = width;
|
|
|
|
oldwidth = tinfo->curr.width;
|
|
if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
|
|
|
|
update_needed++;
|
|
|
|
tinfo->curr.width = width;
|
|
ahd_send_async(ahd, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
|
|
if (bootverbose) {
|
|
printk("%s: target %d using %dbit transfers\n",
|
|
ahd_name(ahd), devinfo->target,
|
|
8 * (0x01 << width));
|
|
}
|
|
}
|
|
|
|
if ((type & AHD_TRANS_CUR) != 0) {
|
|
if (!paused)
|
|
ahd_pause(ahd);
|
|
ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
|
|
if (!paused)
|
|
ahd_unpause(ahd);
|
|
}
|
|
|
|
update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
|
|
tinfo, AHD_NEG_TO_GOAL);
|
|
if (update_needed && active)
|
|
ahd_update_pending_scbs(ahd);
|
|
|
|
}
|
|
|
|
/*
|
|
* Update the current state of tagged queuing for a given target.
|
|
*/
|
|
static void
|
|
ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
|
|
struct ahd_devinfo *devinfo, ahd_queue_alg alg)
|
|
{
|
|
struct scsi_device *sdev = cmd->device;
|
|
|
|
ahd_platform_set_tags(ahd, sdev, devinfo, alg);
|
|
ahd_send_async(ahd, devinfo->channel, devinfo->target,
|
|
devinfo->lun, AC_TRANSFER_NEG);
|
|
}
|
|
|
|
static void
|
|
ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
struct ahd_transinfo *tinfo)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
u_int period;
|
|
u_int ppr_opts;
|
|
u_int con_opts;
|
|
u_int offset;
|
|
u_int saved_negoaddr;
|
|
uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
|
|
saved_negoaddr = ahd_inb(ahd, NEGOADDR);
|
|
ahd_outb(ahd, NEGOADDR, devinfo->target);
|
|
period = tinfo->period;
|
|
offset = tinfo->offset;
|
|
memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
|
|
ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
|
|
|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
|
|
con_opts = 0;
|
|
if (period == 0)
|
|
period = AHD_SYNCRATE_ASYNC;
|
|
if (period == AHD_SYNCRATE_160) {
|
|
|
|
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
|
|
/*
|
|
* When the SPI4 spec was finalized, PACE transfers
|
|
* was not made a configurable option in the PPR
|
|
* message. Instead it is assumed to be enabled for
|
|
* any syncrate faster than 80MHz. Nevertheless,
|
|
* Harpoon2A4 allows this to be configurable.
|
|
*
|
|
* Harpoon2A4 also assumes at most 2 data bytes per
|
|
* negotiated REQ/ACK offset. Paced transfers take
|
|
* 4, so we must adjust our offset.
|
|
*/
|
|
ppr_opts |= PPROPT_PACE;
|
|
offset *= 2;
|
|
|
|
/*
|
|
* Harpoon2A assumed that there would be a
|
|
* fallback rate between 160MHz and 80MHz,
|
|
* so 7 is used as the period factor rather
|
|
* than 8 for 160MHz.
|
|
*/
|
|
period = AHD_SYNCRATE_REVA_160;
|
|
}
|
|
if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
|
|
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
|
|
~AHD_PRECOMP_MASK;
|
|
} else {
|
|
/*
|
|
* Precomp should be disabled for non-paced transfers.
|
|
*/
|
|
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
|
|
|
|
if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
|
|
&& (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
|
|
&& (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
|
|
/*
|
|
* Slow down our CRC interval to be
|
|
* compatible with non-packetized
|
|
* U160 devices that can't handle a
|
|
* CRC at full speed.
|
|
*/
|
|
con_opts |= ENSLOWCRC;
|
|
}
|
|
|
|
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
|
|
/*
|
|
* On H2A4, revert to a slower slewrate
|
|
* on non-paced transfers.
|
|
*/
|
|
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
|
|
~AHD_SLEWRATE_MASK;
|
|
}
|
|
}
|
|
|
|
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
|
|
ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
|
|
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
|
|
ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
|
|
|
|
ahd_outb(ahd, NEGPERIOD, period);
|
|
ahd_outb(ahd, NEGPPROPTS, ppr_opts);
|
|
ahd_outb(ahd, NEGOFFSET, offset);
|
|
|
|
if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
|
|
con_opts |= WIDEXFER;
|
|
|
|
/*
|
|
* Slow down our CRC interval to be
|
|
* compatible with packetized U320 devices
|
|
* that can't handle a CRC at full speed
|
|
*/
|
|
if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
|
|
con_opts |= ENSLOWCRC;
|
|
}
|
|
|
|
/*
|
|
* During packetized transfers, the target will
|
|
* give us the opportunity to send command packets
|
|
* without us asserting attention.
|
|
*/
|
|
if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
|
|
con_opts |= ENAUTOATNO;
|
|
ahd_outb(ahd, NEGCONOPTS, con_opts);
|
|
ahd_outb(ahd, NEGOADDR, saved_negoaddr);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
}
|
|
|
|
/*
|
|
* When the transfer settings for a connection change, setup for
|
|
* negotiation in pending SCBs to effect the change as quickly as
|
|
* possible. We also cancel any negotiations that are scheduled
|
|
* for inflight SCBs that have not been started yet.
|
|
*/
|
|
static void
|
|
ahd_update_pending_scbs(struct ahd_softc *ahd)
|
|
{
|
|
struct scb *pending_scb;
|
|
int pending_scb_count;
|
|
int paused;
|
|
u_int saved_scbptr;
|
|
ahd_mode_state saved_modes;
|
|
|
|
/*
|
|
* Traverse the pending SCB list and ensure that all of the
|
|
* SCBs there have the proper settings. We can only safely
|
|
* clear the negotiation required flag (setting requires the
|
|
* execution queue to be modified) and this is only possible
|
|
* if we are not already attempting to select out for this
|
|
* SCB. For this reason, all callers only call this routine
|
|
* if we are changing the negotiation settings for the currently
|
|
* active transaction on the bus.
|
|
*/
|
|
pending_scb_count = 0;
|
|
LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
|
|
struct ahd_devinfo devinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
|
|
ahd_scb_devinfo(ahd, &devinfo, pending_scb);
|
|
ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid,
|
|
devinfo.target, &tstate);
|
|
if ((tstate->auto_negotiate & devinfo.target_mask) == 0
|
|
&& (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
|
|
pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
|
|
pending_scb->hscb->control &= ~MK_MESSAGE;
|
|
}
|
|
ahd_sync_scb(ahd, pending_scb,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
pending_scb_count++;
|
|
}
|
|
|
|
if (pending_scb_count == 0)
|
|
return;
|
|
|
|
if (ahd_is_paused(ahd)) {
|
|
paused = 1;
|
|
} else {
|
|
paused = 0;
|
|
ahd_pause(ahd);
|
|
}
|
|
|
|
/*
|
|
* Force the sequencer to reinitialize the selection for
|
|
* the command at the head of the execution queue if it
|
|
* has already been setup. The negotiation changes may
|
|
* effect whether we select-out with ATN. It is only
|
|
* safe to clear ENSELO when the bus is not free and no
|
|
* selection is in progres or completed.
|
|
*/
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
|
|
&& (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
|
|
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
|
|
saved_scbptr = ahd_get_scbptr(ahd);
|
|
/* Ensure that the hscbs down on the card match the new information */
|
|
LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
|
|
u_int scb_tag;
|
|
u_int control;
|
|
|
|
scb_tag = SCB_GET_TAG(pending_scb);
|
|
ahd_set_scbptr(ahd, scb_tag);
|
|
control = ahd_inb_scbram(ahd, SCB_CONTROL);
|
|
control &= ~MK_MESSAGE;
|
|
control |= pending_scb->hscb->control & MK_MESSAGE;
|
|
ahd_outb(ahd, SCB_CONTROL, control);
|
|
}
|
|
ahd_set_scbptr(ahd, saved_scbptr);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
|
|
if (paused == 0)
|
|
ahd_unpause(ahd);
|
|
}
|
|
|
|
/**************************** Pathing Information *****************************/
|
|
static void
|
|
ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
u_int saved_scsiid;
|
|
role_t role;
|
|
int our_id;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
|
|
if (ahd_inb(ahd, SSTAT0) & TARGET)
|
|
role = ROLE_TARGET;
|
|
else
|
|
role = ROLE_INITIATOR;
|
|
|
|
if (role == ROLE_TARGET
|
|
&& (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
|
|
/* We were selected, so pull our id from TARGIDIN */
|
|
our_id = ahd_inb(ahd, TARGIDIN) & OID;
|
|
} else if (role == ROLE_TARGET)
|
|
our_id = ahd_inb(ahd, TOWNID);
|
|
else
|
|
our_id = ahd_inb(ahd, IOWNID);
|
|
|
|
saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
|
|
ahd_compile_devinfo(devinfo,
|
|
our_id,
|
|
SCSIID_TARGET(ahd, saved_scsiid),
|
|
ahd_inb(ahd, SAVED_LUN),
|
|
SCSIID_CHANNEL(ahd, saved_scsiid),
|
|
role);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
}
|
|
|
|
void
|
|
ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
|
|
{
|
|
printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
|
|
static const struct ahd_phase_table_entry*
|
|
ahd_lookup_phase_entry(int phase)
|
|
{
|
|
const struct ahd_phase_table_entry *entry;
|
|
const struct ahd_phase_table_entry *last_entry;
|
|
|
|
/*
|
|
* num_phases doesn't include the default entry which
|
|
* will be returned if the phase doesn't match.
|
|
*/
|
|
last_entry = &ahd_phase_table[num_phases];
|
|
for (entry = ahd_phase_table; entry < last_entry; entry++) {
|
|
if (phase == entry->phase)
|
|
break;
|
|
}
|
|
return (entry);
|
|
}
|
|
|
|
void
|
|
ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
|
|
u_int lun, char channel, role_t role)
|
|
{
|
|
devinfo->our_scsiid = our_id;
|
|
devinfo->target = target;
|
|
devinfo->lun = lun;
|
|
devinfo->target_offset = target;
|
|
devinfo->channel = channel;
|
|
devinfo->role = role;
|
|
if (channel == 'B')
|
|
devinfo->target_offset += 8;
|
|
devinfo->target_mask = (0x01 << devinfo->target_offset);
|
|
}
|
|
|
|
static void
|
|
ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
role_t role;
|
|
int our_id;
|
|
|
|
our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
|
|
role = ROLE_INITIATOR;
|
|
if ((scb->hscb->control & TARGET_SCB) != 0)
|
|
role = ROLE_TARGET;
|
|
ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
|
|
SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
|
|
}
|
|
|
|
|
|
/************************ Message Phase Processing ****************************/
|
|
/*
|
|
* When an initiator transaction with the MK_MESSAGE flag either reconnects
|
|
* or enters the initial message out phase, we are interrupted. Fill our
|
|
* outgoing message buffer with the appropriate message and beging handing
|
|
* the message phase(s) manually.
|
|
*/
|
|
static void
|
|
ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
/*
|
|
* To facilitate adding multiple messages together,
|
|
* each routine should increment the index and len
|
|
* variables instead of setting them explicitly.
|
|
*/
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
|
|
if (ahd_currently_packetized(ahd))
|
|
ahd->msg_flags |= MSG_FLAG_PACKETIZED;
|
|
|
|
if (ahd->send_msg_perror
|
|
&& ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
|
|
ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
|
|
ahd->msgout_len++;
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("Setting up for Parity Error delivery\n");
|
|
#endif
|
|
return;
|
|
} else if (scb == NULL) {
|
|
printk("%s: WARNING. No pending message for "
|
|
"I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
|
|
ahd->msgout_buf[ahd->msgout_index++] = NOP;
|
|
ahd->msgout_len++;
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
return;
|
|
}
|
|
|
|
if ((scb->flags & SCB_DEVICE_RESET) == 0
|
|
&& (scb->flags & SCB_PACKETIZED) == 0
|
|
&& ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
|
|
u_int identify_msg;
|
|
|
|
identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
|
|
if ((scb->hscb->control & DISCENB) != 0)
|
|
identify_msg |= MSG_IDENTIFY_DISCFLAG;
|
|
ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
|
|
ahd->msgout_len++;
|
|
|
|
if ((scb->hscb->control & TAG_ENB) != 0) {
|
|
ahd->msgout_buf[ahd->msgout_index++] =
|
|
scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
|
|
ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
|
|
ahd->msgout_len += 2;
|
|
}
|
|
}
|
|
|
|
if (scb->flags & SCB_DEVICE_RESET) {
|
|
ahd->msgout_buf[ahd->msgout_index++] = TARGET_RESET;
|
|
ahd->msgout_len++;
|
|
ahd_print_path(ahd, scb);
|
|
printk("Bus Device Reset Message Sent\n");
|
|
/*
|
|
* Clear our selection hardware in advance of
|
|
* the busfree. We may have an entry in the waiting
|
|
* Q for this target, and we don't want to go about
|
|
* selecting while we handle the busfree and blow it
|
|
* away.
|
|
*/
|
|
ahd_outb(ahd, SCSISEQ0, 0);
|
|
} else if ((scb->flags & SCB_ABORT) != 0) {
|
|
|
|
if ((scb->hscb->control & TAG_ENB) != 0) {
|
|
ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK;
|
|
} else {
|
|
ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK_SET;
|
|
}
|
|
ahd->msgout_len++;
|
|
ahd_print_path(ahd, scb);
|
|
printk("Abort%s Message Sent\n",
|
|
(scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
|
|
/*
|
|
* Clear our selection hardware in advance of
|
|
* the busfree. We may have an entry in the waiting
|
|
* Q for this target, and we don't want to go about
|
|
* selecting while we handle the busfree and blow it
|
|
* away.
|
|
*/
|
|
ahd_outb(ahd, SCSISEQ0, 0);
|
|
} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
|
|
ahd_build_transfer_msg(ahd, devinfo);
|
|
/*
|
|
* Clear our selection hardware in advance of potential
|
|
* PPR IU status change busfree. We may have an entry in
|
|
* the waiting Q for this target, and we don't want to go
|
|
* about selecting while we handle the busfree and blow
|
|
* it away.
|
|
*/
|
|
ahd_outb(ahd, SCSISEQ0, 0);
|
|
} else {
|
|
printk("ahd_intr: AWAITING_MSG for an SCB that "
|
|
"does not have a waiting message\n");
|
|
printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
|
|
devinfo->target_mask);
|
|
panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
|
|
"SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
|
|
ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
|
|
scb->flags);
|
|
}
|
|
|
|
/*
|
|
* Clear the MK_MESSAGE flag from the SCB so we aren't
|
|
* asked to send this message again.
|
|
*/
|
|
ahd_outb(ahd, SCB_CONTROL,
|
|
ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
|
|
scb->hscb->control &= ~MK_MESSAGE;
|
|
ahd->msgout_index = 0;
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
}
|
|
|
|
/*
|
|
* Build an appropriate transfer negotiation message for the
|
|
* currently active target.
|
|
*/
|
|
static void
|
|
ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
|
|
{
|
|
/*
|
|
* We need to initiate transfer negotiations.
|
|
* If our current and goal settings are identical,
|
|
* we want to renegotiate due to a check condition.
|
|
*/
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
int dowide;
|
|
int dosync;
|
|
int doppr;
|
|
u_int period;
|
|
u_int ppr_options;
|
|
u_int offset;
|
|
|
|
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
/*
|
|
* Filter our period based on the current connection.
|
|
* If we can't perform DT transfers on this segment (not in LVD
|
|
* mode for instance), then our decision to issue a PPR message
|
|
* may change.
|
|
*/
|
|
period = tinfo->goal.period;
|
|
offset = tinfo->goal.offset;
|
|
ppr_options = tinfo->goal.ppr_options;
|
|
/* Target initiated PPR is not allowed in the SCSI spec */
|
|
if (devinfo->role == ROLE_TARGET)
|
|
ppr_options = 0;
|
|
ahd_devlimited_syncrate(ahd, tinfo, &period,
|
|
&ppr_options, devinfo->role);
|
|
dowide = tinfo->curr.width != tinfo->goal.width;
|
|
dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
|
|
/*
|
|
* Only use PPR if we have options that need it, even if the device
|
|
* claims to support it. There might be an expander in the way
|
|
* that doesn't.
|
|
*/
|
|
doppr = ppr_options != 0;
|
|
|
|
if (!dowide && !dosync && !doppr) {
|
|
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
|
|
dosync = tinfo->goal.offset != 0;
|
|
}
|
|
|
|
if (!dowide && !dosync && !doppr) {
|
|
/*
|
|
* Force async with a WDTR message if we have a wide bus,
|
|
* or just issue an SDTR with a 0 offset.
|
|
*/
|
|
if ((ahd->features & AHD_WIDE) != 0)
|
|
dowide = 1;
|
|
else
|
|
dosync = 1;
|
|
|
|
if (bootverbose) {
|
|
ahd_print_devinfo(ahd, devinfo);
|
|
printk("Ensuring async\n");
|
|
}
|
|
}
|
|
/* Target initiated PPR is not allowed in the SCSI spec */
|
|
if (devinfo->role == ROLE_TARGET)
|
|
doppr = 0;
|
|
|
|
/*
|
|
* Both the PPR message and SDTR message require the
|
|
* goal syncrate to be limited to what the target device
|
|
* is capable of handling (based on whether an LVD->SE
|
|
* expander is on the bus), so combine these two cases.
|
|
* Regardless, guarantee that if we are using WDTR and SDTR
|
|
* messages that WDTR comes first.
|
|
*/
|
|
if (doppr || (dosync && !dowide)) {
|
|
|
|
offset = tinfo->goal.offset;
|
|
ahd_validate_offset(ahd, tinfo, period, &offset,
|
|
doppr ? tinfo->goal.width
|
|
: tinfo->curr.width,
|
|
devinfo->role);
|
|
if (doppr) {
|
|
ahd_construct_ppr(ahd, devinfo, period, offset,
|
|
tinfo->goal.width, ppr_options);
|
|
} else {
|
|
ahd_construct_sdtr(ahd, devinfo, period, offset);
|
|
}
|
|
} else {
|
|
ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a synchronous negotiation message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
u_int period, u_int offset)
|
|
{
|
|
if (offset == 0)
|
|
period = AHD_ASYNC_XFER_PERIOD;
|
|
ahd->msgout_index += spi_populate_sync_msg(
|
|
ahd->msgout_buf + ahd->msgout_index, period, offset);
|
|
ahd->msgout_len += 5;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
|
|
ahd_name(ahd), devinfo->channel, devinfo->target,
|
|
devinfo->lun, period, offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a wide negotiateion message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
u_int bus_width)
|
|
{
|
|
ahd->msgout_index += spi_populate_width_msg(
|
|
ahd->msgout_buf + ahd->msgout_index, bus_width);
|
|
ahd->msgout_len += 4;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending WDTR %x\n",
|
|
ahd_name(ahd), devinfo->channel, devinfo->target,
|
|
devinfo->lun, bus_width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a parallel protocol request message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
u_int period, u_int offset, u_int bus_width,
|
|
u_int ppr_options)
|
|
{
|
|
/*
|
|
* Always request precompensation from
|
|
* the other target if we are running
|
|
* at paced syncrates.
|
|
*/
|
|
if (period <= AHD_SYNCRATE_PACED)
|
|
ppr_options |= MSG_EXT_PPR_PCOMP_EN;
|
|
if (offset == 0)
|
|
period = AHD_ASYNC_XFER_PERIOD;
|
|
ahd->msgout_index += spi_populate_ppr_msg(
|
|
ahd->msgout_buf + ahd->msgout_index, period, offset,
|
|
bus_width, ppr_options);
|
|
ahd->msgout_len += 8;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
|
|
"offset %x, ppr_options %x\n", ahd_name(ahd),
|
|
devinfo->channel, devinfo->target, devinfo->lun,
|
|
bus_width, period, offset, ppr_options);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any active message state.
|
|
*/
|
|
static void
|
|
ahd_clear_msg_state(struct ahd_softc *ahd)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd->send_msg_perror = 0;
|
|
ahd->msg_flags = MSG_FLAG_NONE;
|
|
ahd->msgout_len = 0;
|
|
ahd->msgin_index = 0;
|
|
ahd->msg_type = MSG_TYPE_NONE;
|
|
if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
|
|
/*
|
|
* The target didn't care to respond to our
|
|
* message request, so clear ATN.
|
|
*/
|
|
ahd_outb(ahd, CLRSINT1, CLRATNO);
|
|
}
|
|
ahd_outb(ahd, MSG_OUT, NOP);
|
|
ahd_outb(ahd, SEQ_FLAGS2,
|
|
ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
}
|
|
|
|
/*
|
|
* Manual message loop handler.
|
|
*/
|
|
static void
|
|
ahd_handle_message_phase(struct ahd_softc *ahd)
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
u_int bus_phase;
|
|
int end_session;
|
|
|
|
ahd_fetch_devinfo(ahd, &devinfo);
|
|
end_session = FALSE;
|
|
bus_phase = ahd_inb(ahd, LASTPHASE);
|
|
|
|
if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
|
|
printk("LQIRETRY for LQIPHASE_OUTPKT\n");
|
|
ahd_outb(ahd, LQCTL2, LQIRETRY);
|
|
}
|
|
reswitch:
|
|
switch (ahd->msg_type) {
|
|
case MSG_TYPE_INITIATOR_MSGOUT:
|
|
{
|
|
int lastbyte;
|
|
int phasemis;
|
|
int msgdone;
|
|
|
|
if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
|
|
panic("HOST_MSG_LOOP interrupt with no active message");
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
|
|
ahd_print_devinfo(ahd, &devinfo);
|
|
printk("INITIATOR_MSG_OUT");
|
|
}
|
|
#endif
|
|
phasemis = bus_phase != P_MESGOUT;
|
|
if (phasemis) {
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
|
|
printk(" PHASEMIS %s\n",
|
|
ahd_lookup_phase_entry(bus_phase)
|
|
->phasemsg);
|
|
}
|
|
#endif
|
|
if (bus_phase == P_MESGIN) {
|
|
/*
|
|
* Change gears and see if
|
|
* this messages is of interest to
|
|
* us or should be passed back to
|
|
* the sequencer.
|
|
*/
|
|
ahd_outb(ahd, CLRSINT1, CLRATNO);
|
|
ahd->send_msg_perror = 0;
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
|
|
ahd->msgin_index = 0;
|
|
goto reswitch;
|
|
}
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
if (ahd->send_msg_perror) {
|
|
ahd_outb(ahd, CLRSINT1, CLRATNO);
|
|
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n", ahd->send_msg_perror);
|
|
#endif
|
|
/*
|
|
* If we are notifying the target of a CRC error
|
|
* during packetized operations, the target is
|
|
* within its rights to acknowledge our message
|
|
* with a busfree.
|
|
*/
|
|
if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
|
|
&& ahd->send_msg_perror == INITIATOR_ERROR)
|
|
ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
|
|
|
|
ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
|
|
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
|
|
break;
|
|
}
|
|
|
|
msgdone = ahd->msgout_index == ahd->msgout_len;
|
|
if (msgdone) {
|
|
/*
|
|
* The target has requested a retry.
|
|
* Re-assert ATN, reset our message index to
|
|
* 0, and try again.
|
|
*/
|
|
ahd->msgout_index = 0;
|
|
ahd_assert_atn(ahd);
|
|
}
|
|
|
|
lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
|
|
if (lastbyte) {
|
|
/* Last byte is signified by dropping ATN */
|
|
ahd_outb(ahd, CLRSINT1, CLRATNO);
|
|
}
|
|
|
|
/*
|
|
* Clear our interrupt status and present
|
|
* the next byte on the bus.
|
|
*/
|
|
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n",
|
|
ahd->msgout_buf[ahd->msgout_index]);
|
|
#endif
|
|
ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
|
|
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
|
|
break;
|
|
}
|
|
case MSG_TYPE_INITIATOR_MSGIN:
|
|
{
|
|
int phasemis;
|
|
int message_done;
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
|
|
ahd_print_devinfo(ahd, &devinfo);
|
|
printk("INITIATOR_MSG_IN");
|
|
}
|
|
#endif
|
|
phasemis = bus_phase != P_MESGIN;
|
|
if (phasemis) {
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
|
|
printk(" PHASEMIS %s\n",
|
|
ahd_lookup_phase_entry(bus_phase)
|
|
->phasemsg);
|
|
}
|
|
#endif
|
|
ahd->msgin_index = 0;
|
|
if (bus_phase == P_MESGOUT
|
|
&& (ahd->send_msg_perror != 0
|
|
|| (ahd->msgout_len != 0
|
|
&& ahd->msgout_index == 0))) {
|
|
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
goto reswitch;
|
|
}
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Pull the byte in without acking it */
|
|
ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n",
|
|
ahd->msgin_buf[ahd->msgin_index]);
|
|
#endif
|
|
|
|
message_done = ahd_parse_msg(ahd, &devinfo);
|
|
|
|
if (message_done) {
|
|
/*
|
|
* Clear our incoming message buffer in case there
|
|
* is another message following this one.
|
|
*/
|
|
ahd->msgin_index = 0;
|
|
|
|
/*
|
|
* If this message illicited a response,
|
|
* assert ATN so the target takes us to the
|
|
* message out phase.
|
|
*/
|
|
if (ahd->msgout_len != 0) {
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
|
|
ahd_print_devinfo(ahd, &devinfo);
|
|
printk("Asserting ATN for response\n");
|
|
}
|
|
#endif
|
|
ahd_assert_atn(ahd);
|
|
}
|
|
} else
|
|
ahd->msgin_index++;
|
|
|
|
if (message_done == MSGLOOP_TERMINATED) {
|
|
end_session = TRUE;
|
|
} else {
|
|
/* Ack the byte */
|
|
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
|
|
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
|
|
}
|
|
break;
|
|
}
|
|
case MSG_TYPE_TARGET_MSGIN:
|
|
{
|
|
int msgdone;
|
|
int msgout_request;
|
|
|
|
/*
|
|
* By default, the message loop will continue.
|
|
*/
|
|
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
|
|
|
|
if (ahd->msgout_len == 0)
|
|
panic("Target MSGIN with no active message");
|
|
|
|
/*
|
|
* If we interrupted a mesgout session, the initiator
|
|
* will not know this until our first REQ. So, we
|
|
* only honor mesgout requests after we've sent our
|
|
* first byte.
|
|
*/
|
|
if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
|
|
&& ahd->msgout_index > 0)
|
|
msgout_request = TRUE;
|
|
else
|
|
msgout_request = FALSE;
|
|
|
|
if (msgout_request) {
|
|
|
|
/*
|
|
* Change gears and see if
|
|
* this messages is of interest to
|
|
* us or should be passed back to
|
|
* the sequencer.
|
|
*/
|
|
ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
|
|
ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
|
|
ahd->msgin_index = 0;
|
|
/* Dummy read to REQ for first byte */
|
|
ahd_inb(ahd, SCSIDAT);
|
|
ahd_outb(ahd, SXFRCTL0,
|
|
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
|
|
break;
|
|
}
|
|
|
|
msgdone = ahd->msgout_index == ahd->msgout_len;
|
|
if (msgdone) {
|
|
ahd_outb(ahd, SXFRCTL0,
|
|
ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Present the next byte on the bus.
|
|
*/
|
|
ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
|
|
ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
|
|
break;
|
|
}
|
|
case MSG_TYPE_TARGET_MSGOUT:
|
|
{
|
|
int lastbyte;
|
|
int msgdone;
|
|
|
|
/*
|
|
* By default, the message loop will continue.
|
|
*/
|
|
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
|
|
|
|
/*
|
|
* The initiator signals that this is
|
|
* the last byte by dropping ATN.
|
|
*/
|
|
lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
|
|
|
|
/*
|
|
* Read the latched byte, but turn off SPIOEN first
|
|
* so that we don't inadvertently cause a REQ for the
|
|
* next byte.
|
|
*/
|
|
ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
|
|
ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
|
|
msgdone = ahd_parse_msg(ahd, &devinfo);
|
|
if (msgdone == MSGLOOP_TERMINATED) {
|
|
/*
|
|
* The message is *really* done in that it caused
|
|
* us to go to bus free. The sequencer has already
|
|
* been reset at this point, so pull the ejection
|
|
* handle.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ahd->msgin_index++;
|
|
|
|
/*
|
|
* XXX Read spec about initiator dropping ATN too soon
|
|
* and use msgdone to detect it.
|
|
*/
|
|
if (msgdone == MSGLOOP_MSGCOMPLETE) {
|
|
ahd->msgin_index = 0;
|
|
|
|
/*
|
|
* If this message illicited a response, transition
|
|
* to the Message in phase and send it.
|
|
*/
|
|
if (ahd->msgout_len != 0) {
|
|
ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
|
|
ahd_outb(ahd, SXFRCTL0,
|
|
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
|
|
ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
|
|
ahd->msgin_index = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lastbyte)
|
|
end_session = TRUE;
|
|
else {
|
|
/* Ask for the next byte. */
|
|
ahd_outb(ahd, SXFRCTL0,
|
|
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
|
|
}
|
|
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unknown REQINIT message type");
|
|
}
|
|
|
|
if (end_session) {
|
|
if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
|
|
printk("%s: Returning to Idle Loop\n",
|
|
ahd_name(ahd));
|
|
ahd_clear_msg_state(ahd);
|
|
|
|
/*
|
|
* Perform the equivalent of a clear_target_state.
|
|
*/
|
|
ahd_outb(ahd, LASTPHASE, P_BUSFREE);
|
|
ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
|
|
ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
|
|
} else {
|
|
ahd_clear_msg_state(ahd);
|
|
ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we sent a particular extended message to the target.
|
|
* If "full" is true, return true only if the target saw the full
|
|
* message. If "full" is false, return true if the target saw at
|
|
* least the first byte of the message.
|
|
*/
|
|
static int
|
|
ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
|
|
{
|
|
int found;
|
|
u_int index;
|
|
|
|
found = FALSE;
|
|
index = 0;
|
|
|
|
while (index < ahd->msgout_len) {
|
|
if (ahd->msgout_buf[index] == EXTENDED_MESSAGE) {
|
|
u_int end_index;
|
|
|
|
end_index = index + 1 + ahd->msgout_buf[index + 1];
|
|
if (ahd->msgout_buf[index+2] == msgval
|
|
&& type == AHDMSG_EXT) {
|
|
|
|
if (full) {
|
|
if (ahd->msgout_index > end_index)
|
|
found = TRUE;
|
|
} else if (ahd->msgout_index > index)
|
|
found = TRUE;
|
|
}
|
|
index = end_index;
|
|
} else if (ahd->msgout_buf[index] >= SIMPLE_QUEUE_TAG
|
|
&& ahd->msgout_buf[index] <= IGNORE_WIDE_RESIDUE) {
|
|
|
|
/* Skip tag type and tag id or residue param*/
|
|
index += 2;
|
|
} else {
|
|
/* Single byte message */
|
|
if (type == AHDMSG_1B
|
|
&& ahd->msgout_index > index
|
|
&& (ahd->msgout_buf[index] == msgval
|
|
|| ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
|
|
&& msgval == MSG_IDENTIFYFLAG)))
|
|
found = TRUE;
|
|
index++;
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
}
|
|
return (found);
|
|
}
|
|
|
|
/*
|
|
* Wait for a complete incoming message, parse it, and respond accordingly.
|
|
*/
|
|
static int
|
|
ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
|
|
{
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
int reject;
|
|
int done;
|
|
int response;
|
|
|
|
done = MSGLOOP_IN_PROG;
|
|
response = FALSE;
|
|
reject = FALSE;
|
|
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
|
|
/*
|
|
* Parse as much of the message as is available,
|
|
* rejecting it if we don't support it. When
|
|
* the entire message is available and has been
|
|
* handled, return MSGLOOP_MSGCOMPLETE, indicating
|
|
* that we have parsed an entire message.
|
|
*
|
|
* In the case of extended messages, we accept the length
|
|
* byte outright and perform more checking once we know the
|
|
* extended message type.
|
|
*/
|
|
switch (ahd->msgin_buf[0]) {
|
|
case DISCONNECT:
|
|
case SAVE_POINTERS:
|
|
case COMMAND_COMPLETE:
|
|
case RESTORE_POINTERS:
|
|
case IGNORE_WIDE_RESIDUE:
|
|
/*
|
|
* End our message loop as these are messages
|
|
* the sequencer handles on its own.
|
|
*/
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
case MESSAGE_REJECT:
|
|
response = ahd_handle_msg_reject(ahd, devinfo);
|
|
fallthrough;
|
|
case NOP:
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
case EXTENDED_MESSAGE:
|
|
{
|
|
/* Wait for enough of the message to begin validation */
|
|
if (ahd->msgin_index < 2)
|
|
break;
|
|
switch (ahd->msgin_buf[2]) {
|
|
case EXTENDED_SDTR:
|
|
{
|
|
u_int period;
|
|
u_int ppr_options;
|
|
u_int offset;
|
|
u_int saved_offset;
|
|
|
|
if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have both args before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_SDTR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
|
|
break;
|
|
|
|
period = ahd->msgin_buf[3];
|
|
ppr_options = 0;
|
|
saved_offset = offset = ahd->msgin_buf[4];
|
|
ahd_devlimited_syncrate(ahd, tinfo, &period,
|
|
&ppr_options, devinfo->role);
|
|
ahd_validate_offset(ahd, tinfo, period, &offset,
|
|
tinfo->curr.width, devinfo->role);
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received "
|
|
"SDTR period %x, offset %x\n\t"
|
|
"Filtered to period %x, offset %x\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
ahd->msgin_buf[3], saved_offset,
|
|
period, offset);
|
|
}
|
|
ahd_set_syncrate(ahd, devinfo, period,
|
|
offset, ppr_options,
|
|
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
|
|
/*
|
|
* See if we initiated Sync Negotiation
|
|
* and didn't have to fall down to async
|
|
* transfers.
|
|
*/
|
|
if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, TRUE)) {
|
|
/* We started it */
|
|
if (saved_offset != offset) {
|
|
/* Went too low - force async */
|
|
reject = TRUE;
|
|
}
|
|
} else {
|
|
/*
|
|
* Send our own SDTR in reply
|
|
*/
|
|
if (bootverbose
|
|
&& devinfo->role == ROLE_INITIATOR) {
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated SDTR\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
ahd_construct_sdtr(ahd, devinfo,
|
|
period, offset);
|
|
ahd->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
case EXTENDED_WDTR:
|
|
{
|
|
u_int bus_width;
|
|
u_int saved_width;
|
|
u_int sending_reply;
|
|
|
|
sending_reply = FALSE;
|
|
if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have our arg before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_WDTR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
|
|
break;
|
|
|
|
bus_width = ahd->msgin_buf[3];
|
|
saved_width = bus_width;
|
|
ahd_validate_width(ahd, tinfo, &bus_width,
|
|
devinfo->role);
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received WDTR "
|
|
"%x filtered to %x\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
saved_width, bus_width);
|
|
}
|
|
|
|
if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, TRUE)) {
|
|
/*
|
|
* Don't send a WDTR back to the
|
|
* target, since we asked first.
|
|
* If the width went higher than our
|
|
* request, reject it.
|
|
*/
|
|
if (saved_width > bus_width) {
|
|
reject = TRUE;
|
|
printk("(%s:%c:%d:%d): requested %dBit "
|
|
"transfers. Rejecting...\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
8 * (0x01 << bus_width));
|
|
bus_width = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* Send our own WDTR in reply
|
|
*/
|
|
if (bootverbose
|
|
&& devinfo->role == ROLE_INITIATOR) {
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated WDTR\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
ahd_construct_wdtr(ahd, devinfo, bus_width);
|
|
ahd->msgout_index = 0;
|
|
response = TRUE;
|
|
sending_reply = TRUE;
|
|
}
|
|
/*
|
|
* After a wide message, we are async, but
|
|
* some devices don't seem to honor this portion
|
|
* of the spec. Force a renegotiation of the
|
|
* sync component of our transfer agreement even
|
|
* if our goal is async. By updating our width
|
|
* after forcing the negotiation, we avoid
|
|
* renegotiating for width.
|
|
*/
|
|
ahd_update_neg_request(ahd, devinfo, tstate,
|
|
tinfo, AHD_NEG_ALWAYS);
|
|
ahd_set_width(ahd, devinfo, bus_width,
|
|
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
if (sending_reply == FALSE && reject == FALSE) {
|
|
|
|
/*
|
|
* We will always have an SDTR to send.
|
|
*/
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
ahd_build_transfer_msg(ahd, devinfo);
|
|
ahd->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
case EXTENDED_PPR:
|
|
{
|
|
u_int period;
|
|
u_int offset;
|
|
u_int bus_width;
|
|
u_int ppr_options;
|
|
u_int saved_width;
|
|
u_int saved_offset;
|
|
u_int saved_ppr_options;
|
|
|
|
if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have all args before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_PPR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
|
|
break;
|
|
|
|
period = ahd->msgin_buf[3];
|
|
offset = ahd->msgin_buf[5];
|
|
bus_width = ahd->msgin_buf[6];
|
|
saved_width = bus_width;
|
|
ppr_options = ahd->msgin_buf[7];
|
|
/*
|
|
* According to the spec, a DT only
|
|
* period factor with no DT option
|
|
* set implies async.
|
|
*/
|
|
if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
|
|
&& period <= 9)
|
|
offset = 0;
|
|
saved_ppr_options = ppr_options;
|
|
saved_offset = offset;
|
|
|
|
/*
|
|
* Transfer options are only available if we
|
|
* are negotiating wide.
|
|
*/
|
|
if (bus_width == 0)
|
|
ppr_options &= MSG_EXT_PPR_QAS_REQ;
|
|
|
|
ahd_validate_width(ahd, tinfo, &bus_width,
|
|
devinfo->role);
|
|
ahd_devlimited_syncrate(ahd, tinfo, &period,
|
|
&ppr_options, devinfo->role);
|
|
ahd_validate_offset(ahd, tinfo, period, &offset,
|
|
bus_width, devinfo->role);
|
|
|
|
if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, TRUE)) {
|
|
/*
|
|
* If we are unable to do any of the
|
|
* requested options (we went too low),
|
|
* then we'll have to reject the message.
|
|
*/
|
|
if (saved_width > bus_width
|
|
|| saved_offset != offset
|
|
|| saved_ppr_options != ppr_options) {
|
|
reject = TRUE;
|
|
period = 0;
|
|
offset = 0;
|
|
bus_width = 0;
|
|
ppr_options = 0;
|
|
}
|
|
} else {
|
|
if (devinfo->role != ROLE_TARGET)
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated PPR\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
else
|
|
printk("(%s:%c:%d:%d): Initiator "
|
|
"Initiated PPR\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
ahd_construct_ppr(ahd, devinfo, period, offset,
|
|
bus_width, ppr_options);
|
|
ahd->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received PPR width %x, "
|
|
"period %x, offset %x,options %x\n"
|
|
"\tFiltered to width %x, period %x, "
|
|
"offset %x, options %x\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
saved_width, ahd->msgin_buf[3],
|
|
saved_offset, saved_ppr_options,
|
|
bus_width, period, offset, ppr_options);
|
|
}
|
|
ahd_set_width(ahd, devinfo, bus_width,
|
|
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
ahd_set_syncrate(ahd, devinfo, period,
|
|
offset, ppr_options,
|
|
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
default:
|
|
/* Unknown extended message. Reject it. */
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef AHD_TARGET_MODE
|
|
case TARGET_RESET:
|
|
ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
|
|
CAM_BDR_SENT,
|
|
"Bus Device Reset Received",
|
|
/*verbose_level*/0);
|
|
ahd_restart(ahd);
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
case ABORT_TASK:
|
|
case ABORT_TASK_SET:
|
|
case CLEAR_TASK_SET:
|
|
{
|
|
int tag;
|
|
|
|
/* Target mode messages */
|
|
if (devinfo->role != ROLE_TARGET) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
tag = SCB_LIST_NULL;
|
|
if (ahd->msgin_buf[0] == ABORT_TASK)
|
|
tag = ahd_inb(ahd, INITIATOR_TAG);
|
|
ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
|
|
devinfo->lun, tag, ROLE_TARGET,
|
|
CAM_REQ_ABORTED);
|
|
|
|
tstate = ahd->enabled_targets[devinfo->our_scsiid];
|
|
if (tstate != NULL) {
|
|
struct ahd_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[devinfo->lun];
|
|
if (lstate != NULL) {
|
|
ahd_queue_lstate_event(ahd, lstate,
|
|
devinfo->our_scsiid,
|
|
ahd->msgin_buf[0],
|
|
/*arg*/tag);
|
|
ahd_send_lstate_events(ahd, lstate);
|
|
}
|
|
}
|
|
ahd_restart(ahd);
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
}
|
|
#endif
|
|
case QAS_REQUEST:
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
|
|
printk("%s: QAS request. SCSISIGI == 0x%x\n",
|
|
ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
|
|
#endif
|
|
ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
|
|
fallthrough;
|
|
case TERMINATE_IO_PROC:
|
|
default:
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
if (reject) {
|
|
/*
|
|
* Setup to reject the message.
|
|
*/
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 1;
|
|
ahd->msgout_buf[0] = MESSAGE_REJECT;
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
response = TRUE;
|
|
}
|
|
|
|
if (done != MSGLOOP_IN_PROG && !response)
|
|
/* Clear the outgoing message buffer */
|
|
ahd->msgout_len = 0;
|
|
|
|
return (done);
|
|
}
|
|
|
|
/*
|
|
* Process a message reject message.
|
|
*/
|
|
static int
|
|
ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
|
|
{
|
|
/*
|
|
* What we care about here is if we had an
|
|
* outstanding SDTR or WDTR message for this
|
|
* target. If we did, this is a signal that
|
|
* the target is refusing negotiation.
|
|
*/
|
|
struct scb *scb;
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
u_int scb_index;
|
|
u_int last_msg;
|
|
int response = 0;
|
|
|
|
scb_index = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scb_index);
|
|
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
|
|
devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
/* Might be necessary */
|
|
last_msg = ahd_inb(ahd, LAST_MSG);
|
|
|
|
if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/FALSE)) {
|
|
if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/TRUE)
|
|
&& tinfo->goal.period <= AHD_SYNCRATE_PACED) {
|
|
/*
|
|
* Target may not like our SPI-4 PPR Options.
|
|
* Attempt to negotiate 80MHz which will turn
|
|
* off these options.
|
|
*/
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): PPR Rejected. "
|
|
"Trying simple U160 PPR\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
tinfo->goal.period = AHD_SYNCRATE_DT;
|
|
tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
|
|
| MSG_EXT_PPR_QAS_REQ
|
|
| MSG_EXT_PPR_DT_REQ;
|
|
} else {
|
|
/*
|
|
* Target does not support the PPR message.
|
|
* Attempt to negotiate SPI-2 style.
|
|
*/
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): PPR Rejected. "
|
|
"Trying WDTR/SDTR\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
tinfo->goal.ppr_options = 0;
|
|
tinfo->curr.transport_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
}
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
ahd_build_transfer_msg(ahd, devinfo);
|
|
ahd->msgout_index = 0;
|
|
response = 1;
|
|
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, /*full*/FALSE)) {
|
|
|
|
/* note 8bit xfers */
|
|
printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
|
|
"8bit transfers\n", ahd_name(ahd),
|
|
devinfo->channel, devinfo->target, devinfo->lun);
|
|
ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
/*
|
|
* No need to clear the sync rate. If the target
|
|
* did not accept the command, our syncrate is
|
|
* unaffected. If the target started the negotiation,
|
|
* but rejected our response, we already cleared the
|
|
* sync rate before sending our WDTR.
|
|
*/
|
|
if (tinfo->goal.offset != tinfo->curr.offset) {
|
|
|
|
/* Start the sync negotiation */
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
ahd_build_transfer_msg(ahd, devinfo);
|
|
ahd->msgout_index = 0;
|
|
response = 1;
|
|
}
|
|
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, /*full*/FALSE)) {
|
|
/* note asynch xfers and clear flag */
|
|
ahd_set_syncrate(ahd, devinfo, /*period*/0,
|
|
/*offset*/0, /*ppr_options*/0,
|
|
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
|
|
"Using asynchronous transfers\n",
|
|
ahd_name(ahd), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
} else if ((scb->hscb->control & SIMPLE_QUEUE_TAG) != 0) {
|
|
int tag_type;
|
|
int mask;
|
|
|
|
tag_type = (scb->hscb->control & SIMPLE_QUEUE_TAG);
|
|
|
|
if (tag_type == SIMPLE_QUEUE_TAG) {
|
|
printk("(%s:%c:%d:%d): refuses tagged commands. "
|
|
"Performing non-tagged I/O\n", ahd_name(ahd),
|
|
devinfo->channel, devinfo->target, devinfo->lun);
|
|
ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
|
|
mask = ~0x23;
|
|
} else {
|
|
printk("(%s:%c:%d:%d): refuses %s tagged commands. "
|
|
"Performing simple queue tagged I/O only\n",
|
|
ahd_name(ahd), devinfo->channel, devinfo->target,
|
|
devinfo->lun, tag_type == ORDERED_QUEUE_TAG
|
|
? "ordered" : "head of queue");
|
|
ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
|
|
mask = ~0x03;
|
|
}
|
|
|
|
/*
|
|
* Resend the identify for this CCB as the target
|
|
* may believe that the selection is invalid otherwise.
|
|
*/
|
|
ahd_outb(ahd, SCB_CONTROL,
|
|
ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
|
|
scb->hscb->control &= mask;
|
|
ahd_set_transaction_tag(scb, /*enabled*/FALSE,
|
|
/*type*/SIMPLE_QUEUE_TAG);
|
|
ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
|
|
ahd_assert_atn(ahd);
|
|
ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
|
|
SCB_GET_TAG(scb));
|
|
|
|
/*
|
|
* Requeue all tagged commands for this target
|
|
* currently in our possession so they can be
|
|
* converted to untagged commands.
|
|
*/
|
|
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
|
|
SCB_GET_CHANNEL(ahd, scb),
|
|
SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
|
|
ROLE_INITIATOR, CAM_REQUEUE_REQ,
|
|
SEARCH_COMPLETE);
|
|
} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
|
|
/*
|
|
* Most likely the device believes that we had
|
|
* previously negotiated packetized.
|
|
*/
|
|
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
|
|
| MSG_FLAG_IU_REQ_CHANGED;
|
|
|
|
ahd_force_renegotiation(ahd, devinfo);
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
ahd_build_transfer_msg(ahd, devinfo);
|
|
ahd->msgout_index = 0;
|
|
response = 1;
|
|
} else {
|
|
/*
|
|
* Otherwise, we ignore it.
|
|
*/
|
|
printk("%s:%c:%d: Message reject for %x -- ignored\n",
|
|
ahd_name(ahd), devinfo->channel, devinfo->target,
|
|
last_msg);
|
|
}
|
|
return (response);
|
|
}
|
|
|
|
/*
|
|
* Process an ingnore wide residue message.
|
|
*/
|
|
static void
|
|
ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
|
|
{
|
|
u_int scb_index;
|
|
struct scb *scb;
|
|
|
|
scb_index = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scb_index);
|
|
/*
|
|
* XXX Actually check data direction in the sequencer?
|
|
* Perhaps add datadir to some spare bits in the hscb?
|
|
*/
|
|
if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
|
|
|| ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
|
|
/*
|
|
* Ignore the message if we haven't
|
|
* seen an appropriate data phase yet.
|
|
*/
|
|
} else {
|
|
/*
|
|
* If the residual occurred on the last
|
|
* transfer and the transfer request was
|
|
* expected to end on an odd count, do
|
|
* nothing. Otherwise, subtract a byte
|
|
* and update the residual count accordingly.
|
|
*/
|
|
uint32_t sgptr;
|
|
|
|
sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
|
|
if ((sgptr & SG_LIST_NULL) != 0
|
|
&& (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
|
|
& SCB_XFERLEN_ODD) != 0) {
|
|
/*
|
|
* If the residual occurred on the last
|
|
* transfer and the transfer request was
|
|
* expected to end on an odd count, do
|
|
* nothing.
|
|
*/
|
|
} else {
|
|
uint32_t data_cnt;
|
|
uint64_t data_addr;
|
|
uint32_t sglen;
|
|
|
|
/* Pull in the rest of the sgptr */
|
|
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
|
|
data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
|
|
if ((sgptr & SG_LIST_NULL) != 0) {
|
|
/*
|
|
* The residual data count is not updated
|
|
* for the command run to completion case.
|
|
* Explicitly zero the count.
|
|
*/
|
|
data_cnt &= ~AHD_SG_LEN_MASK;
|
|
}
|
|
data_addr = ahd_inq(ahd, SHADDR);
|
|
data_cnt += 1;
|
|
data_addr -= 1;
|
|
sgptr &= SG_PTR_MASK;
|
|
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
|
|
struct ahd_dma64_seg *sg;
|
|
|
|
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
|
|
|
|
/*
|
|
* The residual sg ptr points to the next S/G
|
|
* to load so we must go back one.
|
|
*/
|
|
sg--;
|
|
sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
|
|
if (sg != scb->sg_list
|
|
&& sglen < (data_cnt & AHD_SG_LEN_MASK)) {
|
|
|
|
sg--;
|
|
sglen = ahd_le32toh(sg->len);
|
|
/*
|
|
* Preserve High Address and SG_LIST
|
|
* bits while setting the count to 1.
|
|
*/
|
|
data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
|
|
data_addr = ahd_le64toh(sg->addr)
|
|
+ (sglen & AHD_SG_LEN_MASK)
|
|
- 1;
|
|
|
|
/*
|
|
* Increment sg so it points to the
|
|
* "next" sg.
|
|
*/
|
|
sg++;
|
|
sgptr = ahd_sg_virt_to_bus(ahd, scb,
|
|
sg);
|
|
}
|
|
} else {
|
|
struct ahd_dma_seg *sg;
|
|
|
|
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
|
|
|
|
/*
|
|
* The residual sg ptr points to the next S/G
|
|
* to load so we must go back one.
|
|
*/
|
|
sg--;
|
|
sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
|
|
if (sg != scb->sg_list
|
|
&& sglen < (data_cnt & AHD_SG_LEN_MASK)) {
|
|
|
|
sg--;
|
|
sglen = ahd_le32toh(sg->len);
|
|
/*
|
|
* Preserve High Address and SG_LIST
|
|
* bits while setting the count to 1.
|
|
*/
|
|
data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
|
|
data_addr = ahd_le32toh(sg->addr)
|
|
+ (sglen & AHD_SG_LEN_MASK)
|
|
- 1;
|
|
|
|
/*
|
|
* Increment sg so it points to the
|
|
* "next" sg.
|
|
*/
|
|
sg++;
|
|
sgptr = ahd_sg_virt_to_bus(ahd, scb,
|
|
sg);
|
|
}
|
|
}
|
|
/*
|
|
* Toggle the "oddness" of the transfer length
|
|
* to handle this mid-transfer ignore wide
|
|
* residue. This ensures that the oddness is
|
|
* correct for subsequent data transfers.
|
|
*/
|
|
ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
|
|
ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
|
|
^ SCB_XFERLEN_ODD);
|
|
|
|
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
|
|
ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
|
|
/*
|
|
* The FIFO's pointers will be updated if/when the
|
|
* sequencer re-enters a data phase.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Reinitialize the data pointers for the active transfer
|
|
* based on its current residual.
|
|
*/
|
|
static void
|
|
ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
|
|
{
|
|
struct scb *scb;
|
|
ahd_mode_state saved_modes;
|
|
u_int scb_index;
|
|
u_int wait;
|
|
uint32_t sgptr;
|
|
uint32_t resid;
|
|
uint64_t dataptr;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
|
|
AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
|
|
|
|
scb_index = ahd_get_scbptr(ahd);
|
|
scb = ahd_lookup_scb(ahd, scb_index);
|
|
|
|
/*
|
|
* Release and reacquire the FIFO so we
|
|
* have a clean slate.
|
|
*/
|
|
ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
|
|
wait = 1000;
|
|
while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
|
|
ahd_delay(100);
|
|
if (wait == 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
|
|
ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
|
|
}
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd_outb(ahd, DFFSTAT,
|
|
ahd_inb(ahd, DFFSTAT)
|
|
| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
|
|
|
|
/*
|
|
* Determine initial values for data_addr and data_cnt
|
|
* for resuming the data phase.
|
|
*/
|
|
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
|
|
sgptr &= SG_PTR_MASK;
|
|
|
|
resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
|
|
| (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
|
|
| ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
|
|
|
|
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
|
|
struct ahd_dma64_seg *sg;
|
|
|
|
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
|
|
|
|
/* The residual sg_ptr always points to the next sg */
|
|
sg--;
|
|
|
|
dataptr = ahd_le64toh(sg->addr)
|
|
+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
|
|
- resid;
|
|
ahd_outl(ahd, HADDR + 4, dataptr >> 32);
|
|
} else {
|
|
struct ahd_dma_seg *sg;
|
|
|
|
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
|
|
|
|
/* The residual sg_ptr always points to the next sg */
|
|
sg--;
|
|
|
|
dataptr = ahd_le32toh(sg->addr)
|
|
+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
|
|
- resid;
|
|
ahd_outb(ahd, HADDR + 4,
|
|
(ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
|
|
}
|
|
ahd_outl(ahd, HADDR, dataptr);
|
|
ahd_outb(ahd, HCNT + 2, resid >> 16);
|
|
ahd_outb(ahd, HCNT + 1, resid >> 8);
|
|
ahd_outb(ahd, HCNT, resid);
|
|
}
|
|
|
|
/*
|
|
* Handle the effects of issuing a bus device reset message.
|
|
*/
|
|
static void
|
|
ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
u_int lun, cam_status status, char *message,
|
|
int verbose_level)
|
|
{
|
|
#ifdef AHD_TARGET_MODE
|
|
struct ahd_tmode_tstate* tstate;
|
|
#endif
|
|
int found;
|
|
|
|
found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
|
|
lun, SCB_LIST_NULL, devinfo->role,
|
|
status);
|
|
|
|
#ifdef AHD_TARGET_MODE
|
|
/*
|
|
* Send an immediate notify ccb to all target mord peripheral
|
|
* drivers affected by this action.
|
|
*/
|
|
tstate = ahd->enabled_targets[devinfo->our_scsiid];
|
|
if (tstate != NULL) {
|
|
u_int cur_lun;
|
|
u_int max_lun;
|
|
|
|
if (lun != CAM_LUN_WILDCARD) {
|
|
cur_lun = 0;
|
|
max_lun = AHD_NUM_LUNS - 1;
|
|
} else {
|
|
cur_lun = lun;
|
|
max_lun = lun;
|
|
}
|
|
for (;cur_lun <= max_lun; cur_lun++) {
|
|
struct ahd_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[cur_lun];
|
|
if (lstate == NULL)
|
|
continue;
|
|
|
|
ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
|
|
TARGET_RESET, /*arg*/0);
|
|
ahd_send_lstate_events(ahd, lstate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Go back to async/narrow transfers and renegotiate.
|
|
*/
|
|
ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_CUR, /*paused*/TRUE);
|
|
ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
|
|
/*ppr_options*/0, AHD_TRANS_CUR,
|
|
/*paused*/TRUE);
|
|
|
|
if (status != CAM_SEL_TIMEOUT)
|
|
ahd_send_async(ahd, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_SENT_BDR);
|
|
|
|
if (message != NULL && bootverbose)
|
|
printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
|
|
message, devinfo->channel, devinfo->target, found);
|
|
}
|
|
|
|
#ifdef AHD_TARGET_MODE
|
|
static void
|
|
ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
|
|
/*
|
|
* To facilitate adding multiple messages together,
|
|
* each routine should increment the index and len
|
|
* variables instead of setting them explicitly.
|
|
*/
|
|
ahd->msgout_index = 0;
|
|
ahd->msgout_len = 0;
|
|
|
|
if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
|
|
ahd_build_transfer_msg(ahd, devinfo);
|
|
else
|
|
panic("ahd_intr: AWAITING target message with no message");
|
|
|
|
ahd->msgout_index = 0;
|
|
ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
|
|
}
|
|
#endif
|
|
/**************************** Initialization **********************************/
|
|
static u_int
|
|
ahd_sglist_size(struct ahd_softc *ahd)
|
|
{
|
|
bus_size_t list_size;
|
|
|
|
list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
|
|
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
|
|
list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
|
|
return (list_size);
|
|
}
|
|
|
|
/*
|
|
* Calculate the optimum S/G List allocation size. S/G elements used
|
|
* for a given transaction must be physically contiguous. Assume the
|
|
* OS will allocate full pages to us, so it doesn't make sense to request
|
|
* less than a page.
|
|
*/
|
|
static u_int
|
|
ahd_sglist_allocsize(struct ahd_softc *ahd)
|
|
{
|
|
bus_size_t sg_list_increment;
|
|
bus_size_t sg_list_size;
|
|
bus_size_t max_list_size;
|
|
bus_size_t best_list_size;
|
|
|
|
/* Start out with the minimum required for AHD_NSEG. */
|
|
sg_list_increment = ahd_sglist_size(ahd);
|
|
sg_list_size = sg_list_increment;
|
|
|
|
/* Get us as close as possible to a page in size. */
|
|
while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
|
|
sg_list_size += sg_list_increment;
|
|
|
|
/*
|
|
* Try to reduce the amount of wastage by allocating
|
|
* multiple pages.
|
|
*/
|
|
best_list_size = sg_list_size;
|
|
max_list_size = roundup(sg_list_increment, PAGE_SIZE);
|
|
if (max_list_size < 4 * PAGE_SIZE)
|
|
max_list_size = 4 * PAGE_SIZE;
|
|
if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
|
|
max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
|
|
while ((sg_list_size + sg_list_increment) <= max_list_size
|
|
&& (sg_list_size % PAGE_SIZE) != 0) {
|
|
bus_size_t new_mod;
|
|
bus_size_t best_mod;
|
|
|
|
sg_list_size += sg_list_increment;
|
|
new_mod = sg_list_size % PAGE_SIZE;
|
|
best_mod = best_list_size % PAGE_SIZE;
|
|
if (new_mod > best_mod || new_mod == 0) {
|
|
best_list_size = sg_list_size;
|
|
}
|
|
}
|
|
return (best_list_size);
|
|
}
|
|
|
|
/*
|
|
* Allocate a controller structure for a new device
|
|
* and perform initial initializion.
|
|
*/
|
|
struct ahd_softc *
|
|
ahd_alloc(void *platform_arg, char *name)
|
|
{
|
|
struct ahd_softc *ahd;
|
|
|
|
ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC);
|
|
if (!ahd) {
|
|
printk("aic7xxx: cannot malloc softc!\n");
|
|
kfree(name);
|
|
return NULL;
|
|
}
|
|
|
|
ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
|
|
if (ahd->seep_config == NULL) {
|
|
kfree(ahd);
|
|
kfree(name);
|
|
return (NULL);
|
|
}
|
|
LIST_INIT(&ahd->pending_scbs);
|
|
/* We don't know our unit number until the OSM sets it */
|
|
ahd->name = name;
|
|
ahd->unit = -1;
|
|
ahd->description = NULL;
|
|
ahd->bus_description = NULL;
|
|
ahd->channel = 'A';
|
|
ahd->chip = AHD_NONE;
|
|
ahd->features = AHD_FENONE;
|
|
ahd->bugs = AHD_BUGNONE;
|
|
ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
|
|
| AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
|
|
timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
|
|
ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
|
|
ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
|
|
ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
|
|
ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
|
|
ahd->int_coalescing_stop_threshold =
|
|
AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
|
|
printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
|
|
ahd_name(ahd), (u_int)sizeof(struct scb),
|
|
(u_int)sizeof(struct hardware_scb));
|
|
}
|
|
#endif
|
|
if (ahd_platform_alloc(ahd, platform_arg) != 0) {
|
|
ahd_free(ahd);
|
|
ahd = NULL;
|
|
}
|
|
return (ahd);
|
|
}
|
|
|
|
int
|
|
ahd_softc_init(struct ahd_softc *ahd)
|
|
{
|
|
|
|
ahd->unpause = 0;
|
|
ahd->pause = PAUSE;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ahd_set_unit(struct ahd_softc *ahd, int unit)
|
|
{
|
|
ahd->unit = unit;
|
|
}
|
|
|
|
void
|
|
ahd_set_name(struct ahd_softc *ahd, char *name)
|
|
{
|
|
kfree(ahd->name);
|
|
ahd->name = name;
|
|
}
|
|
|
|
void
|
|
ahd_free(struct ahd_softc *ahd)
|
|
{
|
|
int i;
|
|
|
|
switch (ahd->init_level) {
|
|
default:
|
|
case 5:
|
|
ahd_shutdown(ahd);
|
|
fallthrough;
|
|
case 4:
|
|
ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
|
|
ahd->shared_data_map.dmamap);
|
|
fallthrough;
|
|
case 3:
|
|
ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
|
|
ahd->shared_data_map.dmamap);
|
|
ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
|
|
ahd->shared_data_map.dmamap);
|
|
fallthrough;
|
|
case 2:
|
|
ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
|
|
break;
|
|
case 1:
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
ahd_platform_free(ahd);
|
|
ahd_fini_scbdata(ahd);
|
|
for (i = 0; i < AHD_NUM_TARGETS; i++) {
|
|
struct ahd_tmode_tstate *tstate;
|
|
|
|
tstate = ahd->enabled_targets[i];
|
|
if (tstate != NULL) {
|
|
#ifdef AHD_TARGET_MODE
|
|
int j;
|
|
|
|
for (j = 0; j < AHD_NUM_LUNS; j++) {
|
|
struct ahd_tmode_lstate *lstate;
|
|
|
|
lstate = tstate->enabled_luns[j];
|
|
if (lstate != NULL) {
|
|
xpt_free_path(lstate->path);
|
|
kfree(lstate);
|
|
}
|
|
}
|
|
#endif
|
|
kfree(tstate);
|
|
}
|
|
}
|
|
#ifdef AHD_TARGET_MODE
|
|
if (ahd->black_hole != NULL) {
|
|
xpt_free_path(ahd->black_hole->path);
|
|
kfree(ahd->black_hole);
|
|
}
|
|
#endif
|
|
kfree(ahd->name);
|
|
kfree(ahd->seep_config);
|
|
kfree(ahd->saved_stack);
|
|
kfree(ahd);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ahd_shutdown(void *arg)
|
|
{
|
|
struct ahd_softc *ahd;
|
|
|
|
ahd = (struct ahd_softc *)arg;
|
|
|
|
/*
|
|
* Stop periodic timer callbacks.
|
|
*/
|
|
del_timer_sync(&ahd->stat_timer);
|
|
|
|
/* This will reset most registers to 0, but not all */
|
|
ahd_reset(ahd, /*reinit*/FALSE);
|
|
}
|
|
|
|
/*
|
|
* Reset the controller and record some information about it
|
|
* that is only available just after a reset. If "reinit" is
|
|
* non-zero, this reset occurred after initial configuration
|
|
* and the caller requests that the chip be fully reinitialized
|
|
* to a runable state. Chip interrupts are *not* enabled after
|
|
* a reinitialization. The caller must enable interrupts via
|
|
* ahd_intr_enable().
|
|
*/
|
|
int
|
|
ahd_reset(struct ahd_softc *ahd, int reinit)
|
|
{
|
|
u_int sxfrctl1;
|
|
int wait;
|
|
uint32_t cmd;
|
|
|
|
/*
|
|
* Preserve the value of the SXFRCTL1 register for all channels.
|
|
* It contains settings that affect termination and we don't want
|
|
* to disturb the integrity of the bus.
|
|
*/
|
|
ahd_pause(ahd);
|
|
ahd_update_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
|
|
|
|
cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
|
|
if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
|
|
uint32_t mod_cmd;
|
|
|
|
/*
|
|
* A4 Razor #632
|
|
* During the assertion of CHIPRST, the chip
|
|
* does not disable its parity logic prior to
|
|
* the start of the reset. This may cause a
|
|
* parity error to be detected and thus a
|
|
* spurious SERR or PERR assertion. Disable
|
|
* PERR and SERR responses during the CHIPRST.
|
|
*/
|
|
mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
|
|
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
|
|
mod_cmd, /*bytes*/2);
|
|
}
|
|
ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
|
|
|
|
/*
|
|
* Ensure that the reset has finished. We delay 1000us
|
|
* prior to reading the register to make sure the chip
|
|
* has sufficiently completed its reset to handle register
|
|
* accesses.
|
|
*/
|
|
wait = 1000;
|
|
do {
|
|
ahd_delay(1000);
|
|
} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
|
|
|
|
if (wait == 0) {
|
|
printk("%s: WARNING - Failed chip reset! "
|
|
"Trying to initialize anyway.\n", ahd_name(ahd));
|
|
}
|
|
ahd_outb(ahd, HCNTRL, ahd->pause);
|
|
|
|
if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
|
|
/*
|
|
* Clear any latched PCI error status and restore
|
|
* previous SERR and PERR response enables.
|
|
*/
|
|
ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
|
|
0xFF, /*bytes*/1);
|
|
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
|
|
cmd, /*bytes*/2);
|
|
}
|
|
|
|
/*
|
|
* Mode should be SCSI after a chip reset, but lets
|
|
* set it just to be safe. We touch the MODE_PTR
|
|
* register directly so as to bypass the lazy update
|
|
* code in ahd_set_modes().
|
|
*/
|
|
ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd_outb(ahd, MODE_PTR,
|
|
ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
|
|
|
|
/*
|
|
* Restore SXFRCTL1.
|
|
*
|
|
* We must always initialize STPWEN to 1 before we
|
|
* restore the saved values. STPWEN is initialized
|
|
* to a tri-state condition which can only be cleared
|
|
* by turning it on.
|
|
*/
|
|
ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
|
|
ahd_outb(ahd, SXFRCTL1, sxfrctl1);
|
|
|
|
/* Determine chip configuration */
|
|
ahd->features &= ~AHD_WIDE;
|
|
if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
|
|
ahd->features |= AHD_WIDE;
|
|
|
|
/*
|
|
* If a recovery action has forced a chip reset,
|
|
* re-initialize the chip to our liking.
|
|
*/
|
|
if (reinit != 0)
|
|
ahd_chip_init(ahd);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine the number of SCBs available on the controller
|
|
*/
|
|
static int
|
|
ahd_probe_scbs(struct ahd_softc *ahd) {
|
|
int i;
|
|
|
|
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
|
|
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
|
|
for (i = 0; i < AHD_SCB_MAX; i++) {
|
|
int j;
|
|
|
|
ahd_set_scbptr(ahd, i);
|
|
ahd_outw(ahd, SCB_BASE, i);
|
|
for (j = 2; j < 64; j++)
|
|
ahd_outb(ahd, SCB_BASE+j, 0);
|
|
/* Start out life as unallocated (needing an abort) */
|
|
ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
|
|
if (ahd_inw_scbram(ahd, SCB_BASE) != i)
|
|
break;
|
|
ahd_set_scbptr(ahd, 0);
|
|
if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
|
|
break;
|
|
}
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
dma_addr_t *baddr;
|
|
|
|
baddr = (dma_addr_t *)arg;
|
|
*baddr = segs->ds_addr;
|
|
}
|
|
|
|
static void
|
|
ahd_initialize_hscbs(struct ahd_softc *ahd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
|
|
ahd_set_scbptr(ahd, i);
|
|
|
|
/* Clear the control byte. */
|
|
ahd_outb(ahd, SCB_CONTROL, 0);
|
|
|
|
/* Set the next pointer */
|
|
ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ahd_init_scbdata(struct ahd_softc *ahd)
|
|
{
|
|
struct scb_data *scb_data;
|
|
int i;
|
|
|
|
scb_data = &ahd->scb_data;
|
|
TAILQ_INIT(&scb_data->free_scbs);
|
|
for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
|
|
LIST_INIT(&scb_data->free_scb_lists[i]);
|
|
LIST_INIT(&scb_data->any_dev_free_scb_list);
|
|
SLIST_INIT(&scb_data->hscb_maps);
|
|
SLIST_INIT(&scb_data->sg_maps);
|
|
SLIST_INIT(&scb_data->sense_maps);
|
|
|
|
/* Determine the number of hardware SCBs and initialize them */
|
|
scb_data->maxhscbs = ahd_probe_scbs(ahd);
|
|
if (scb_data->maxhscbs == 0) {
|
|
printk("%s: No SCB space found\n", ahd_name(ahd));
|
|
return (ENXIO);
|
|
}
|
|
|
|
ahd_initialize_hscbs(ahd);
|
|
|
|
/*
|
|
* Create our DMA tags. These tags define the kinds of device
|
|
* accessible memory allocations and memory mappings we will
|
|
* need to perform during normal operation.
|
|
*
|
|
* Unless we need to further restrict the allocation, we rely
|
|
* on the restrictions of the parent dmat, hence the common
|
|
* use of MAXADDR and MAXSIZE.
|
|
*/
|
|
|
|
/* DMA tag for our hardware scb structures */
|
|
if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
PAGE_SIZE, /*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->hscb_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* DMA tag for our S/G structures. */
|
|
if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
ahd_sglist_allocsize(ahd), /*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->sg_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
|
|
printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
|
|
ahd_sglist_allocsize(ahd));
|
|
#endif
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* DMA tag for our sense buffers. We allocate in page sized chunks */
|
|
if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
PAGE_SIZE, /*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->sense_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* Perform initial CCB allocation */
|
|
ahd_alloc_scbs(ahd);
|
|
|
|
if (scb_data->numscbs == 0) {
|
|
printk("%s: ahd_init_scbdata - "
|
|
"Unable to allocate initial scbs\n",
|
|
ahd_name(ahd));
|
|
goto error_exit;
|
|
}
|
|
|
|
/*
|
|
* Note that we were successful
|
|
*/
|
|
return (0);
|
|
|
|
error_exit:
|
|
|
|
return (ENOMEM);
|
|
}
|
|
|
|
static struct scb *
|
|
ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
|
|
{
|
|
struct scb *scb;
|
|
|
|
/*
|
|
* Look on the pending list.
|
|
*/
|
|
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
|
|
if (SCB_GET_TAG(scb) == tag)
|
|
return (scb);
|
|
}
|
|
|
|
/*
|
|
* Then on all of the collision free lists.
|
|
*/
|
|
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
|
|
struct scb *list_scb;
|
|
|
|
list_scb = scb;
|
|
do {
|
|
if (SCB_GET_TAG(list_scb) == tag)
|
|
return (list_scb);
|
|
list_scb = LIST_NEXT(list_scb, collision_links);
|
|
} while (list_scb);
|
|
}
|
|
|
|
/*
|
|
* And finally on the generic free list.
|
|
*/
|
|
LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
|
|
if (SCB_GET_TAG(scb) == tag)
|
|
return (scb);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
ahd_fini_scbdata(struct ahd_softc *ahd)
|
|
{
|
|
struct scb_data *scb_data;
|
|
|
|
scb_data = &ahd->scb_data;
|
|
if (scb_data == NULL)
|
|
return;
|
|
|
|
switch (scb_data->init_level) {
|
|
default:
|
|
case 7:
|
|
{
|
|
struct map_node *sns_map;
|
|
|
|
while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
|
|
SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
|
|
ahd_dmamap_unload(ahd, scb_data->sense_dmat,
|
|
sns_map->dmamap);
|
|
ahd_dmamem_free(ahd, scb_data->sense_dmat,
|
|
sns_map->vaddr, sns_map->dmamap);
|
|
kfree(sns_map);
|
|
}
|
|
ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
|
|
}
|
|
fallthrough;
|
|
case 6:
|
|
{
|
|
struct map_node *sg_map;
|
|
|
|
while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
|
|
SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
|
|
ahd_dmamap_unload(ahd, scb_data->sg_dmat,
|
|
sg_map->dmamap);
|
|
ahd_dmamem_free(ahd, scb_data->sg_dmat,
|
|
sg_map->vaddr, sg_map->dmamap);
|
|
kfree(sg_map);
|
|
}
|
|
ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
|
|
}
|
|
fallthrough;
|
|
case 5:
|
|
{
|
|
struct map_node *hscb_map;
|
|
|
|
while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
|
|
SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
|
|
ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
|
|
hscb_map->dmamap);
|
|
ahd_dmamem_free(ahd, scb_data->hscb_dmat,
|
|
hscb_map->vaddr, hscb_map->dmamap);
|
|
kfree(hscb_map);
|
|
}
|
|
ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
|
|
}
|
|
fallthrough;
|
|
case 4:
|
|
case 3:
|
|
case 2:
|
|
case 1:
|
|
case 0:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* DSP filter Bypass must be enabled until the first selection
|
|
* after a change in bus mode (Razor #491 and #493).
|
|
*/
|
|
static void
|
|
ahd_setup_iocell_workaround(struct ahd_softc *ahd)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
|
|
| BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
|
|
ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
|
|
#endif
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
ahd->flags &= ~AHD_HAD_FIRST_SEL;
|
|
}
|
|
|
|
static void
|
|
ahd_iocell_first_selection(struct ahd_softc *ahd)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
u_int sblkctl;
|
|
|
|
if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
|
|
return;
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
sblkctl = ahd_inb(ahd, SBLKCTL);
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("%s: iocell first selection\n", ahd_name(ahd));
|
|
#endif
|
|
if ((sblkctl & ENAB40) != 0) {
|
|
ahd_outb(ahd, DSPDATACTL,
|
|
ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("%s: BYPASS now disabled\n", ahd_name(ahd));
|
|
#endif
|
|
}
|
|
ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
ahd->flags |= AHD_HAD_FIRST_SEL;
|
|
}
|
|
|
|
/*************************** SCB Management ***********************************/
|
|
static void
|
|
ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
|
|
{
|
|
struct scb_list *free_list;
|
|
struct scb_tailq *free_tailq;
|
|
struct scb *first_scb;
|
|
|
|
scb->flags |= SCB_ON_COL_LIST;
|
|
AHD_SET_SCB_COL_IDX(scb, col_idx);
|
|
free_list = &ahd->scb_data.free_scb_lists[col_idx];
|
|
free_tailq = &ahd->scb_data.free_scbs;
|
|
first_scb = LIST_FIRST(free_list);
|
|
if (first_scb != NULL) {
|
|
LIST_INSERT_AFTER(first_scb, scb, collision_links);
|
|
} else {
|
|
LIST_INSERT_HEAD(free_list, scb, collision_links);
|
|
TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
struct scb_list *free_list;
|
|
struct scb_tailq *free_tailq;
|
|
struct scb *first_scb;
|
|
u_int col_idx;
|
|
|
|
scb->flags &= ~SCB_ON_COL_LIST;
|
|
col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
|
|
free_list = &ahd->scb_data.free_scb_lists[col_idx];
|
|
free_tailq = &ahd->scb_data.free_scbs;
|
|
first_scb = LIST_FIRST(free_list);
|
|
if (first_scb == scb) {
|
|
struct scb *next_scb;
|
|
|
|
/*
|
|
* Maintain order in the collision free
|
|
* lists for fairness if this device has
|
|
* other colliding tags active.
|
|
*/
|
|
next_scb = LIST_NEXT(scb, collision_links);
|
|
if (next_scb != NULL) {
|
|
TAILQ_INSERT_AFTER(free_tailq, scb,
|
|
next_scb, links.tqe);
|
|
}
|
|
TAILQ_REMOVE(free_tailq, scb, links.tqe);
|
|
}
|
|
LIST_REMOVE(scb, collision_links);
|
|
}
|
|
|
|
/*
|
|
* Get a free scb. If there are none, see if we can allocate a new SCB.
|
|
*/
|
|
struct scb *
|
|
ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
|
|
{
|
|
struct scb *scb;
|
|
int tries;
|
|
|
|
tries = 0;
|
|
look_again:
|
|
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
|
|
if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
|
|
ahd_rem_col_list(ahd, scb);
|
|
goto found;
|
|
}
|
|
}
|
|
if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
|
|
|
|
if (tries++ != 0)
|
|
return (NULL);
|
|
ahd_alloc_scbs(ahd);
|
|
goto look_again;
|
|
}
|
|
LIST_REMOVE(scb, links.le);
|
|
if (col_idx != AHD_NEVER_COL_IDX
|
|
&& (scb->col_scb != NULL)
|
|
&& (scb->col_scb->flags & SCB_ACTIVE) == 0) {
|
|
LIST_REMOVE(scb->col_scb, links.le);
|
|
ahd_add_col_list(ahd, scb->col_scb, col_idx);
|
|
}
|
|
found:
|
|
scb->flags |= SCB_ACTIVE;
|
|
return (scb);
|
|
}
|
|
|
|
/*
|
|
* Return an SCB resource to the free list.
|
|
*/
|
|
void
|
|
ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
/* Clean up for the next user */
|
|
scb->flags = SCB_FLAG_NONE;
|
|
scb->hscb->control = 0;
|
|
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
|
|
|
|
if (scb->col_scb == NULL) {
|
|
|
|
/*
|
|
* No collision possible. Just free normally.
|
|
*/
|
|
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
|
|
scb, links.le);
|
|
} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
|
|
|
|
/*
|
|
* The SCB we might have collided with is on
|
|
* a free collision list. Put both SCBs on
|
|
* the generic list.
|
|
*/
|
|
ahd_rem_col_list(ahd, scb->col_scb);
|
|
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
|
|
scb, links.le);
|
|
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
|
|
scb->col_scb, links.le);
|
|
} else if ((scb->col_scb->flags
|
|
& (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
|
|
&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
|
|
|
|
/*
|
|
* The SCB we might collide with on the next allocation
|
|
* is still active in a non-packetized, tagged, context.
|
|
* Put us on the SCB collision list.
|
|
*/
|
|
ahd_add_col_list(ahd, scb,
|
|
AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
|
|
} else {
|
|
/*
|
|
* The SCB we might collide with on the next allocation
|
|
* is either active in a packetized context, or free.
|
|
* Since we can't collide, put this SCB on the generic
|
|
* free list.
|
|
*/
|
|
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
|
|
scb, links.le);
|
|
}
|
|
|
|
ahd_platform_scb_free(ahd, scb);
|
|
}
|
|
|
|
static void
|
|
ahd_alloc_scbs(struct ahd_softc *ahd)
|
|
{
|
|
struct scb_data *scb_data;
|
|
struct scb *next_scb;
|
|
struct hardware_scb *hscb;
|
|
struct map_node *hscb_map;
|
|
struct map_node *sg_map;
|
|
struct map_node *sense_map;
|
|
uint8_t *segs;
|
|
uint8_t *sense_data;
|
|
dma_addr_t hscb_busaddr;
|
|
dma_addr_t sg_busaddr;
|
|
dma_addr_t sense_busaddr;
|
|
int newcount;
|
|
int i;
|
|
|
|
scb_data = &ahd->scb_data;
|
|
if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
|
|
/* Can't allocate any more */
|
|
return;
|
|
|
|
if (scb_data->scbs_left != 0) {
|
|
int offset;
|
|
|
|
offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
|
|
hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
|
|
hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
|
|
hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
|
|
} else {
|
|
hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
|
|
|
|
if (hscb_map == NULL)
|
|
return;
|
|
|
|
/* Allocate the next batch of hardware SCBs */
|
|
if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
|
|
(void **)&hscb_map->vaddr,
|
|
BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
|
|
kfree(hscb_map);
|
|
return;
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
|
|
|
|
ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
|
|
hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
|
|
&hscb_map->physaddr, /*flags*/0);
|
|
|
|
hscb = (struct hardware_scb *)hscb_map->vaddr;
|
|
hscb_busaddr = hscb_map->physaddr;
|
|
scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
|
|
}
|
|
|
|
if (scb_data->sgs_left != 0) {
|
|
int offset;
|
|
|
|
offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
|
|
- scb_data->sgs_left) * ahd_sglist_size(ahd);
|
|
sg_map = SLIST_FIRST(&scb_data->sg_maps);
|
|
segs = sg_map->vaddr + offset;
|
|
sg_busaddr = sg_map->physaddr + offset;
|
|
} else {
|
|
sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
|
|
|
|
if (sg_map == NULL)
|
|
return;
|
|
|
|
/* Allocate the next batch of S/G lists */
|
|
if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
|
|
(void **)&sg_map->vaddr,
|
|
BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
|
|
kfree(sg_map);
|
|
return;
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
|
|
|
|
ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
|
|
sg_map->vaddr, ahd_sglist_allocsize(ahd),
|
|
ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
|
|
|
|
segs = sg_map->vaddr;
|
|
sg_busaddr = sg_map->physaddr;
|
|
scb_data->sgs_left =
|
|
ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
|
|
#ifdef AHD_DEBUG
|
|
if (ahd_debug & AHD_SHOW_MEMORY)
|
|
printk("Mapped SG data\n");
|
|
#endif
|
|
}
|
|
|
|
if (scb_data->sense_left != 0) {
|
|
int offset;
|
|
|
|
offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
|
|
sense_map = SLIST_FIRST(&scb_data->sense_maps);
|
|
sense_data = sense_map->vaddr + offset;
|
|
sense_busaddr = sense_map->physaddr + offset;
|
|
} else {
|
|
sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
|
|
|
|
if (sense_map == NULL)
|
|
return;
|
|
|
|
/* Allocate the next batch of sense buffers */
|
|
if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
|
|
(void **)&sense_map->vaddr,
|
|
BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
|
|
kfree(sense_map);
|
|
return;
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
|
|
|
|
ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
|
|
sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
|
|
&sense_map->physaddr, /*flags*/0);
|
|
|
|
sense_data = sense_map->vaddr;
|
|
sense_busaddr = sense_map->physaddr;
|
|
scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
|
|
#ifdef AHD_DEBUG
|
|
if (ahd_debug & AHD_SHOW_MEMORY)
|
|
printk("Mapped sense data\n");
|
|
#endif
|
|
}
|
|
|
|
newcount = min(scb_data->sense_left, scb_data->scbs_left);
|
|
newcount = min(newcount, scb_data->sgs_left);
|
|
newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
|
|
for (i = 0; i < newcount; i++) {
|
|
struct scb_platform_data *pdata;
|
|
u_int col_tag;
|
|
|
|
next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
|
|
if (next_scb == NULL)
|
|
break;
|
|
|
|
pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
|
|
if (pdata == NULL) {
|
|
kfree(next_scb);
|
|
break;
|
|
}
|
|
next_scb->platform_data = pdata;
|
|
next_scb->hscb_map = hscb_map;
|
|
next_scb->sg_map = sg_map;
|
|
next_scb->sense_map = sense_map;
|
|
next_scb->sg_list = segs;
|
|
next_scb->sense_data = sense_data;
|
|
next_scb->sense_busaddr = sense_busaddr;
|
|
memset(hscb, 0, sizeof(*hscb));
|
|
next_scb->hscb = hscb;
|
|
hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
|
|
|
|
/*
|
|
* The sequencer always starts with the second entry.
|
|
* The first entry is embedded in the scb.
|
|
*/
|
|
next_scb->sg_list_busaddr = sg_busaddr;
|
|
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
|
|
next_scb->sg_list_busaddr
|
|
+= sizeof(struct ahd_dma64_seg);
|
|
else
|
|
next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
|
|
next_scb->ahd_softc = ahd;
|
|
next_scb->flags = SCB_FLAG_NONE;
|
|
next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
|
|
col_tag = scb_data->numscbs ^ 0x100;
|
|
next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
|
|
if (next_scb->col_scb != NULL)
|
|
next_scb->col_scb->col_scb = next_scb;
|
|
ahd_free_scb(ahd, next_scb);
|
|
hscb++;
|
|
hscb_busaddr += sizeof(*hscb);
|
|
segs += ahd_sglist_size(ahd);
|
|
sg_busaddr += ahd_sglist_size(ahd);
|
|
sense_data += AHD_SENSE_BUFSIZE;
|
|
sense_busaddr += AHD_SENSE_BUFSIZE;
|
|
scb_data->numscbs++;
|
|
scb_data->sense_left--;
|
|
scb_data->scbs_left--;
|
|
scb_data->sgs_left--;
|
|
}
|
|
}
|
|
|
|
void
|
|
ahd_controller_info(struct ahd_softc *ahd, char *buf)
|
|
{
|
|
const char *speed;
|
|
const char *type;
|
|
int len;
|
|
|
|
len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
|
|
buf += len;
|
|
|
|
speed = "Ultra320 ";
|
|
if ((ahd->features & AHD_WIDE) != 0) {
|
|
type = "Wide ";
|
|
} else {
|
|
type = "Single ";
|
|
}
|
|
len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
|
|
speed, type, ahd->channel, ahd->our_id);
|
|
buf += len;
|
|
|
|
sprintf(buf, "%s, %d SCBs", ahd->bus_description,
|
|
ahd->scb_data.maxhscbs);
|
|
}
|
|
|
|
static const char *channel_strings[] = {
|
|
"Primary Low",
|
|
"Primary High",
|
|
"Secondary Low",
|
|
"Secondary High"
|
|
};
|
|
|
|
static const char *termstat_strings[] = {
|
|
"Terminated Correctly",
|
|
"Over Terminated",
|
|
"Under Terminated",
|
|
"Not Configured"
|
|
};
|
|
|
|
/***************************** Timer Facilities *******************************/
|
|
static void
|
|
ahd_timer_reset(struct timer_list *timer, int usec)
|
|
{
|
|
del_timer(timer);
|
|
timer->expires = jiffies + (usec * HZ)/1000000;
|
|
add_timer(timer);
|
|
}
|
|
|
|
/*
|
|
* Start the board, ready for normal operation
|
|
*/
|
|
int
|
|
ahd_init(struct ahd_softc *ahd)
|
|
{
|
|
uint8_t *next_vaddr;
|
|
dma_addr_t next_baddr;
|
|
size_t driver_data_size;
|
|
int i;
|
|
int error;
|
|
u_int warn_user;
|
|
uint8_t current_sensing;
|
|
uint8_t fstat;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
|
|
ahd->stack_size = ahd_probe_stack_size(ahd);
|
|
ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
|
|
GFP_ATOMIC);
|
|
if (ahd->saved_stack == NULL)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* Verify that the compiler hasn't over-aggressively
|
|
* padded important structures.
|
|
*/
|
|
if (sizeof(struct hardware_scb) != 64)
|
|
panic("Hardware SCB size is incorrect");
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
|
|
ahd->flags |= AHD_SEQUENCER_DEBUG;
|
|
#endif
|
|
|
|
/*
|
|
* Default to allowing initiator operations.
|
|
*/
|
|
ahd->flags |= AHD_INITIATORROLE;
|
|
|
|
/*
|
|
* Only allow target mode features if this unit has them enabled.
|
|
*/
|
|
if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
|
|
ahd->features &= ~AHD_TARGETMODE;
|
|
|
|
ahd->init_level++;
|
|
|
|
/*
|
|
* DMA tag for our command fifos and other data in system memory
|
|
* the card's sequencer must be able to access. For initiator
|
|
* roles, we need to allocate space for the qoutfifo. When providing
|
|
* for the target mode role, we must additionally provide space for
|
|
* the incoming target command fifo.
|
|
*/
|
|
driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
|
|
+ sizeof(struct hardware_scb);
|
|
if ((ahd->features & AHD_TARGETMODE) != 0)
|
|
driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
|
|
if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
|
|
driver_data_size += PKT_OVERRUN_BUFSIZE;
|
|
if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
driver_data_size,
|
|
/*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &ahd->shared_data_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ahd->init_level++;
|
|
|
|
/* Allocation of driver data */
|
|
if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
|
|
(void **)&ahd->shared_data_map.vaddr,
|
|
BUS_DMA_NOWAIT,
|
|
&ahd->shared_data_map.dmamap) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ahd->init_level++;
|
|
|
|
/* And permanently map it in */
|
|
ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
|
|
ahd->shared_data_map.vaddr, driver_data_size,
|
|
ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
|
|
/*flags*/0);
|
|
ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
|
|
next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
|
|
next_baddr = ahd->shared_data_map.physaddr
|
|
+ AHD_QOUT_SIZE*sizeof(struct ahd_completion);
|
|
if ((ahd->features & AHD_TARGETMODE) != 0) {
|
|
ahd->targetcmds = (struct target_cmd *)next_vaddr;
|
|
next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
|
|
next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
|
|
}
|
|
|
|
if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
|
|
ahd->overrun_buf = next_vaddr;
|
|
next_vaddr += PKT_OVERRUN_BUFSIZE;
|
|
next_baddr += PKT_OVERRUN_BUFSIZE;
|
|
}
|
|
|
|
/*
|
|
* We need one SCB to serve as the "next SCB". Since the
|
|
* tag identifier in this SCB will never be used, there is
|
|
* no point in using a valid HSCB tag from an SCB pulled from
|
|
* the standard free pool. So, we allocate this "sentinel"
|
|
* specially from the DMA safe memory chunk used for the QOUTFIFO.
|
|
*/
|
|
ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
|
|
ahd->next_queued_hscb_map = &ahd->shared_data_map;
|
|
ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
|
|
|
|
ahd->init_level++;
|
|
|
|
/* Allocate SCB data now that buffer_dmat is initialized */
|
|
if (ahd_init_scbdata(ahd) != 0)
|
|
return (ENOMEM);
|
|
|
|
if ((ahd->flags & AHD_INITIATORROLE) == 0)
|
|
ahd->flags &= ~AHD_RESET_BUS_A;
|
|
|
|
/*
|
|
* Before committing these settings to the chip, give
|
|
* the OSM one last chance to modify our configuration.
|
|
*/
|
|
ahd_platform_init(ahd);
|
|
|
|
/* Bring up the chip. */
|
|
ahd_chip_init(ahd);
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
|
|
if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
|
|
goto init_done;
|
|
|
|
/*
|
|
* Verify termination based on current draw and
|
|
* warn user if the bus is over/under terminated.
|
|
*/
|
|
error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
|
|
CURSENSE_ENB);
|
|
if (error != 0) {
|
|
printk("%s: current sensing timeout 1\n", ahd_name(ahd));
|
|
goto init_done;
|
|
}
|
|
for (i = 20, fstat = FLX_FSTAT_BUSY;
|
|
(fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
|
|
error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
|
|
if (error != 0) {
|
|
printk("%s: current sensing timeout 2\n",
|
|
ahd_name(ahd));
|
|
goto init_done;
|
|
}
|
|
}
|
|
if (i == 0) {
|
|
printk("%s: Timedout during current-sensing test\n",
|
|
ahd_name(ahd));
|
|
goto init_done;
|
|
}
|
|
|
|
/* Latch Current Sensing status. */
|
|
error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing);
|
|
if (error != 0) {
|
|
printk("%s: current sensing timeout 3\n", ahd_name(ahd));
|
|
goto init_done;
|
|
}
|
|
|
|
/* Diable current sensing. */
|
|
ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
|
|
printk("%s: current_sensing == 0x%x\n",
|
|
ahd_name(ahd), current_sensing);
|
|
}
|
|
#endif
|
|
warn_user = 0;
|
|
for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
|
|
u_int term_stat;
|
|
|
|
term_stat = (current_sensing & FLX_CSTAT_MASK);
|
|
switch (term_stat) {
|
|
case FLX_CSTAT_OVER:
|
|
case FLX_CSTAT_UNDER:
|
|
warn_user++;
|
|
fallthrough;
|
|
case FLX_CSTAT_INVALID:
|
|
case FLX_CSTAT_OKAY:
|
|
if (warn_user == 0 && bootverbose == 0)
|
|
break;
|
|
printk("%s: %s Channel %s\n", ahd_name(ahd),
|
|
channel_strings[i], termstat_strings[term_stat]);
|
|
break;
|
|
}
|
|
}
|
|
if (warn_user) {
|
|
printk("%s: WARNING. Termination is not configured correctly.\n"
|
|
"%s: WARNING. SCSI bus operations may FAIL.\n",
|
|
ahd_name(ahd), ahd_name(ahd));
|
|
}
|
|
init_done:
|
|
ahd_restart(ahd);
|
|
ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* (Re)initialize chip state after a chip reset.
|
|
*/
|
|
static void
|
|
ahd_chip_init(struct ahd_softc *ahd)
|
|
{
|
|
uint32_t busaddr;
|
|
u_int sxfrctl1;
|
|
u_int scsiseq_template;
|
|
u_int wait;
|
|
u_int i;
|
|
u_int target;
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
/*
|
|
* Take the LED out of diagnostic mode
|
|
*/
|
|
ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
|
|
|
|
/*
|
|
* Return HS_MAILBOX to its default value.
|
|
*/
|
|
ahd->hs_mailbox = 0;
|
|
ahd_outb(ahd, HS_MAILBOX, 0);
|
|
|
|
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
|
|
ahd_outb(ahd, IOWNID, ahd->our_id);
|
|
ahd_outb(ahd, TOWNID, ahd->our_id);
|
|
sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
|
|
sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
|
|
if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
|
|
&& (ahd->seltime != STIMESEL_MIN)) {
|
|
/*
|
|
* The selection timer duration is twice as long
|
|
* as it should be. Halve it by adding "1" to
|
|
* the user specified setting.
|
|
*/
|
|
sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
|
|
} else {
|
|
sxfrctl1 |= ahd->seltime;
|
|
}
|
|
|
|
ahd_outb(ahd, SXFRCTL0, DFON);
|
|
ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
|
|
ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
|
|
|
|
/*
|
|
* Now that termination is set, wait for up
|
|
* to 500ms for our transceivers to settle. If
|
|
* the adapter does not have a cable attached,
|
|
* the transceivers may never settle, so don't
|
|
* complain if we fail here.
|
|
*/
|
|
for (wait = 10000;
|
|
(ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
|
|
wait--)
|
|
ahd_delay(100);
|
|
|
|
/* Clear any false bus resets due to the transceivers settling */
|
|
ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
|
|
/* Initialize mode specific S/G state. */
|
|
for (i = 0; i < 2; i++) {
|
|
ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
|
|
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
|
|
ahd_outb(ahd, SG_STATE, 0);
|
|
ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
|
|
ahd_outb(ahd, SEQIMODE,
|
|
ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
|
|
|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
|
|
}
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
|
|
ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
|
|
ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
|
|
ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
|
|
if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
|
|
ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
|
|
} else {
|
|
ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
|
|
}
|
|
ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
|
|
if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
|
|
/*
|
|
* Do not issue a target abort when a split completion
|
|
* error occurs. Let our PCIX interrupt handler deal
|
|
* with it instead. H2A4 Razor #625
|
|
*/
|
|
ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
|
|
|
|
if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
|
|
ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
|
|
|
|
/*
|
|
* Tweak IOCELL settings.
|
|
*/
|
|
if ((ahd->flags & AHD_HP_BOARD) != 0) {
|
|
for (i = 0; i < NUMDSPS; i++) {
|
|
ahd_outb(ahd, DSPSELECT, i);
|
|
ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
|
|
}
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
|
|
WRTBIASCTL_HP_DEFAULT);
|
|
#endif
|
|
}
|
|
ahd_setup_iocell_workaround(ahd);
|
|
|
|
/*
|
|
* Enable LQI Manager interrupts.
|
|
*/
|
|
ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
|
|
| ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
|
|
| ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
|
|
ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
|
|
/*
|
|
* We choose to have the sequencer catch LQOPHCHGINPKT errors
|
|
* manually for the command phase at the start of a packetized
|
|
* selection case. ENLQOBUSFREE should be made redundant by
|
|
* the BUSFREE interrupt, but it seems that some LQOBUSFREE
|
|
* events fail to assert the BUSFREE interrupt so we must
|
|
* also enable LQOBUSFREE interrupts.
|
|
*/
|
|
ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
|
|
|
|
/*
|
|
* Setup sequencer interrupt handlers.
|
|
*/
|
|
ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
|
|
ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
|
|
|
|
/*
|
|
* Setup SCB Offset registers.
|
|
*/
|
|
if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
|
|
ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
|
|
pkt_long_lun));
|
|
} else {
|
|
ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
|
|
}
|
|
ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
|
|
ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
|
|
ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
|
|
ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
|
|
shared_data.idata.cdb));
|
|
ahd_outb(ahd, QNEXTPTR,
|
|
offsetof(struct hardware_scb, next_hscb_busaddr));
|
|
ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
|
|
ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
|
|
if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
|
|
ahd_outb(ahd, LUNLEN,
|
|
sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
|
|
} else {
|
|
ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
|
|
}
|
|
ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
|
|
ahd_outb(ahd, MAXCMD, 0xFF);
|
|
ahd_outb(ahd, SCBAUTOPTR,
|
|
AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
|
|
|
|
/* We haven't been enabled for target mode yet. */
|
|
ahd_outb(ahd, MULTARGID, 0);
|
|
ahd_outb(ahd, MULTARGID + 1, 0);
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
/* Initialize the negotiation table. */
|
|
if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
|
|
/*
|
|
* Clear the spare bytes in the neg table to avoid
|
|
* spurious parity errors.
|
|
*/
|
|
for (target = 0; target < AHD_NUM_TARGETS; target++) {
|
|
ahd_outb(ahd, NEGOADDR, target);
|
|
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
|
|
for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
|
|
ahd_outb(ahd, ANNEXDAT, 0);
|
|
}
|
|
}
|
|
for (target = 0; target < AHD_NUM_TARGETS; target++) {
|
|
struct ahd_devinfo devinfo;
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
|
|
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
|
|
target, &tstate);
|
|
ahd_compile_devinfo(&devinfo, ahd->our_id,
|
|
target, CAM_LUN_WILDCARD,
|
|
'A', ROLE_INITIATOR);
|
|
ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
|
|
}
|
|
|
|
ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
|
|
ahd_outb(ahd, CLRINT, CLRSCSIINT);
|
|
|
|
#ifdef NEEDS_MORE_TESTING
|
|
/*
|
|
* Always enable abort on incoming L_Qs if this feature is
|
|
* supported. We use this to catch invalid SCB references.
|
|
*/
|
|
if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
|
|
ahd_outb(ahd, LQCTL1, ABORTPENDING);
|
|
else
|
|
#endif
|
|
ahd_outb(ahd, LQCTL1, 0);
|
|
|
|
/* All of our queues are empty */
|
|
ahd->qoutfifonext = 0;
|
|
ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
|
|
ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
|
|
for (i = 0; i < AHD_QOUT_SIZE; i++)
|
|
ahd->qoutfifo[i].valid_tag = 0;
|
|
ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
|
|
|
|
ahd->qinfifonext = 0;
|
|
for (i = 0; i < AHD_QIN_SIZE; i++)
|
|
ahd->qinfifo[i] = SCB_LIST_NULL;
|
|
|
|
if ((ahd->features & AHD_TARGETMODE) != 0) {
|
|
/* All target command blocks start out invalid. */
|
|
for (i = 0; i < AHD_TMODE_CMDS; i++)
|
|
ahd->targetcmds[i].cmd_valid = 0;
|
|
ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
|
|
ahd->tqinfifonext = 1;
|
|
ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
|
|
ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
|
|
}
|
|
|
|
/* Initialize Scratch Ram. */
|
|
ahd_outb(ahd, SEQ_FLAGS, 0);
|
|
ahd_outb(ahd, SEQ_FLAGS2, 0);
|
|
|
|
/* We don't have any waiting selections */
|
|
ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
|
|
ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
|
|
ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
|
|
ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
|
|
for (i = 0; i < AHD_NUM_TARGETS; i++)
|
|
ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
|
|
|
|
/*
|
|
* Nobody is waiting to be DMAed into the QOUTFIFO.
|
|
*/
|
|
ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
|
|
ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
|
|
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
|
|
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
|
|
ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
|
|
|
|
/*
|
|
* The Freeze Count is 0.
|
|
*/
|
|
ahd->qfreeze_cnt = 0;
|
|
ahd_outw(ahd, QFREEZE_COUNT, 0);
|
|
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
|
|
|
|
/*
|
|
* Tell the sequencer where it can find our arrays in memory.
|
|
*/
|
|
busaddr = ahd->shared_data_map.physaddr;
|
|
ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
|
|
ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
|
|
|
|
/*
|
|
* Setup the allowed SCSI Sequences based on operational mode.
|
|
* If we are a target, we'll enable select in operations once
|
|
* we've had a lun enabled.
|
|
*/
|
|
scsiseq_template = ENAUTOATNP;
|
|
if ((ahd->flags & AHD_INITIATORROLE) != 0)
|
|
scsiseq_template |= ENRSELI;
|
|
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
|
|
|
|
/* There are no busy SCBs yet. */
|
|
for (target = 0; target < AHD_NUM_TARGETS; target++) {
|
|
int lun;
|
|
|
|
for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
|
|
ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
|
|
}
|
|
|
|
/*
|
|
* Initialize the group code to command length table.
|
|
* Vendor Unique codes are set to 0 so we only capture
|
|
* the first byte of the cdb. These can be overridden
|
|
* when target mode is enabled.
|
|
*/
|
|
ahd_outb(ahd, CMDSIZE_TABLE, 5);
|
|
ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
|
|
ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
|
|
ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
|
|
ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
|
|
ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
|
|
ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
|
|
ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
|
|
|
|
/* Tell the sequencer of our initial queue positions */
|
|
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
|
|
ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
|
|
ahd->qinfifonext = 0;
|
|
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
|
|
ahd_set_hescb_qoff(ahd, 0);
|
|
ahd_set_snscb_qoff(ahd, 0);
|
|
ahd_set_sescb_qoff(ahd, 0);
|
|
ahd_set_sdscb_qoff(ahd, 0);
|
|
|
|
/*
|
|
* Tell the sequencer which SCB will be the next one it receives.
|
|
*/
|
|
busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
|
|
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
|
|
|
|
/*
|
|
* Default to coalescing disabled.
|
|
*/
|
|
ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
|
|
ahd_outw(ahd, CMDS_PENDING, 0);
|
|
ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
|
|
ahd->int_coalescing_maxcmds,
|
|
ahd->int_coalescing_mincmds);
|
|
ahd_enable_coalescing(ahd, FALSE);
|
|
|
|
ahd_loadseq(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
|
|
if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
|
|
u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
|
|
|
|
negodat3 |= ENSLOWCRC;
|
|
ahd_outb(ahd, NEGCONOPTS, negodat3);
|
|
negodat3 = ahd_inb(ahd, NEGCONOPTS);
|
|
if (!(negodat3 & ENSLOWCRC))
|
|
printk("aic79xx: failed to set the SLOWCRC bit\n");
|
|
else
|
|
printk("aic79xx: SLOWCRC bit set\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup default device and controller settings.
|
|
* This should only be called if our probe has
|
|
* determined that no configuration data is available.
|
|
*/
|
|
int
|
|
ahd_default_config(struct ahd_softc *ahd)
|
|
{
|
|
int targ;
|
|
|
|
ahd->our_id = 7;
|
|
|
|
/*
|
|
* Allocate a tstate to house information for our
|
|
* initiator presence on the bus as well as the user
|
|
* data for any target mode initiator.
|
|
*/
|
|
if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
|
|
printk("%s: unable to allocate ahd_tmode_tstate. "
|
|
"Failing attach\n", ahd_name(ahd));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
|
|
struct ahd_devinfo devinfo;
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
uint16_t target_mask;
|
|
|
|
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
|
|
targ, &tstate);
|
|
/*
|
|
* We support SPC2 and SPI4.
|
|
*/
|
|
tinfo->user.protocol_version = 4;
|
|
tinfo->user.transport_version = 4;
|
|
|
|
target_mask = 0x01 << targ;
|
|
ahd->user_discenable |= target_mask;
|
|
tstate->discenable |= target_mask;
|
|
ahd->user_tagenable |= target_mask;
|
|
#ifdef AHD_FORCE_160
|
|
tinfo->user.period = AHD_SYNCRATE_DT;
|
|
#else
|
|
tinfo->user.period = AHD_SYNCRATE_160;
|
|
#endif
|
|
tinfo->user.offset = MAX_OFFSET;
|
|
tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
|
|
| MSG_EXT_PPR_WR_FLOW
|
|
| MSG_EXT_PPR_HOLD_MCS
|
|
| MSG_EXT_PPR_IU_REQ
|
|
| MSG_EXT_PPR_QAS_REQ
|
|
| MSG_EXT_PPR_DT_REQ;
|
|
if ((ahd->features & AHD_RTI) != 0)
|
|
tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
|
|
|
|
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
|
|
/*
|
|
* Start out Async/Narrow/Untagged and with
|
|
* conservative protocol support.
|
|
*/
|
|
tinfo->goal.protocol_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
tinfo->curr.protocol_version = 2;
|
|
tinfo->curr.transport_version = 2;
|
|
ahd_compile_devinfo(&devinfo, ahd->our_id,
|
|
targ, CAM_LUN_WILDCARD,
|
|
'A', ROLE_INITIATOR);
|
|
tstate->tagenable &= ~target_mask;
|
|
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
|
|
ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
|
|
/*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Parse device configuration information.
|
|
*/
|
|
int
|
|
ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
|
|
{
|
|
int targ;
|
|
int max_targ;
|
|
|
|
max_targ = sc->max_targets & CFMAXTARG;
|
|
ahd->our_id = sc->brtime_id & CFSCSIID;
|
|
|
|
/*
|
|
* Allocate a tstate to house information for our
|
|
* initiator presence on the bus as well as the user
|
|
* data for any target mode initiator.
|
|
*/
|
|
if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
|
|
printk("%s: unable to allocate ahd_tmode_tstate. "
|
|
"Failing attach\n", ahd_name(ahd));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
for (targ = 0; targ < max_targ; targ++) {
|
|
struct ahd_devinfo devinfo;
|
|
struct ahd_initiator_tinfo *tinfo;
|
|
struct ahd_transinfo *user_tinfo;
|
|
struct ahd_tmode_tstate *tstate;
|
|
uint16_t target_mask;
|
|
|
|
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
|
|
targ, &tstate);
|
|
user_tinfo = &tinfo->user;
|
|
|
|
/*
|
|
* We support SPC2 and SPI4.
|
|
*/
|
|
tinfo->user.protocol_version = 4;
|
|
tinfo->user.transport_version = 4;
|
|
|
|
target_mask = 0x01 << targ;
|
|
ahd->user_discenable &= ~target_mask;
|
|
tstate->discenable &= ~target_mask;
|
|
ahd->user_tagenable &= ~target_mask;
|
|
if (sc->device_flags[targ] & CFDISC) {
|
|
tstate->discenable |= target_mask;
|
|
ahd->user_discenable |= target_mask;
|
|
ahd->user_tagenable |= target_mask;
|
|
} else {
|
|
/*
|
|
* Cannot be packetized without disconnection.
|
|
*/
|
|
sc->device_flags[targ] &= ~CFPACKETIZED;
|
|
}
|
|
|
|
user_tinfo->ppr_options = 0;
|
|
user_tinfo->period = (sc->device_flags[targ] & CFXFER);
|
|
if (user_tinfo->period < CFXFER_ASYNC) {
|
|
if (user_tinfo->period <= AHD_PERIOD_10MHz)
|
|
user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
|
|
user_tinfo->offset = MAX_OFFSET;
|
|
} else {
|
|
user_tinfo->offset = 0;
|
|
user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
|
|
}
|
|
#ifdef AHD_FORCE_160
|
|
if (user_tinfo->period <= AHD_SYNCRATE_160)
|
|
user_tinfo->period = AHD_SYNCRATE_DT;
|
|
#endif
|
|
|
|
if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
|
|
user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
|
|
| MSG_EXT_PPR_WR_FLOW
|
|
| MSG_EXT_PPR_HOLD_MCS
|
|
| MSG_EXT_PPR_IU_REQ;
|
|
if ((ahd->features & AHD_RTI) != 0)
|
|
user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
|
|
}
|
|
|
|
if ((sc->device_flags[targ] & CFQAS) != 0)
|
|
user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
|
|
|
|
if ((sc->device_flags[targ] & CFWIDEB) != 0)
|
|
user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
else
|
|
user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0)
|
|
printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
|
|
user_tinfo->period, user_tinfo->offset,
|
|
user_tinfo->ppr_options);
|
|
#endif
|
|
/*
|
|
* Start out Async/Narrow/Untagged and with
|
|
* conservative protocol support.
|
|
*/
|
|
tstate->tagenable &= ~target_mask;
|
|
tinfo->goal.protocol_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
tinfo->curr.protocol_version = 2;
|
|
tinfo->curr.transport_version = 2;
|
|
ahd_compile_devinfo(&devinfo, ahd->our_id,
|
|
targ, CAM_LUN_WILDCARD,
|
|
'A', ROLE_INITIATOR);
|
|
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
|
|
ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
|
|
/*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
}
|
|
|
|
ahd->flags &= ~AHD_SPCHK_ENB_A;
|
|
if (sc->bios_control & CFSPARITY)
|
|
ahd->flags |= AHD_SPCHK_ENB_A;
|
|
|
|
ahd->flags &= ~AHD_RESET_BUS_A;
|
|
if (sc->bios_control & CFRESETB)
|
|
ahd->flags |= AHD_RESET_BUS_A;
|
|
|
|
ahd->flags &= ~AHD_EXTENDED_TRANS_A;
|
|
if (sc->bios_control & CFEXTEND)
|
|
ahd->flags |= AHD_EXTENDED_TRANS_A;
|
|
|
|
ahd->flags &= ~AHD_BIOS_ENABLED;
|
|
if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
|
|
ahd->flags |= AHD_BIOS_ENABLED;
|
|
|
|
ahd->flags &= ~AHD_STPWLEVEL_A;
|
|
if ((sc->adapter_control & CFSTPWLEVEL) != 0)
|
|
ahd->flags |= AHD_STPWLEVEL_A;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Parse device configuration information.
|
|
*/
|
|
int
|
|
ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
|
|
{
|
|
int error;
|
|
|
|
error = ahd_verify_vpd_cksum(vpd);
|
|
if (error == 0)
|
|
return (EINVAL);
|
|
if ((vpd->bios_flags & VPDBOOTHOST) != 0)
|
|
ahd->flags |= AHD_BOOT_CHANNEL;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ahd_intr_enable(struct ahd_softc *ahd, int enable)
|
|
{
|
|
u_int hcntrl;
|
|
|
|
hcntrl = ahd_inb(ahd, HCNTRL);
|
|
hcntrl &= ~INTEN;
|
|
ahd->pause &= ~INTEN;
|
|
ahd->unpause &= ~INTEN;
|
|
if (enable) {
|
|
hcntrl |= INTEN;
|
|
ahd->pause |= INTEN;
|
|
ahd->unpause |= INTEN;
|
|
}
|
|
ahd_outb(ahd, HCNTRL, hcntrl);
|
|
}
|
|
|
|
static void
|
|
ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
|
|
u_int mincmds)
|
|
{
|
|
if (timer > AHD_TIMER_MAX_US)
|
|
timer = AHD_TIMER_MAX_US;
|
|
ahd->int_coalescing_timer = timer;
|
|
|
|
if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
|
|
maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
|
|
if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
|
|
mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
|
|
ahd->int_coalescing_maxcmds = maxcmds;
|
|
ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
|
|
ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
|
|
ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
|
|
}
|
|
|
|
static void
|
|
ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
|
|
{
|
|
|
|
ahd->hs_mailbox &= ~ENINT_COALESCE;
|
|
if (enable)
|
|
ahd->hs_mailbox |= ENINT_COALESCE;
|
|
ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
|
|
ahd_flush_device_writes(ahd);
|
|
ahd_run_qoutfifo(ahd);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the card is paused in a location
|
|
* outside of all critical sections and that all
|
|
* pending work is completed prior to returning.
|
|
* This routine should only be called from outside
|
|
* an interrupt context.
|
|
*/
|
|
void
|
|
ahd_pause_and_flushwork(struct ahd_softc *ahd)
|
|
{
|
|
u_int intstat;
|
|
u_int maxloops;
|
|
|
|
maxloops = 1000;
|
|
ahd->flags |= AHD_ALL_INTERRUPTS;
|
|
ahd_pause(ahd);
|
|
/*
|
|
* Freeze the outgoing selections. We do this only
|
|
* until we are safely paused without further selections
|
|
* pending.
|
|
*/
|
|
ahd->qfreeze_cnt--;
|
|
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
|
|
ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
|
|
do {
|
|
|
|
ahd_unpause(ahd);
|
|
/*
|
|
* Give the sequencer some time to service
|
|
* any active selections.
|
|
*/
|
|
ahd_delay(500);
|
|
|
|
ahd_intr(ahd);
|
|
ahd_pause(ahd);
|
|
intstat = ahd_inb(ahd, INTSTAT);
|
|
if ((intstat & INT_PEND) == 0) {
|
|
ahd_clear_critical_section(ahd);
|
|
intstat = ahd_inb(ahd, INTSTAT);
|
|
}
|
|
} while (--maxloops
|
|
&& (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
|
|
&& ((intstat & INT_PEND) != 0
|
|
|| (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
|
|
|| (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
|
|
|
|
if (maxloops == 0) {
|
|
printk("Infinite interrupt loop, INTSTAT = %x",
|
|
ahd_inb(ahd, INTSTAT));
|
|
}
|
|
ahd->qfreeze_cnt++;
|
|
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
|
|
|
|
ahd_flush_qoutfifo(ahd);
|
|
|
|
ahd->flags &= ~AHD_ALL_INTERRUPTS;
|
|
}
|
|
|
|
int __maybe_unused
|
|
ahd_suspend(struct ahd_softc *ahd)
|
|
{
|
|
ahd_pause_and_flushwork(ahd);
|
|
|
|
if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
|
|
ahd_unpause(ahd);
|
|
return (EBUSY);
|
|
}
|
|
ahd_shutdown(ahd);
|
|
return (0);
|
|
}
|
|
|
|
void __maybe_unused
|
|
ahd_resume(struct ahd_softc *ahd)
|
|
{
|
|
ahd_reset(ahd, /*reinit*/TRUE);
|
|
ahd_intr_enable(ahd, TRUE);
|
|
ahd_restart(ahd);
|
|
}
|
|
|
|
/************************** Busy Target Table *********************************/
|
|
/*
|
|
* Set SCBPTR to the SCB that contains the busy
|
|
* table entry for TCL. Return the offset into
|
|
* the SCB that contains the entry for TCL.
|
|
* saved_scbid is dereferenced and set to the
|
|
* scbid that should be restored once manipualtion
|
|
* of the TCL entry is complete.
|
|
*/
|
|
static inline u_int
|
|
ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
|
|
{
|
|
/*
|
|
* Index to the SCB that contains the busy entry.
|
|
*/
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
*saved_scbid = ahd_get_scbptr(ahd);
|
|
ahd_set_scbptr(ahd, TCL_LUN(tcl)
|
|
| ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
|
|
|
|
/*
|
|
* And now calculate the SCB offset to the entry.
|
|
* Each entry is 2 bytes wide, hence the
|
|
* multiplication by 2.
|
|
*/
|
|
return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
|
|
}
|
|
|
|
/*
|
|
* Return the untagged transaction id for a given target/channel lun.
|
|
*/
|
|
static u_int
|
|
ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
|
|
{
|
|
u_int scbid;
|
|
u_int scb_offset;
|
|
u_int saved_scbptr;
|
|
|
|
scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
|
|
scbid = ahd_inw_scbram(ahd, scb_offset);
|
|
ahd_set_scbptr(ahd, saved_scbptr);
|
|
return (scbid);
|
|
}
|
|
|
|
static void
|
|
ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
|
|
{
|
|
u_int scb_offset;
|
|
u_int saved_scbptr;
|
|
|
|
scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
|
|
ahd_outw(ahd, scb_offset, scbid);
|
|
ahd_set_scbptr(ahd, saved_scbptr);
|
|
}
|
|
|
|
/************************** SCB and SCB queue management **********************/
|
|
static int
|
|
ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
|
|
char channel, int lun, u_int tag, role_t role)
|
|
{
|
|
int targ = SCB_GET_TARGET(ahd, scb);
|
|
char chan = SCB_GET_CHANNEL(ahd, scb);
|
|
int slun = SCB_GET_LUN(scb);
|
|
int match;
|
|
|
|
match = ((chan == channel) || (channel == ALL_CHANNELS));
|
|
if (match != 0)
|
|
match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
|
|
if (match != 0)
|
|
match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
|
|
if (match != 0) {
|
|
#ifdef AHD_TARGET_MODE
|
|
int group;
|
|
|
|
group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
|
|
if (role == ROLE_INITIATOR) {
|
|
match = (group != XPT_FC_GROUP_TMODE)
|
|
&& ((tag == SCB_GET_TAG(scb))
|
|
|| (tag == SCB_LIST_NULL));
|
|
} else if (role == ROLE_TARGET) {
|
|
match = (group == XPT_FC_GROUP_TMODE)
|
|
&& ((tag == scb->io_ctx->csio.tag_id)
|
|
|| (tag == SCB_LIST_NULL));
|
|
}
|
|
#else /* !AHD_TARGET_MODE */
|
|
match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
|
|
#endif /* AHD_TARGET_MODE */
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
static void
|
|
ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
int target;
|
|
char channel;
|
|
int lun;
|
|
|
|
target = SCB_GET_TARGET(ahd, scb);
|
|
lun = SCB_GET_LUN(scb);
|
|
channel = SCB_GET_CHANNEL(ahd, scb);
|
|
|
|
ahd_search_qinfifo(ahd, target, channel, lun,
|
|
/*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
|
|
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
|
|
|
|
ahd_platform_freeze_devq(ahd, scb);
|
|
}
|
|
|
|
void
|
|
ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
struct scb *prev_scb;
|
|
ahd_mode_state saved_modes;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
|
|
prev_scb = NULL;
|
|
if (ahd_qinfifo_count(ahd) != 0) {
|
|
u_int prev_tag;
|
|
u_int prev_pos;
|
|
|
|
prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
|
|
prev_tag = ahd->qinfifo[prev_pos];
|
|
prev_scb = ahd_lookup_scb(ahd, prev_tag);
|
|
}
|
|
ahd_qinfifo_requeue(ahd, prev_scb, scb);
|
|
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
}
|
|
|
|
static void
|
|
ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
|
|
struct scb *scb)
|
|
{
|
|
if (prev_scb == NULL) {
|
|
uint32_t busaddr;
|
|
|
|
busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
|
|
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
|
|
} else {
|
|
prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
|
|
ahd_sync_scb(ahd, prev_scb,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
|
|
ahd->qinfifonext++;
|
|
scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
|
|
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static int
|
|
ahd_qinfifo_count(struct ahd_softc *ahd)
|
|
{
|
|
u_int qinpos;
|
|
u_int wrap_qinpos;
|
|
u_int wrap_qinfifonext;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
|
|
qinpos = ahd_get_snscb_qoff(ahd);
|
|
wrap_qinpos = AHD_QIN_WRAP(qinpos);
|
|
wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
|
|
if (wrap_qinfifonext >= wrap_qinpos)
|
|
return (wrap_qinfifonext - wrap_qinpos);
|
|
else
|
|
return (wrap_qinfifonext
|
|
+ ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
|
|
}
|
|
|
|
static void
|
|
ahd_reset_cmds_pending(struct ahd_softc *ahd)
|
|
{
|
|
struct scb *scb;
|
|
ahd_mode_state saved_modes;
|
|
u_int pending_cmds;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
|
|
|
|
/*
|
|
* Don't count any commands as outstanding that the
|
|
* sequencer has already marked for completion.
|
|
*/
|
|
ahd_flush_qoutfifo(ahd);
|
|
|
|
pending_cmds = 0;
|
|
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
|
|
pending_cmds++;
|
|
}
|
|
ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
|
|
}
|
|
|
|
static void
|
|
ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
|
|
{
|
|
cam_status ostat;
|
|
cam_status cstat;
|
|
|
|
ostat = ahd_get_transaction_status(scb);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahd_set_transaction_status(scb, status);
|
|
cstat = ahd_get_transaction_status(scb);
|
|
if (cstat != CAM_REQ_CMP)
|
|
ahd_freeze_scb(scb);
|
|
ahd_done(ahd, scb);
|
|
}
|
|
|
|
int
|
|
ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
|
|
int lun, u_int tag, role_t role, uint32_t status,
|
|
ahd_search_action action)
|
|
{
|
|
struct scb *scb;
|
|
struct scb *mk_msg_scb;
|
|
struct scb *prev_scb;
|
|
ahd_mode_state saved_modes;
|
|
u_int qinstart;
|
|
u_int qinpos;
|
|
u_int qintail;
|
|
u_int tid_next;
|
|
u_int tid_prev;
|
|
u_int scbid;
|
|
u_int seq_flags2;
|
|
u_int savedscbptr;
|
|
uint32_t busaddr;
|
|
int found;
|
|
int targets;
|
|
|
|
/* Must be in CCHAN mode */
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
|
|
|
|
/*
|
|
* Halt any pending SCB DMA. The sequencer will reinitiate
|
|
* this dma if the qinfifo is not empty once we unpause.
|
|
*/
|
|
if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
|
|
== (CCARREN|CCSCBEN|CCSCBDIR)) {
|
|
ahd_outb(ahd, CCSCBCTL,
|
|
ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
|
|
while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
|
|
;
|
|
}
|
|
/* Determine sequencer's position in the qinfifo. */
|
|
qintail = AHD_QIN_WRAP(ahd->qinfifonext);
|
|
qinstart = ahd_get_snscb_qoff(ahd);
|
|
qinpos = AHD_QIN_WRAP(qinstart);
|
|
found = 0;
|
|
prev_scb = NULL;
|
|
|
|
if (action == SEARCH_PRINT) {
|
|
printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
|
|
qinstart, ahd->qinfifonext);
|
|
}
|
|
|
|
/*
|
|
* Start with an empty queue. Entries that are not chosen
|
|
* for removal will be re-added to the queue as we go.
|
|
*/
|
|
ahd->qinfifonext = qinstart;
|
|
busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
|
|
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
|
|
|
|
while (qinpos != qintail) {
|
|
scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
|
|
if (scb == NULL) {
|
|
printk("qinpos = %d, SCB index = %d\n",
|
|
qinpos, ahd->qinfifo[qinpos]);
|
|
panic("Loop 1\n");
|
|
}
|
|
|
|
if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in qinfifo\n");
|
|
ahd_done_with_status(ahd, scb, status);
|
|
fallthrough;
|
|
case SEARCH_REMOVE:
|
|
break;
|
|
case SEARCH_PRINT:
|
|
printk(" 0x%x", ahd->qinfifo[qinpos]);
|
|
fallthrough;
|
|
case SEARCH_COUNT:
|
|
ahd_qinfifo_requeue(ahd, prev_scb, scb);
|
|
prev_scb = scb;
|
|
break;
|
|
}
|
|
} else {
|
|
ahd_qinfifo_requeue(ahd, prev_scb, scb);
|
|
prev_scb = scb;
|
|
}
|
|
qinpos = AHD_QIN_WRAP(qinpos+1);
|
|
}
|
|
|
|
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
|
|
|
|
if (action == SEARCH_PRINT)
|
|
printk("\nWAITING_TID_QUEUES:\n");
|
|
|
|
/*
|
|
* Search waiting for selection lists. We traverse the
|
|
* list of "their ids" waiting for selection and, if
|
|
* appropriate, traverse the SCBs of each "their id"
|
|
* looking for matches.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
|
|
if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
|
|
scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
|
|
mk_msg_scb = ahd_lookup_scb(ahd, scbid);
|
|
} else
|
|
mk_msg_scb = NULL;
|
|
savedscbptr = ahd_get_scbptr(ahd);
|
|
tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
|
|
tid_prev = SCB_LIST_NULL;
|
|
targets = 0;
|
|
for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
|
|
u_int tid_head;
|
|
u_int tid_tail;
|
|
|
|
targets++;
|
|
if (targets > AHD_NUM_TARGETS)
|
|
panic("TID LIST LOOP");
|
|
|
|
if (scbid >= ahd->scb_data.numscbs) {
|
|
printk("%s: Waiting TID List inconsistency. "
|
|
"SCB index == 0x%x, yet numscbs == 0x%x.",
|
|
ahd_name(ahd), scbid, ahd->scb_data.numscbs);
|
|
ahd_dump_card_state(ahd);
|
|
panic("for safety");
|
|
}
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: SCB = 0x%x Not Active!\n",
|
|
ahd_name(ahd), scbid);
|
|
panic("Waiting TID List traversal\n");
|
|
}
|
|
ahd_set_scbptr(ahd, scbid);
|
|
tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
|
|
if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
|
|
SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
|
|
tid_prev = scbid;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We found a list of scbs that needs to be searched.
|
|
*/
|
|
if (action == SEARCH_PRINT)
|
|
printk(" %d ( ", SCB_GET_TARGET(ahd, scb));
|
|
tid_head = scbid;
|
|
found += ahd_search_scb_list(ahd, target, channel,
|
|
lun, tag, role, status,
|
|
action, &tid_head, &tid_tail,
|
|
SCB_GET_TARGET(ahd, scb));
|
|
/*
|
|
* Check any MK_MESSAGE SCB that is still waiting to
|
|
* enter this target's waiting for selection queue.
|
|
*/
|
|
if (mk_msg_scb != NULL
|
|
&& ahd_match_scb(ahd, mk_msg_scb, target, channel,
|
|
lun, tag, role)) {
|
|
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB pending MK_MSG\n");
|
|
ahd_done_with_status(ahd, mk_msg_scb, status);
|
|
fallthrough;
|
|
case SEARCH_REMOVE:
|
|
{
|
|
u_int tail_offset;
|
|
|
|
printk("Removing MK_MSG scb\n");
|
|
|
|
/*
|
|
* Reset our tail to the tail of the
|
|
* main per-target list.
|
|
*/
|
|
tail_offset = WAITING_SCB_TAILS
|
|
+ (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
|
|
ahd_outw(ahd, tail_offset, tid_tail);
|
|
|
|
seq_flags2 &= ~PENDING_MK_MESSAGE;
|
|
ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
|
|
ahd_outw(ahd, CMDS_PENDING,
|
|
ahd_inw(ahd, CMDS_PENDING)-1);
|
|
mk_msg_scb = NULL;
|
|
break;
|
|
}
|
|
case SEARCH_PRINT:
|
|
printk(" 0x%x", SCB_GET_TAG(scb));
|
|
fallthrough;
|
|
case SEARCH_COUNT:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mk_msg_scb != NULL
|
|
&& SCBID_IS_NULL(tid_head)
|
|
&& ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
|
|
SCB_LIST_NULL, ROLE_UNKNOWN)) {
|
|
|
|
/*
|
|
* When removing the last SCB for a target
|
|
* queue with a pending MK_MESSAGE scb, we
|
|
* must queue the MK_MESSAGE scb.
|
|
*/
|
|
printk("Queueing mk_msg_scb\n");
|
|
tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
|
|
seq_flags2 &= ~PENDING_MK_MESSAGE;
|
|
ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
|
|
mk_msg_scb = NULL;
|
|
}
|
|
if (tid_head != scbid)
|
|
ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
|
|
if (!SCBID_IS_NULL(tid_head))
|
|
tid_prev = tid_head;
|
|
if (action == SEARCH_PRINT)
|
|
printk(")\n");
|
|
}
|
|
|
|
/* Restore saved state. */
|
|
ahd_set_scbptr(ahd, savedscbptr);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
return (found);
|
|
}
|
|
|
|
static int
|
|
ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
|
|
int lun, u_int tag, role_t role, uint32_t status,
|
|
ahd_search_action action, u_int *list_head,
|
|
u_int *list_tail, u_int tid)
|
|
{
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
u_int next;
|
|
u_int prev;
|
|
int found;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
found = 0;
|
|
prev = SCB_LIST_NULL;
|
|
next = *list_head;
|
|
*list_tail = SCB_LIST_NULL;
|
|
for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
|
|
if (scbid >= ahd->scb_data.numscbs) {
|
|
printk("%s:SCB List inconsistency. "
|
|
"SCB == 0x%x, yet numscbs == 0x%x.",
|
|
ahd_name(ahd), scbid, ahd->scb_data.numscbs);
|
|
ahd_dump_card_state(ahd);
|
|
panic("for safety");
|
|
}
|
|
scb = ahd_lookup_scb(ahd, scbid);
|
|
if (scb == NULL) {
|
|
printk("%s: SCB = %d Not Active!\n",
|
|
ahd_name(ahd), scbid);
|
|
panic("Waiting List traversal\n");
|
|
}
|
|
ahd_set_scbptr(ahd, scbid);
|
|
*list_tail = scbid;
|
|
next = ahd_inw_scbram(ahd, SCB_NEXT);
|
|
if (ahd_match_scb(ahd, scb, target, channel,
|
|
lun, SCB_LIST_NULL, role) == 0) {
|
|
prev = scbid;
|
|
continue;
|
|
}
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in Waiting List\n");
|
|
ahd_done_with_status(ahd, scb, status);
|
|
fallthrough;
|
|
case SEARCH_REMOVE:
|
|
ahd_rem_wscb(ahd, scbid, prev, next, tid);
|
|
*list_tail = prev;
|
|
if (SCBID_IS_NULL(prev))
|
|
*list_head = next;
|
|
break;
|
|
case SEARCH_PRINT:
|
|
printk("0x%x ", scbid);
|
|
fallthrough;
|
|
case SEARCH_COUNT:
|
|
prev = scbid;
|
|
break;
|
|
}
|
|
if (found > AHD_SCB_MAX)
|
|
panic("SCB LIST LOOP");
|
|
}
|
|
if (action == SEARCH_COMPLETE
|
|
|| action == SEARCH_REMOVE)
|
|
ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
|
|
return (found);
|
|
}
|
|
|
|
static void
|
|
ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
|
|
u_int tid_cur, u_int tid_next)
|
|
{
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
|
|
if (SCBID_IS_NULL(tid_cur)) {
|
|
|
|
/* Bypass current TID list */
|
|
if (SCBID_IS_NULL(tid_prev)) {
|
|
ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
|
|
} else {
|
|
ahd_set_scbptr(ahd, tid_prev);
|
|
ahd_outw(ahd, SCB_NEXT2, tid_next);
|
|
}
|
|
if (SCBID_IS_NULL(tid_next))
|
|
ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
|
|
} else {
|
|
|
|
/* Stitch through tid_cur */
|
|
if (SCBID_IS_NULL(tid_prev)) {
|
|
ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
|
|
} else {
|
|
ahd_set_scbptr(ahd, tid_prev);
|
|
ahd_outw(ahd, SCB_NEXT2, tid_cur);
|
|
}
|
|
ahd_set_scbptr(ahd, tid_cur);
|
|
ahd_outw(ahd, SCB_NEXT2, tid_next);
|
|
|
|
if (SCBID_IS_NULL(tid_next))
|
|
ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manipulate the waiting for selection list and return the
|
|
* scb that follows the one that we remove.
|
|
*/
|
|
static u_int
|
|
ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
|
|
u_int prev, u_int next, u_int tid)
|
|
{
|
|
u_int tail_offset;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
if (!SCBID_IS_NULL(prev)) {
|
|
ahd_set_scbptr(ahd, prev);
|
|
ahd_outw(ahd, SCB_NEXT, next);
|
|
}
|
|
|
|
/*
|
|
* SCBs that have MK_MESSAGE set in them may
|
|
* cause the tail pointer to be updated without
|
|
* setting the next pointer of the previous tail.
|
|
* Only clear the tail if the removed SCB was
|
|
* the tail.
|
|
*/
|
|
tail_offset = WAITING_SCB_TAILS + (2 * tid);
|
|
if (SCBID_IS_NULL(next)
|
|
&& ahd_inw(ahd, tail_offset) == scbid)
|
|
ahd_outw(ahd, tail_offset, prev);
|
|
|
|
ahd_add_scb_to_free_list(ahd, scbid);
|
|
return (next);
|
|
}
|
|
|
|
/*
|
|
* Add the SCB as selected by SCBPTR onto the on chip list of
|
|
* free hardware SCBs. This list is empty/unused if we are not
|
|
* performing SCB paging.
|
|
*/
|
|
static void
|
|
ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
|
|
{
|
|
/* XXX Need some other mechanism to designate "free". */
|
|
/*
|
|
* Invalidate the tag so that our abort
|
|
* routines don't think it's active.
|
|
ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
|
|
*/
|
|
}
|
|
|
|
/******************************** Error Handling ******************************/
|
|
/*
|
|
* Abort all SCBs that match the given description (target/channel/lun/tag),
|
|
* setting their status to the passed in status if the status has not already
|
|
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
|
|
* is paused before it is called.
|
|
*/
|
|
static int
|
|
ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
|
|
int lun, u_int tag, role_t role, uint32_t status)
|
|
{
|
|
struct scb *scbp;
|
|
struct scb *scbp_next;
|
|
u_int i, j;
|
|
u_int maxtarget;
|
|
u_int minlun;
|
|
u_int maxlun;
|
|
int found;
|
|
ahd_mode_state saved_modes;
|
|
|
|
/* restore this when we're done */
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
|
|
found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
|
|
role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
|
|
|
|
/*
|
|
* Clean out the busy target table for any untagged commands.
|
|
*/
|
|
i = 0;
|
|
maxtarget = 16;
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
i = target;
|
|
if (channel == 'B')
|
|
i += 8;
|
|
maxtarget = i + 1;
|
|
}
|
|
|
|
if (lun == CAM_LUN_WILDCARD) {
|
|
minlun = 0;
|
|
maxlun = AHD_NUM_LUNS_NONPKT;
|
|
} else if (lun >= AHD_NUM_LUNS_NONPKT) {
|
|
minlun = maxlun = 0;
|
|
} else {
|
|
minlun = lun;
|
|
maxlun = lun + 1;
|
|
}
|
|
|
|
if (role != ROLE_TARGET) {
|
|
for (;i < maxtarget; i++) {
|
|
for (j = minlun;j < maxlun; j++) {
|
|
u_int scbid;
|
|
u_int tcl;
|
|
|
|
tcl = BUILD_TCL_RAW(i, 'A', j);
|
|
scbid = ahd_find_busy_tcl(ahd, tcl);
|
|
scbp = ahd_lookup_scb(ahd, scbid);
|
|
if (scbp == NULL
|
|
|| ahd_match_scb(ahd, scbp, target, channel,
|
|
lun, tag, role) == 0)
|
|
continue;
|
|
ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't abort commands that have already completed,
|
|
* but haven't quite made it up to the host yet.
|
|
*/
|
|
ahd_flush_qoutfifo(ahd);
|
|
|
|
/*
|
|
* Go through the pending CCB list and look for
|
|
* commands for this target that are still active.
|
|
* These are other tagged commands that were
|
|
* disconnected when the reset occurred.
|
|
*/
|
|
scbp_next = LIST_FIRST(&ahd->pending_scbs);
|
|
while (scbp_next != NULL) {
|
|
scbp = scbp_next;
|
|
scbp_next = LIST_NEXT(scbp, pending_links);
|
|
if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
|
|
cam_status ostat;
|
|
|
|
ostat = ahd_get_transaction_status(scbp);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahd_set_transaction_status(scbp, status);
|
|
if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
|
|
ahd_freeze_scb(scbp);
|
|
if ((scbp->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB on pending list\n");
|
|
ahd_done(ahd, scbp);
|
|
found++;
|
|
}
|
|
}
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
|
|
ahd->flags |= AHD_UPDATE_PEND_CMDS;
|
|
return found;
|
|
}
|
|
|
|
static void
|
|
ahd_reset_current_bus(struct ahd_softc *ahd)
|
|
{
|
|
uint8_t scsiseq;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
|
|
scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
|
|
ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
|
|
ahd_flush_device_writes(ahd);
|
|
ahd_delay(AHD_BUSRESET_DELAY);
|
|
/* Turn off the bus reset */
|
|
ahd_outb(ahd, SCSISEQ0, scsiseq);
|
|
ahd_flush_device_writes(ahd);
|
|
ahd_delay(AHD_BUSRESET_DELAY);
|
|
if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
|
|
/*
|
|
* 2A Razor #474
|
|
* Certain chip state is not cleared for
|
|
* SCSI bus resets that we initiate, so
|
|
* we must reset the chip.
|
|
*/
|
|
ahd_reset(ahd, /*reinit*/TRUE);
|
|
ahd_intr_enable(ahd, /*enable*/TRUE);
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
}
|
|
|
|
ahd_clear_intstat(ahd);
|
|
}
|
|
|
|
int
|
|
ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
|
|
{
|
|
struct ahd_devinfo caminfo;
|
|
u_int initiator;
|
|
u_int target;
|
|
u_int max_scsiid;
|
|
int found;
|
|
u_int fifo;
|
|
u_int next_fifo;
|
|
uint8_t scsiseq;
|
|
|
|
/*
|
|
* Check if the last bus reset is cleared
|
|
*/
|
|
if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
|
|
printk("%s: bus reset still active\n",
|
|
ahd_name(ahd));
|
|
return 0;
|
|
}
|
|
ahd->flags |= AHD_BUS_RESET_ACTIVE;
|
|
|
|
ahd->pending_device = NULL;
|
|
|
|
ahd_compile_devinfo(&caminfo,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD,
|
|
channel, ROLE_UNKNOWN);
|
|
ahd_pause(ahd);
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahd_clear_critical_section(ahd);
|
|
|
|
/*
|
|
* Run our command complete fifos to ensure that we perform
|
|
* completion processing on any commands that 'completed'
|
|
* before the reset occurred.
|
|
*/
|
|
ahd_run_qoutfifo(ahd);
|
|
#ifdef AHD_TARGET_MODE
|
|
if ((ahd->flags & AHD_TARGETROLE) != 0) {
|
|
ahd_run_tqinfifo(ahd, /*paused*/TRUE);
|
|
}
|
|
#endif
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
|
|
/*
|
|
* Disable selections so no automatic hardware
|
|
* functions will modify chip state.
|
|
*/
|
|
ahd_outb(ahd, SCSISEQ0, 0);
|
|
ahd_outb(ahd, SCSISEQ1, 0);
|
|
|
|
/*
|
|
* Safely shut down our DMA engines. Always start with
|
|
* the FIFO that is not currently active (if any are
|
|
* actively connected).
|
|
*/
|
|
next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
|
|
if (next_fifo > CURRFIFO_1)
|
|
/* If disconneced, arbitrarily start with FIFO1. */
|
|
next_fifo = fifo = 0;
|
|
do {
|
|
next_fifo ^= CURRFIFO_1;
|
|
ahd_set_modes(ahd, next_fifo, next_fifo);
|
|
ahd_outb(ahd, DFCNTRL,
|
|
ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
|
|
while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
|
|
ahd_delay(10);
|
|
/*
|
|
* Set CURRFIFO to the now inactive channel.
|
|
*/
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
ahd_outb(ahd, DFFSTAT, next_fifo);
|
|
} while (next_fifo != fifo);
|
|
|
|
/*
|
|
* Reset the bus if we are initiating this reset
|
|
*/
|
|
ahd_clear_msg_state(ahd);
|
|
ahd_outb(ahd, SIMODE1,
|
|
ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
|
|
|
|
if (initiate_reset)
|
|
ahd_reset_current_bus(ahd);
|
|
|
|
ahd_clear_intstat(ahd);
|
|
|
|
/*
|
|
* Clean up all the state information for the
|
|
* pending transactions on this bus.
|
|
*/
|
|
found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL,
|
|
ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
|
|
|
|
/*
|
|
* Cleanup anything left in the FIFOs.
|
|
*/
|
|
ahd_clear_fifo(ahd, 0);
|
|
ahd_clear_fifo(ahd, 1);
|
|
|
|
/*
|
|
* Clear SCSI interrupt status
|
|
*/
|
|
ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
|
|
|
|
/*
|
|
* Reenable selections
|
|
*/
|
|
ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
|
|
scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
|
|
ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
|
|
max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
|
|
#ifdef AHD_TARGET_MODE
|
|
/*
|
|
* Send an immediate notify ccb to all target more peripheral
|
|
* drivers affected by this action.
|
|
*/
|
|
for (target = 0; target <= max_scsiid; target++) {
|
|
struct ahd_tmode_tstate* tstate;
|
|
u_int lun;
|
|
|
|
tstate = ahd->enabled_targets[target];
|
|
if (tstate == NULL)
|
|
continue;
|
|
for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
|
|
struct ahd_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[lun];
|
|
if (lstate == NULL)
|
|
continue;
|
|
|
|
ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
|
|
EVENT_TYPE_BUS_RESET, /*arg*/0);
|
|
ahd_send_lstate_events(ahd, lstate);
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* Revert to async/narrow transfers until we renegotiate.
|
|
*/
|
|
for (target = 0; target <= max_scsiid; target++) {
|
|
|
|
if (ahd->enabled_targets[target] == NULL)
|
|
continue;
|
|
for (initiator = 0; initiator <= max_scsiid; initiator++) {
|
|
struct ahd_devinfo devinfo;
|
|
|
|
ahd_compile_devinfo(&devinfo, target, initiator,
|
|
CAM_LUN_WILDCARD,
|
|
'A', ROLE_UNKNOWN);
|
|
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHD_TRANS_CUR, /*paused*/TRUE);
|
|
ahd_set_syncrate(ahd, &devinfo, /*period*/0,
|
|
/*offset*/0, /*ppr_options*/0,
|
|
AHD_TRANS_CUR, /*paused*/TRUE);
|
|
}
|
|
}
|
|
|
|
/* Notify the XPT that a bus reset occurred */
|
|
ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD, AC_BUS_RESET);
|
|
|
|
ahd_restart(ahd);
|
|
|
|
return (found);
|
|
}
|
|
|
|
/**************************** Statistics Processing ***************************/
|
|
static void
|
|
ahd_stat_timer(struct timer_list *t)
|
|
{
|
|
struct ahd_softc *ahd = from_timer(ahd, t, stat_timer);
|
|
u_long s;
|
|
int enint_coal;
|
|
|
|
ahd_lock(ahd, &s);
|
|
|
|
enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
|
|
if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
|
|
enint_coal |= ENINT_COALESCE;
|
|
else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
|
|
enint_coal &= ~ENINT_COALESCE;
|
|
|
|
if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
|
|
ahd_enable_coalescing(ahd, enint_coal);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
|
|
printk("%s: Interrupt coalescing "
|
|
"now %sabled. Cmds %d\n",
|
|
ahd_name(ahd),
|
|
(enint_coal & ENINT_COALESCE) ? "en" : "dis",
|
|
ahd->cmdcmplt_total);
|
|
#endif
|
|
}
|
|
|
|
ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
|
|
ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
|
|
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
|
|
ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
|
|
ahd_unlock(ahd, &s);
|
|
}
|
|
|
|
/****************************** Status Processing *****************************/
|
|
|
|
static void
|
|
ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
struct hardware_scb *hscb;
|
|
int paused;
|
|
|
|
/*
|
|
* The sequencer freezes its select-out queue
|
|
* anytime a SCSI status error occurs. We must
|
|
* handle the error and increment our qfreeze count
|
|
* to allow the sequencer to continue. We don't
|
|
* bother clearing critical sections here since all
|
|
* operations are on data structures that the sequencer
|
|
* is not touching once the queue is frozen.
|
|
*/
|
|
hscb = scb->hscb;
|
|
|
|
if (ahd_is_paused(ahd)) {
|
|
paused = 1;
|
|
} else {
|
|
paused = 0;
|
|
ahd_pause(ahd);
|
|
}
|
|
|
|
/* Freeze the queue until the client sees the error. */
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_freeze_scb(scb);
|
|
ahd->qfreeze_cnt++;
|
|
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
|
|
|
|
if (paused == 0)
|
|
ahd_unpause(ahd);
|
|
|
|
/* Don't want to clobber the original sense code */
|
|
if ((scb->flags & SCB_SENSE) != 0) {
|
|
/*
|
|
* Clear the SCB_SENSE Flag and perform
|
|
* a normal command completion.
|
|
*/
|
|
scb->flags &= ~SCB_SENSE;
|
|
ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
|
|
ahd_done(ahd, scb);
|
|
return;
|
|
}
|
|
ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
|
|
ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
|
|
switch (hscb->shared_data.istatus.scsi_status) {
|
|
case STATUS_PKT_SENSE:
|
|
{
|
|
struct scsi_status_iu_header *siu;
|
|
|
|
ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
|
|
siu = (struct scsi_status_iu_header *)scb->sense_data;
|
|
ahd_set_scsi_status(scb, siu->status);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("SCB 0x%x Received PKT Status of 0x%x\n",
|
|
SCB_GET_TAG(scb), siu->status);
|
|
printk("\tflags = 0x%x, sense len = 0x%x, "
|
|
"pktfail = 0x%x\n",
|
|
siu->flags, scsi_4btoul(siu->sense_length),
|
|
scsi_4btoul(siu->pkt_failures_length));
|
|
}
|
|
#endif
|
|
if ((siu->flags & SIU_RSPVALID) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
if (scsi_4btoul(siu->pkt_failures_length) < 4) {
|
|
printk("Unable to parse pkt_failures\n");
|
|
} else {
|
|
|
|
switch (SIU_PKTFAIL_CODE(siu)) {
|
|
case SIU_PFC_NONE:
|
|
printk("No packet failure found\n");
|
|
break;
|
|
case SIU_PFC_CIU_FIELDS_INVALID:
|
|
printk("Invalid Command IU Field\n");
|
|
break;
|
|
case SIU_PFC_TMF_NOT_SUPPORTED:
|
|
printk("TMF not supported\n");
|
|
break;
|
|
case SIU_PFC_TMF_FAILED:
|
|
printk("TMF failed\n");
|
|
break;
|
|
case SIU_PFC_INVALID_TYPE_CODE:
|
|
printk("Invalid L_Q Type code\n");
|
|
break;
|
|
case SIU_PFC_ILLEGAL_REQUEST:
|
|
printk("Illegal request\n");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if (siu->status == SAM_STAT_GOOD)
|
|
ahd_set_transaction_status(scb,
|
|
CAM_REQ_CMP_ERR);
|
|
}
|
|
if ((siu->flags & SIU_SNSVALID) != 0) {
|
|
scb->flags |= SCB_PKT_SENSE;
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_SENSE) != 0)
|
|
printk("Sense data available\n");
|
|
#endif
|
|
}
|
|
ahd_done(ahd, scb);
|
|
break;
|
|
}
|
|
case SAM_STAT_COMMAND_TERMINATED:
|
|
case SAM_STAT_CHECK_CONDITION:
|
|
{
|
|
struct ahd_devinfo devinfo;
|
|
struct ahd_dma_seg *sg;
|
|
struct scsi_sense *sc;
|
|
struct ahd_initiator_tinfo *targ_info;
|
|
struct ahd_tmode_tstate *tstate;
|
|
struct ahd_transinfo *tinfo;
|
|
#ifdef AHD_DEBUG
|
|
if (ahd_debug & AHD_SHOW_SENSE) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("SCB %d: requests Check Status\n",
|
|
SCB_GET_TAG(scb));
|
|
}
|
|
#endif
|
|
|
|
if (ahd_perform_autosense(scb) == 0)
|
|
break;
|
|
|
|
ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
|
|
SCB_GET_TARGET(ahd, scb),
|
|
SCB_GET_LUN(scb),
|
|
SCB_GET_CHANNEL(ahd, scb),
|
|
ROLE_INITIATOR);
|
|
targ_info = ahd_fetch_transinfo(ahd,
|
|
devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target,
|
|
&tstate);
|
|
tinfo = &targ_info->curr;
|
|
sg = scb->sg_list;
|
|
sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
|
|
/*
|
|
* Save off the residual if there is one.
|
|
*/
|
|
ahd_update_residual(ahd, scb);
|
|
#ifdef AHD_DEBUG
|
|
if (ahd_debug & AHD_SHOW_SENSE) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("Sending Sense\n");
|
|
}
|
|
#endif
|
|
scb->sg_count = 0;
|
|
sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
|
|
ahd_get_sense_bufsize(ahd, scb),
|
|
/*last*/TRUE);
|
|
sc->opcode = REQUEST_SENSE;
|
|
sc->byte2 = 0;
|
|
if (tinfo->protocol_version <= SCSI_REV_2
|
|
&& SCB_GET_LUN(scb) < 8)
|
|
sc->byte2 = SCB_GET_LUN(scb) << 5;
|
|
sc->unused[0] = 0;
|
|
sc->unused[1] = 0;
|
|
sc->length = ahd_get_sense_bufsize(ahd, scb);
|
|
sc->control = 0;
|
|
|
|
/*
|
|
* We can't allow the target to disconnect.
|
|
* This will be an untagged transaction and
|
|
* having the target disconnect will make this
|
|
* transaction indestinguishable from outstanding
|
|
* tagged transactions.
|
|
*/
|
|
hscb->control = 0;
|
|
|
|
/*
|
|
* This request sense could be because the
|
|
* the device lost power or in some other
|
|
* way has lost our transfer negotiations.
|
|
* Renegotiate if appropriate. Unit attention
|
|
* errors will be reported before any data
|
|
* phases occur.
|
|
*/
|
|
if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
|
|
ahd_update_neg_request(ahd, &devinfo,
|
|
tstate, targ_info,
|
|
AHD_NEG_IF_NON_ASYNC);
|
|
}
|
|
if (tstate->auto_negotiate & devinfo.target_mask) {
|
|
hscb->control |= MK_MESSAGE;
|
|
scb->flags &=
|
|
~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
|
|
scb->flags |= SCB_AUTO_NEGOTIATE;
|
|
}
|
|
hscb->cdb_len = sizeof(*sc);
|
|
ahd_setup_data_scb(ahd, scb);
|
|
scb->flags |= SCB_SENSE;
|
|
ahd_queue_scb(ahd, scb);
|
|
break;
|
|
}
|
|
case SAM_STAT_GOOD:
|
|
printk("%s: Interrupted for status of 0???\n",
|
|
ahd_name(ahd));
|
|
fallthrough;
|
|
default:
|
|
ahd_done(ahd, scb);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
if (scb->hscb->shared_data.istatus.scsi_status != 0) {
|
|
ahd_handle_scsi_status(ahd, scb);
|
|
} else {
|
|
ahd_calc_residual(ahd, scb);
|
|
ahd_done(ahd, scb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the residual for a just completed SCB.
|
|
*/
|
|
static void
|
|
ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
|
|
{
|
|
struct hardware_scb *hscb;
|
|
struct initiator_status *spkt;
|
|
uint32_t sgptr;
|
|
uint32_t resid_sgptr;
|
|
uint32_t resid;
|
|
|
|
/*
|
|
* 5 cases.
|
|
* 1) No residual.
|
|
* SG_STATUS_VALID clear in sgptr.
|
|
* 2) Transferless command
|
|
* 3) Never performed any transfers.
|
|
* sgptr has SG_FULL_RESID set.
|
|
* 4) No residual but target did not
|
|
* save data pointers after the
|
|
* last transfer, so sgptr was
|
|
* never updated.
|
|
* 5) We have a partial residual.
|
|
* Use residual_sgptr to determine
|
|
* where we are.
|
|
*/
|
|
|
|
hscb = scb->hscb;
|
|
sgptr = ahd_le32toh(hscb->sgptr);
|
|
if ((sgptr & SG_STATUS_VALID) == 0)
|
|
/* Case 1 */
|
|
return;
|
|
sgptr &= ~SG_STATUS_VALID;
|
|
|
|
if ((sgptr & SG_LIST_NULL) != 0)
|
|
/* Case 2 */
|
|
return;
|
|
|
|
/*
|
|
* Residual fields are the same in both
|
|
* target and initiator status packets,
|
|
* so we can always use the initiator fields
|
|
* regardless of the role for this SCB.
|
|
*/
|
|
spkt = &hscb->shared_data.istatus;
|
|
resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
|
|
if ((sgptr & SG_FULL_RESID) != 0) {
|
|
/* Case 3 */
|
|
resid = ahd_get_transfer_length(scb);
|
|
} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
|
|
/* Case 4 */
|
|
return;
|
|
} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("data overrun detected Tag == 0x%x.\n",
|
|
SCB_GET_TAG(scb));
|
|
ahd_freeze_devq(ahd, scb);
|
|
ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
|
|
ahd_freeze_scb(scb);
|
|
return;
|
|
} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
|
|
panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
|
|
/* NOTREACHED */
|
|
} else {
|
|
struct ahd_dma_seg *sg;
|
|
|
|
/*
|
|
* Remainder of the SG where the transfer
|
|
* stopped.
|
|
*/
|
|
resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
|
|
sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
|
|
|
|
/* The residual sg_ptr always points to the next sg */
|
|
sg--;
|
|
|
|
/*
|
|
* Add up the contents of all residual
|
|
* SG segments that are after the SG where
|
|
* the transfer stopped.
|
|
*/
|
|
while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
|
|
sg++;
|
|
resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
|
|
}
|
|
}
|
|
if ((scb->flags & SCB_SENSE) == 0)
|
|
ahd_set_residual(scb, resid);
|
|
else
|
|
ahd_set_sense_residual(scb, resid);
|
|
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_MISC) != 0) {
|
|
ahd_print_path(ahd, scb);
|
|
printk("Handled %sResidual of %d bytes\n",
|
|
(scb->flags & SCB_SENSE) ? "Sense " : "", resid);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/******************************* Target Mode **********************************/
|
|
#ifdef AHD_TARGET_MODE
|
|
/*
|
|
* Add a target mode event to this lun's queue
|
|
*/
|
|
static void
|
|
ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
|
|
u_int initiator_id, u_int event_type, u_int event_arg)
|
|
{
|
|
struct ahd_tmode_event *event;
|
|
int pending;
|
|
|
|
xpt_freeze_devq(lstate->path, /*count*/1);
|
|
if (lstate->event_w_idx >= lstate->event_r_idx)
|
|
pending = lstate->event_w_idx - lstate->event_r_idx;
|
|
else
|
|
pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
|
|
- (lstate->event_r_idx - lstate->event_w_idx);
|
|
|
|
if (event_type == EVENT_TYPE_BUS_RESET
|
|
|| event_type == TARGET_RESET) {
|
|
/*
|
|
* Any earlier events are irrelevant, so reset our buffer.
|
|
* This has the effect of allowing us to deal with reset
|
|
* floods (an external device holding down the reset line)
|
|
* without losing the event that is really interesting.
|
|
*/
|
|
lstate->event_r_idx = 0;
|
|
lstate->event_w_idx = 0;
|
|
xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
|
|
}
|
|
|
|
if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
|
|
xpt_print_path(lstate->path);
|
|
printk("immediate event %x:%x lost\n",
|
|
lstate->event_buffer[lstate->event_r_idx].event_type,
|
|
lstate->event_buffer[lstate->event_r_idx].event_arg);
|
|
lstate->event_r_idx++;
|
|
if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_r_idx = 0;
|
|
xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
|
|
}
|
|
|
|
event = &lstate->event_buffer[lstate->event_w_idx];
|
|
event->initiator_id = initiator_id;
|
|
event->event_type = event_type;
|
|
event->event_arg = event_arg;
|
|
lstate->event_w_idx++;
|
|
if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_w_idx = 0;
|
|
}
|
|
|
|
/*
|
|
* Send any target mode events queued up waiting
|
|
* for immediate notify resources.
|
|
*/
|
|
void
|
|
ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
|
|
{
|
|
struct ccb_hdr *ccbh;
|
|
struct ccb_immed_notify *inot;
|
|
|
|
while (lstate->event_r_idx != lstate->event_w_idx
|
|
&& (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
|
|
struct ahd_tmode_event *event;
|
|
|
|
event = &lstate->event_buffer[lstate->event_r_idx];
|
|
SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
|
|
inot = (struct ccb_immed_notify *)ccbh;
|
|
switch (event->event_type) {
|
|
case EVENT_TYPE_BUS_RESET:
|
|
ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
|
|
break;
|
|
default:
|
|
ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
|
|
inot->message_args[0] = event->event_type;
|
|
inot->message_args[1] = event->event_arg;
|
|
break;
|
|
}
|
|
inot->initiator_id = event->initiator_id;
|
|
inot->sense_len = 0;
|
|
xpt_done((union ccb *)inot);
|
|
lstate->event_r_idx++;
|
|
if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_r_idx = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/******************** Sequencer Program Patching/Download *********************/
|
|
|
|
#ifdef AHD_DUMP_SEQ
|
|
void
|
|
ahd_dumpseq(struct ahd_softc* ahd)
|
|
{
|
|
int i;
|
|
int max_prog;
|
|
|
|
max_prog = 2048;
|
|
|
|
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
|
|
ahd_outw(ahd, PRGMCNT, 0);
|
|
for (i = 0; i < max_prog; i++) {
|
|
uint8_t ins_bytes[4];
|
|
|
|
ahd_insb(ahd, SEQRAM, ins_bytes, 4);
|
|
printk("0x%08x\n", ins_bytes[0] << 24
|
|
| ins_bytes[1] << 16
|
|
| ins_bytes[2] << 8
|
|
| ins_bytes[3]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ahd_loadseq(struct ahd_softc *ahd)
|
|
{
|
|
struct cs cs_table[NUM_CRITICAL_SECTIONS];
|
|
u_int begin_set[NUM_CRITICAL_SECTIONS];
|
|
u_int end_set[NUM_CRITICAL_SECTIONS];
|
|
const struct patch *cur_patch;
|
|
u_int cs_count;
|
|
u_int cur_cs;
|
|
u_int i;
|
|
int downloaded;
|
|
u_int skip_addr;
|
|
u_int sg_prefetch_cnt;
|
|
u_int sg_prefetch_cnt_limit;
|
|
u_int sg_prefetch_align;
|
|
u_int sg_size;
|
|
u_int cacheline_mask;
|
|
uint8_t download_consts[DOWNLOAD_CONST_COUNT];
|
|
|
|
if (bootverbose)
|
|
printk("%s: Downloading Sequencer Program...",
|
|
ahd_name(ahd));
|
|
|
|
#if DOWNLOAD_CONST_COUNT != 8
|
|
#error "Download Const Mismatch"
|
|
#endif
|
|
/*
|
|
* Start out with 0 critical sections
|
|
* that apply to this firmware load.
|
|
*/
|
|
cs_count = 0;
|
|
cur_cs = 0;
|
|
memset(begin_set, 0, sizeof(begin_set));
|
|
memset(end_set, 0, sizeof(end_set));
|
|
|
|
/*
|
|
* Setup downloadable constant table.
|
|
*
|
|
* The computation for the S/G prefetch variables is
|
|
* a bit complicated. We would like to always fetch
|
|
* in terms of cachelined sized increments. However,
|
|
* if the cacheline is not an even multiple of the
|
|
* SG element size or is larger than our SG RAM, using
|
|
* just the cache size might leave us with only a portion
|
|
* of an SG element at the tail of a prefetch. If the
|
|
* cacheline is larger than our S/G prefetch buffer less
|
|
* the size of an SG element, we may round down to a cacheline
|
|
* that doesn't contain any or all of the S/G of interest
|
|
* within the bounds of our S/G ram. Provide variables to
|
|
* the sequencer that will allow it to handle these edge
|
|
* cases.
|
|
*/
|
|
/* Start by aligning to the nearest cacheline. */
|
|
sg_prefetch_align = ahd->pci_cachesize;
|
|
if (sg_prefetch_align == 0)
|
|
sg_prefetch_align = 8;
|
|
/* Round down to the nearest power of 2. */
|
|
while (powerof2(sg_prefetch_align) == 0)
|
|
sg_prefetch_align--;
|
|
|
|
cacheline_mask = sg_prefetch_align - 1;
|
|
|
|
/*
|
|
* If the cacheline boundary is greater than half our prefetch RAM
|
|
* we risk not being able to fetch even a single complete S/G
|
|
* segment if we align to that boundary.
|
|
*/
|
|
if (sg_prefetch_align > CCSGADDR_MAX/2)
|
|
sg_prefetch_align = CCSGADDR_MAX/2;
|
|
/* Start by fetching a single cacheline. */
|
|
sg_prefetch_cnt = sg_prefetch_align;
|
|
/*
|
|
* Increment the prefetch count by cachelines until
|
|
* at least one S/G element will fit.
|
|
*/
|
|
sg_size = sizeof(struct ahd_dma_seg);
|
|
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
|
|
sg_size = sizeof(struct ahd_dma64_seg);
|
|
while (sg_prefetch_cnt < sg_size)
|
|
sg_prefetch_cnt += sg_prefetch_align;
|
|
/*
|
|
* If the cacheline is not an even multiple of
|
|
* the S/G size, we may only get a partial S/G when
|
|
* we align. Add a cacheline if this is the case.
|
|
*/
|
|
if ((sg_prefetch_align % sg_size) != 0
|
|
&& (sg_prefetch_cnt < CCSGADDR_MAX))
|
|
sg_prefetch_cnt += sg_prefetch_align;
|
|
/*
|
|
* Lastly, compute a value that the sequencer can use
|
|
* to determine if the remainder of the CCSGRAM buffer
|
|
* has a full S/G element in it.
|
|
*/
|
|
sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
|
|
download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
|
|
download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
|
|
download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
|
|
download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
|
|
download_consts[SG_SIZEOF] = sg_size;
|
|
download_consts[PKT_OVERRUN_BUFOFFSET] =
|
|
(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
|
|
download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
|
|
download_consts[CACHELINE_MASK] = cacheline_mask;
|
|
cur_patch = patches;
|
|
downloaded = 0;
|
|
skip_addr = 0;
|
|
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
|
|
ahd_outw(ahd, PRGMCNT, 0);
|
|
|
|
for (i = 0; i < sizeof(seqprog)/4; i++) {
|
|
if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
|
|
/*
|
|
* Don't download this instruction as it
|
|
* is in a patch that was removed.
|
|
*/
|
|
continue;
|
|
}
|
|
/*
|
|
* Move through the CS table until we find a CS
|
|
* that might apply to this instruction.
|
|
*/
|
|
for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
|
|
if (critical_sections[cur_cs].end <= i) {
|
|
if (begin_set[cs_count] == TRUE
|
|
&& end_set[cs_count] == FALSE) {
|
|
cs_table[cs_count].end = downloaded;
|
|
end_set[cs_count] = TRUE;
|
|
cs_count++;
|
|
}
|
|
continue;
|
|
}
|
|
if (critical_sections[cur_cs].begin <= i
|
|
&& begin_set[cs_count] == FALSE) {
|
|
cs_table[cs_count].begin = downloaded;
|
|
begin_set[cs_count] = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
ahd_download_instr(ahd, i, download_consts);
|
|
downloaded++;
|
|
}
|
|
|
|
ahd->num_critical_sections = cs_count;
|
|
if (cs_count != 0) {
|
|
|
|
cs_count *= sizeof(struct cs);
|
|
ahd->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
|
|
if (ahd->critical_sections == NULL)
|
|
panic("ahd_loadseq: Could not malloc");
|
|
}
|
|
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
|
|
|
|
if (bootverbose) {
|
|
printk(" %d instructions downloaded\n", downloaded);
|
|
printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
|
|
ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
|
|
}
|
|
}
|
|
|
|
static int
|
|
ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
|
|
u_int start_instr, u_int *skip_addr)
|
|
{
|
|
const struct patch *cur_patch;
|
|
const struct patch *last_patch;
|
|
u_int num_patches;
|
|
|
|
num_patches = ARRAY_SIZE(patches);
|
|
last_patch = &patches[num_patches];
|
|
cur_patch = *start_patch;
|
|
|
|
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
|
|
|
|
if (cur_patch->patch_func(ahd) == 0) {
|
|
|
|
/* Start rejecting code */
|
|
*skip_addr = start_instr + cur_patch->skip_instr;
|
|
cur_patch += cur_patch->skip_patch;
|
|
} else {
|
|
/* Accepted this patch. Advance to the next
|
|
* one and wait for our intruction pointer to
|
|
* hit this point.
|
|
*/
|
|
cur_patch++;
|
|
}
|
|
}
|
|
|
|
*start_patch = cur_patch;
|
|
if (start_instr < *skip_addr)
|
|
/* Still skipping */
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static u_int
|
|
ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
|
|
{
|
|
const struct patch *cur_patch;
|
|
int address_offset;
|
|
u_int skip_addr;
|
|
u_int i;
|
|
|
|
address_offset = 0;
|
|
cur_patch = patches;
|
|
skip_addr = 0;
|
|
|
|
for (i = 0; i < address;) {
|
|
|
|
ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
|
|
|
|
if (skip_addr > i) {
|
|
int end_addr;
|
|
|
|
end_addr = min(address, skip_addr);
|
|
address_offset += end_addr - i;
|
|
i = skip_addr;
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
return (address - address_offset);
|
|
}
|
|
|
|
static void
|
|
ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
|
|
{
|
|
union ins_formats instr;
|
|
struct ins_format1 *fmt1_ins;
|
|
struct ins_format3 *fmt3_ins;
|
|
u_int opcode;
|
|
|
|
/*
|
|
* The firmware is always compiled into a little endian format.
|
|
*/
|
|
instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
|
|
|
|
fmt1_ins = &instr.format1;
|
|
fmt3_ins = NULL;
|
|
|
|
/* Pull the opcode */
|
|
opcode = instr.format1.opcode;
|
|
switch (opcode) {
|
|
case AIC_OP_JMP:
|
|
case AIC_OP_JC:
|
|
case AIC_OP_JNC:
|
|
case AIC_OP_CALL:
|
|
case AIC_OP_JNE:
|
|
case AIC_OP_JNZ:
|
|
case AIC_OP_JE:
|
|
case AIC_OP_JZ:
|
|
{
|
|
fmt3_ins = &instr.format3;
|
|
fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
|
|
}
|
|
fallthrough;
|
|
case AIC_OP_OR:
|
|
case AIC_OP_AND:
|
|
case AIC_OP_XOR:
|
|
case AIC_OP_ADD:
|
|
case AIC_OP_ADC:
|
|
case AIC_OP_BMOV:
|
|
if (fmt1_ins->parity != 0) {
|
|
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
|
|
}
|
|
fmt1_ins->parity = 0;
|
|
fallthrough;
|
|
case AIC_OP_ROL:
|
|
{
|
|
int i, count;
|
|
|
|
/* Calculate odd parity for the instruction */
|
|
for (i = 0, count = 0; i < 31; i++) {
|
|
uint32_t mask;
|
|
|
|
mask = 0x01 << i;
|
|
if ((instr.integer & mask) != 0)
|
|
count++;
|
|
}
|
|
if ((count & 0x01) == 0)
|
|
instr.format1.parity = 1;
|
|
|
|
/* The sequencer is a little endian cpu */
|
|
instr.integer = ahd_htole32(instr.integer);
|
|
ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unknown opcode encountered in seq program");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ahd_probe_stack_size(struct ahd_softc *ahd)
|
|
{
|
|
int last_probe;
|
|
|
|
last_probe = 0;
|
|
while (1) {
|
|
int i;
|
|
|
|
/*
|
|
* We avoid using 0 as a pattern to avoid
|
|
* confusion if the stack implementation
|
|
* "back-fills" with zeros when "poping'
|
|
* entries.
|
|
*/
|
|
for (i = 1; i <= last_probe+1; i++) {
|
|
ahd_outb(ahd, STACK, i & 0xFF);
|
|
ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
|
|
}
|
|
|
|
/* Verify */
|
|
for (i = last_probe+1; i > 0; i--) {
|
|
u_int stack_entry;
|
|
|
|
stack_entry = ahd_inb(ahd, STACK)
|
|
|(ahd_inb(ahd, STACK) << 8);
|
|
if (stack_entry != i)
|
|
goto sized;
|
|
}
|
|
last_probe++;
|
|
}
|
|
sized:
|
|
return (last_probe);
|
|
}
|
|
|
|
int
|
|
ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
|
|
const char *name, u_int address, u_int value,
|
|
u_int *cur_column, u_int wrap_point)
|
|
{
|
|
int printed;
|
|
u_int printed_mask;
|
|
|
|
if (cur_column != NULL && *cur_column >= wrap_point) {
|
|
printk("\n");
|
|
*cur_column = 0;
|
|
}
|
|
printed = printk("%s[0x%x]", name, value);
|
|
if (table == NULL) {
|
|
printed += printk(" ");
|
|
*cur_column += printed;
|
|
return (printed);
|
|
}
|
|
printed_mask = 0;
|
|
while (printed_mask != 0xFF) {
|
|
int entry;
|
|
|
|
for (entry = 0; entry < num_entries; entry++) {
|
|
if (((value & table[entry].mask)
|
|
!= table[entry].value)
|
|
|| ((printed_mask & table[entry].mask)
|
|
== table[entry].mask))
|
|
continue;
|
|
|
|
printed += printk("%s%s",
|
|
printed_mask == 0 ? ":(" : "|",
|
|
table[entry].name);
|
|
printed_mask |= table[entry].mask;
|
|
|
|
break;
|
|
}
|
|
if (entry >= num_entries)
|
|
break;
|
|
}
|
|
if (printed_mask != 0)
|
|
printed += printk(") ");
|
|
else
|
|
printed += printk(" ");
|
|
if (cur_column != NULL)
|
|
*cur_column += printed;
|
|
return (printed);
|
|
}
|
|
|
|
void
|
|
ahd_dump_card_state(struct ahd_softc *ahd)
|
|
{
|
|
struct scb *scb;
|
|
ahd_mode_state saved_modes;
|
|
u_int dffstat;
|
|
int paused;
|
|
u_int scb_index;
|
|
u_int saved_scb_index;
|
|
u_int cur_col;
|
|
int i;
|
|
|
|
if (ahd_is_paused(ahd)) {
|
|
paused = 1;
|
|
} else {
|
|
paused = 0;
|
|
ahd_pause(ahd);
|
|
}
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
|
|
"%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
|
|
ahd_name(ahd),
|
|
ahd_inw(ahd, CURADDR),
|
|
ahd_build_mode_state(ahd, ahd->saved_src_mode,
|
|
ahd->saved_dst_mode));
|
|
if (paused)
|
|
printk("Card was paused\n");
|
|
|
|
if (ahd_check_cmdcmpltqueues(ahd))
|
|
printk("Completions are pending\n");
|
|
|
|
/*
|
|
* Mode independent registers.
|
|
*/
|
|
cur_col = 0;
|
|
ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
|
|
ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
|
|
ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
|
|
ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
|
|
ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
|
|
ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
|
|
ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
|
|
ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
|
|
ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
|
|
ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
|
|
ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
|
|
ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
|
|
ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
|
|
ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
|
|
ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
|
|
ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
|
|
ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
|
|
ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
|
|
ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
|
|
ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
|
|
&cur_col, 50);
|
|
ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
|
|
ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
|
|
&cur_col, 50);
|
|
ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
|
|
ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
|
|
ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
|
|
ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
|
|
ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
|
|
ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
|
|
ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
|
|
ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
|
|
ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
|
|
ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
|
|
ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
|
|
ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
|
|
printk("\n");
|
|
printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
|
|
"CURRSCB 0x%x NEXTSCB 0x%x\n",
|
|
ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
|
|
ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
|
|
ahd_inw(ahd, NEXTSCB));
|
|
cur_col = 0;
|
|
/* QINFIFO */
|
|
ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL,
|
|
ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
|
|
saved_scb_index = ahd_get_scbptr(ahd);
|
|
printk("Pending list:");
|
|
i = 0;
|
|
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
|
|
if (i++ > AHD_SCB_MAX)
|
|
break;
|
|
cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
|
|
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
|
|
ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
|
|
ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
|
|
&cur_col, 60);
|
|
ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
|
|
&cur_col, 60);
|
|
}
|
|
printk("\nTotal %d\n", i);
|
|
|
|
printk("Kernel Free SCB list: ");
|
|
i = 0;
|
|
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
|
|
struct scb *list_scb;
|
|
|
|
list_scb = scb;
|
|
do {
|
|
printk("%d ", SCB_GET_TAG(list_scb));
|
|
list_scb = LIST_NEXT(list_scb, collision_links);
|
|
} while (list_scb && i++ < AHD_SCB_MAX);
|
|
}
|
|
|
|
LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
|
|
if (i++ > AHD_SCB_MAX)
|
|
break;
|
|
printk("%d ", SCB_GET_TAG(scb));
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Sequencer Complete DMA-inprog list: ");
|
|
scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
|
|
i = 0;
|
|
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
|
|
ahd_set_scbptr(ahd, scb_index);
|
|
printk("%d ", scb_index);
|
|
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Sequencer Complete list: ");
|
|
scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
|
|
i = 0;
|
|
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
|
|
ahd_set_scbptr(ahd, scb_index);
|
|
printk("%d ", scb_index);
|
|
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Sequencer DMA-Up and Complete list: ");
|
|
scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
|
|
i = 0;
|
|
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
|
|
ahd_set_scbptr(ahd, scb_index);
|
|
printk("%d ", scb_index);
|
|
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
|
|
}
|
|
printk("\n");
|
|
printk("Sequencer On QFreeze and Complete list: ");
|
|
scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
|
|
i = 0;
|
|
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
|
|
ahd_set_scbptr(ahd, scb_index);
|
|
printk("%d ", scb_index);
|
|
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
|
|
}
|
|
printk("\n");
|
|
ahd_set_scbptr(ahd, saved_scb_index);
|
|
dffstat = ahd_inb(ahd, DFFSTAT);
|
|
for (i = 0; i < 2; i++) {
|
|
#ifdef AHD_DEBUG
|
|
struct scb *fifo_scb;
|
|
#endif
|
|
u_int fifo_scbptr;
|
|
|
|
ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
|
|
fifo_scbptr = ahd_get_scbptr(ahd);
|
|
printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
|
|
ahd_name(ahd), i,
|
|
(dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
|
|
ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
|
|
cur_col = 0;
|
|
ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
|
|
ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
|
|
ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
|
|
ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
|
|
ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
|
|
&cur_col, 50);
|
|
ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
|
|
ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
|
|
ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
|
|
ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
|
|
if (cur_col > 50) {
|
|
printk("\n");
|
|
cur_col = 0;
|
|
}
|
|
cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
|
|
ahd_inl(ahd, SHADDR+4),
|
|
ahd_inl(ahd, SHADDR),
|
|
(ahd_inb(ahd, SHCNT)
|
|
| (ahd_inb(ahd, SHCNT + 1) << 8)
|
|
| (ahd_inb(ahd, SHCNT + 2) << 16)));
|
|
if (cur_col > 50) {
|
|
printk("\n");
|
|
cur_col = 0;
|
|
}
|
|
cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
|
|
ahd_inl(ahd, HADDR+4),
|
|
ahd_inl(ahd, HADDR),
|
|
(ahd_inb(ahd, HCNT)
|
|
| (ahd_inb(ahd, HCNT + 1) << 8)
|
|
| (ahd_inb(ahd, HCNT + 2) << 16)));
|
|
ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_SG) != 0) {
|
|
fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
|
|
if (fifo_scb != NULL)
|
|
ahd_dump_sglist(fifo_scb);
|
|
}
|
|
#endif
|
|
}
|
|
printk("\nLQIN: ");
|
|
for (i = 0; i < 20; i++)
|
|
printk("0x%x ", ahd_inb(ahd, LQIN + i));
|
|
printk("\n");
|
|
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
|
|
printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
|
|
ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
|
|
ahd_inb(ahd, OPTIONMODE));
|
|
printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
|
|
ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
|
|
ahd_inb(ahd, MAXCMDCNT));
|
|
printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
|
|
ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
|
|
ahd_inb(ahd, SAVED_LUN));
|
|
ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
|
|
printk("\n");
|
|
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
|
|
cur_col = 0;
|
|
ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
|
|
printk("\n");
|
|
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
|
|
printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
|
|
ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
|
|
ahd_inw(ahd, DINDEX));
|
|
printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
|
|
ahd_name(ahd), ahd_get_scbptr(ahd),
|
|
ahd_inw_scbram(ahd, SCB_NEXT),
|
|
ahd_inw_scbram(ahd, SCB_NEXT2));
|
|
printk("CDB %x %x %x %x %x %x\n",
|
|
ahd_inb_scbram(ahd, SCB_CDB_STORE),
|
|
ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
|
|
ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
|
|
ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
|
|
ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
|
|
ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
|
|
printk("STACK:");
|
|
for (i = 0; i < ahd->stack_size; i++) {
|
|
ahd->saved_stack[i] =
|
|
ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
|
|
printk(" 0x%x", ahd->saved_stack[i]);
|
|
}
|
|
for (i = ahd->stack_size-1; i >= 0; i--) {
|
|
ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
|
|
ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
|
|
}
|
|
printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
if (paused == 0)
|
|
ahd_unpause(ahd);
|
|
}
|
|
|
|
#if 0
|
|
void
|
|
ahd_dump_scbs(struct ahd_softc *ahd)
|
|
{
|
|
ahd_mode_state saved_modes;
|
|
u_int saved_scb_index;
|
|
int i;
|
|
|
|
saved_modes = ahd_save_modes(ahd);
|
|
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
|
|
saved_scb_index = ahd_get_scbptr(ahd);
|
|
for (i = 0; i < AHD_SCB_MAX; i++) {
|
|
ahd_set_scbptr(ahd, i);
|
|
printk("%3d", i);
|
|
printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
|
|
ahd_inb_scbram(ahd, SCB_CONTROL),
|
|
ahd_inb_scbram(ahd, SCB_SCSIID),
|
|
ahd_inw_scbram(ahd, SCB_NEXT),
|
|
ahd_inw_scbram(ahd, SCB_NEXT2),
|
|
ahd_inl_scbram(ahd, SCB_SGPTR),
|
|
ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
|
|
}
|
|
printk("\n");
|
|
ahd_set_scbptr(ahd, saved_scb_index);
|
|
ahd_restore_modes(ahd, saved_modes);
|
|
}
|
|
#endif /* 0 */
|
|
|
|
/**************************** Flexport Logic **********************************/
|
|
/*
|
|
* Read count 16bit words from 16bit word address start_addr from the
|
|
* SEEPROM attached to the controller, into buf, using the controller's
|
|
* SEEPROM reading state machine. Optionally treat the data as a byte
|
|
* stream in terms of byte order.
|
|
*/
|
|
int
|
|
ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
|
|
u_int start_addr, u_int count, int bytestream)
|
|
{
|
|
u_int cur_addr;
|
|
u_int end_addr;
|
|
int error;
|
|
|
|
/*
|
|
* If we never make it through the loop even once,
|
|
* we were passed invalid arguments.
|
|
*/
|
|
error = EINVAL;
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
end_addr = start_addr + count;
|
|
for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
|
|
|
|
ahd_outb(ahd, SEEADR, cur_addr);
|
|
ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
|
|
|
|
error = ahd_wait_seeprom(ahd);
|
|
if (error)
|
|
break;
|
|
if (bytestream != 0) {
|
|
uint8_t *bytestream_ptr;
|
|
|
|
bytestream_ptr = (uint8_t *)buf;
|
|
*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
|
|
*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
|
|
} else {
|
|
/*
|
|
* ahd_inw() already handles machine byte order.
|
|
*/
|
|
*buf = ahd_inw(ahd, SEEDAT);
|
|
}
|
|
buf++;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Write count 16bit words from buf, into SEEPROM attache to the
|
|
* controller starting at 16bit word address start_addr, using the
|
|
* controller's SEEPROM writing state machine.
|
|
*/
|
|
int
|
|
ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
|
|
u_int start_addr, u_int count)
|
|
{
|
|
u_int cur_addr;
|
|
u_int end_addr;
|
|
int error;
|
|
int retval;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
error = ENOENT;
|
|
|
|
/* Place the chip into write-enable mode */
|
|
ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
|
|
ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
|
|
error = ahd_wait_seeprom(ahd);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Write the data. If we don't get through the loop at
|
|
* least once, the arguments were invalid.
|
|
*/
|
|
retval = EINVAL;
|
|
end_addr = start_addr + count;
|
|
for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
|
|
ahd_outw(ahd, SEEDAT, *buf++);
|
|
ahd_outb(ahd, SEEADR, cur_addr);
|
|
ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
|
|
|
|
retval = ahd_wait_seeprom(ahd);
|
|
if (retval)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Disable writes.
|
|
*/
|
|
ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
|
|
ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
|
|
error = ahd_wait_seeprom(ahd);
|
|
if (error)
|
|
return (error);
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Wait ~100us for the serial eeprom to satisfy our request.
|
|
*/
|
|
static int
|
|
ahd_wait_seeprom(struct ahd_softc *ahd)
|
|
{
|
|
int cnt;
|
|
|
|
cnt = 5000;
|
|
while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
|
|
ahd_delay(5);
|
|
|
|
if (cnt == 0)
|
|
return (ETIMEDOUT);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Validate the two checksums in the per_channel
|
|
* vital product data struct.
|
|
*/
|
|
static int
|
|
ahd_verify_vpd_cksum(struct vpd_config *vpd)
|
|
{
|
|
int i;
|
|
int maxaddr;
|
|
uint32_t checksum;
|
|
uint8_t *vpdarray;
|
|
|
|
vpdarray = (uint8_t *)vpd;
|
|
maxaddr = offsetof(struct vpd_config, vpd_checksum);
|
|
checksum = 0;
|
|
for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
|
|
checksum = checksum + vpdarray[i];
|
|
if (checksum == 0
|
|
|| (-checksum & 0xFF) != vpd->vpd_checksum)
|
|
return (0);
|
|
|
|
checksum = 0;
|
|
maxaddr = offsetof(struct vpd_config, checksum);
|
|
for (i = offsetof(struct vpd_config, default_target_flags);
|
|
i < maxaddr; i++)
|
|
checksum = checksum + vpdarray[i];
|
|
if (checksum == 0
|
|
|| (-checksum & 0xFF) != vpd->checksum)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
ahd_verify_cksum(struct seeprom_config *sc)
|
|
{
|
|
int i;
|
|
int maxaddr;
|
|
uint32_t checksum;
|
|
uint16_t *scarray;
|
|
|
|
maxaddr = (sizeof(*sc)/2) - 1;
|
|
checksum = 0;
|
|
scarray = (uint16_t *)sc;
|
|
|
|
for (i = 0; i < maxaddr; i++)
|
|
checksum = checksum + scarray[i];
|
|
if (checksum == 0
|
|
|| (checksum & 0xFFFF) != sc->checksum) {
|
|
return (0);
|
|
} else {
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
int
|
|
ahd_acquire_seeprom(struct ahd_softc *ahd)
|
|
{
|
|
/*
|
|
* We should be able to determine the SEEPROM type
|
|
* from the flexport logic, but unfortunately not
|
|
* all implementations have this logic and there is
|
|
* no programatic method for determining if the logic
|
|
* is present.
|
|
*/
|
|
return (1);
|
|
#if 0
|
|
uint8_t seetype;
|
|
int error;
|
|
|
|
error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
|
|
if (error != 0
|
|
|| ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
|
|
return (0);
|
|
return (1);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ahd_release_seeprom(struct ahd_softc *ahd)
|
|
{
|
|
/* Currently a no-op */
|
|
}
|
|
|
|
/*
|
|
* Wait at most 2 seconds for flexport arbitration to succeed.
|
|
*/
|
|
static int
|
|
ahd_wait_flexport(struct ahd_softc *ahd)
|
|
{
|
|
int cnt;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
cnt = 1000000 * 2 / 5;
|
|
while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
|
|
ahd_delay(5);
|
|
|
|
if (cnt == 0)
|
|
return (ETIMEDOUT);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
|
|
{
|
|
int error;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
if (addr > 7)
|
|
panic("ahd_write_flexport: address out of range");
|
|
ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
|
|
error = ahd_wait_flexport(ahd);
|
|
if (error != 0)
|
|
return (error);
|
|
ahd_outb(ahd, BRDDAT, value);
|
|
ahd_flush_device_writes(ahd);
|
|
ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
|
|
ahd_flush_device_writes(ahd);
|
|
ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
|
|
ahd_flush_device_writes(ahd);
|
|
ahd_outb(ahd, BRDCTL, 0);
|
|
ahd_flush_device_writes(ahd);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
|
|
{
|
|
int error;
|
|
|
|
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
|
|
if (addr > 7)
|
|
panic("ahd_read_flexport: address out of range");
|
|
ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
|
|
error = ahd_wait_flexport(ahd);
|
|
if (error != 0)
|
|
return (error);
|
|
*value = ahd_inb(ahd, BRDDAT);
|
|
ahd_outb(ahd, BRDCTL, 0);
|
|
ahd_flush_device_writes(ahd);
|
|
return (0);
|
|
}
|
|
|
|
/************************* Target Mode ****************************************/
|
|
#ifdef AHD_TARGET_MODE
|
|
cam_status
|
|
ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
|
|
struct ahd_tmode_tstate **tstate,
|
|
struct ahd_tmode_lstate **lstate,
|
|
int notfound_failure)
|
|
{
|
|
|
|
if ((ahd->features & AHD_TARGETMODE) == 0)
|
|
return (CAM_REQ_INVALID);
|
|
|
|
/*
|
|
* Handle the 'black hole' device that sucks up
|
|
* requests to unattached luns on enabled targets.
|
|
*/
|
|
if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
|
|
&& ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
|
|
*tstate = NULL;
|
|
*lstate = ahd->black_hole;
|
|
} else {
|
|
u_int max_id;
|
|
|
|
max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
|
|
if (ccb->ccb_h.target_id >= max_id)
|
|
return (CAM_TID_INVALID);
|
|
|
|
if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
|
|
return (CAM_LUN_INVALID);
|
|
|
|
*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
|
|
*lstate = NULL;
|
|
if (*tstate != NULL)
|
|
*lstate =
|
|
(*tstate)->enabled_luns[ccb->ccb_h.target_lun];
|
|
}
|
|
|
|
if (notfound_failure != 0 && *lstate == NULL)
|
|
return (CAM_PATH_INVALID);
|
|
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
void
|
|
ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
#if NOT_YET
|
|
struct ahd_tmode_tstate *tstate;
|
|
struct ahd_tmode_lstate *lstate;
|
|
struct ccb_en_lun *cel;
|
|
cam_status status;
|
|
u_int target;
|
|
u_int lun;
|
|
u_int target_mask;
|
|
u_long s;
|
|
char channel;
|
|
|
|
status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
|
|
/*notfound_failure*/FALSE);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
ccb->ccb_h.status = status;
|
|
return;
|
|
}
|
|
|
|
if ((ahd->features & AHD_MULTIROLE) != 0) {
|
|
u_int our_id;
|
|
|
|
our_id = ahd->our_id;
|
|
if (ccb->ccb_h.target_id != our_id) {
|
|
if ((ahd->features & AHD_MULTI_TID) != 0
|
|
&& (ahd->flags & AHD_INITIATORROLE) != 0) {
|
|
/*
|
|
* Only allow additional targets if
|
|
* the initiator role is disabled.
|
|
* The hardware cannot handle a re-select-in
|
|
* on the initiator id during a re-select-out
|
|
* on a different target id.
|
|
*/
|
|
status = CAM_TID_INVALID;
|
|
} else if ((ahd->flags & AHD_INITIATORROLE) != 0
|
|
|| ahd->enabled_luns > 0) {
|
|
/*
|
|
* Only allow our target id to change
|
|
* if the initiator role is not configured
|
|
* and there are no enabled luns which
|
|
* are attached to the currently registered
|
|
* scsi id.
|
|
*/
|
|
status = CAM_TID_INVALID;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
ccb->ccb_h.status = status;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We now have an id that is valid.
|
|
* If we aren't in target mode, switch modes.
|
|
*/
|
|
if ((ahd->flags & AHD_TARGETROLE) == 0
|
|
&& ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
|
|
u_long s;
|
|
|
|
printk("Configuring Target Mode\n");
|
|
ahd_lock(ahd, &s);
|
|
if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
|
|
ccb->ccb_h.status = CAM_BUSY;
|
|
ahd_unlock(ahd, &s);
|
|
return;
|
|
}
|
|
ahd->flags |= AHD_TARGETROLE;
|
|
if ((ahd->features & AHD_MULTIROLE) == 0)
|
|
ahd->flags &= ~AHD_INITIATORROLE;
|
|
ahd_pause(ahd);
|
|
ahd_loadseq(ahd);
|
|
ahd_restart(ahd);
|
|
ahd_unlock(ahd, &s);
|
|
}
|
|
cel = &ccb->cel;
|
|
target = ccb->ccb_h.target_id;
|
|
lun = ccb->ccb_h.target_lun;
|
|
channel = SIM_CHANNEL(ahd, sim);
|
|
target_mask = 0x01 << target;
|
|
if (channel == 'B')
|
|
target_mask <<= 8;
|
|
|
|
if (cel->enable != 0) {
|
|
u_int scsiseq1;
|
|
|
|
/* Are we already enabled?? */
|
|
if (lstate != NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Lun already enabled\n");
|
|
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
|
|
return;
|
|
}
|
|
|
|
if (cel->grp6_len != 0
|
|
|| cel->grp7_len != 0) {
|
|
/*
|
|
* Don't (yet?) support vendor
|
|
* specific commands.
|
|
*/
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
printk("Non-zero Group Codes\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Seems to be okay.
|
|
* Setup our data structures.
|
|
*/
|
|
if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
|
|
tstate = ahd_alloc_tstate(ahd, target, channel);
|
|
if (tstate == NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate tstate\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
}
|
|
lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
|
|
if (lstate == NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate lstate\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
status = xpt_create_path(&lstate->path, /*periph*/NULL,
|
|
xpt_path_path_id(ccb->ccb_h.path),
|
|
xpt_path_target_id(ccb->ccb_h.path),
|
|
xpt_path_lun_id(ccb->ccb_h.path));
|
|
if (status != CAM_REQ_CMP) {
|
|
kfree(lstate);
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate path\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
SLIST_INIT(&lstate->accept_tios);
|
|
SLIST_INIT(&lstate->immed_notifies);
|
|
ahd_lock(ahd, &s);
|
|
ahd_pause(ahd);
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
tstate->enabled_luns[lun] = lstate;
|
|
ahd->enabled_luns++;
|
|
|
|
if ((ahd->features & AHD_MULTI_TID) != 0) {
|
|
u_int targid_mask;
|
|
|
|
targid_mask = ahd_inw(ahd, TARGID);
|
|
targid_mask |= target_mask;
|
|
ahd_outw(ahd, TARGID, targid_mask);
|
|
ahd_update_scsiid(ahd, targid_mask);
|
|
} else {
|
|
u_int our_id;
|
|
char channel;
|
|
|
|
channel = SIM_CHANNEL(ahd, sim);
|
|
our_id = SIM_SCSI_ID(ahd, sim);
|
|
|
|
/*
|
|
* This can only happen if selections
|
|
* are not enabled
|
|
*/
|
|
if (target != our_id) {
|
|
u_int sblkctl;
|
|
char cur_channel;
|
|
int swap;
|
|
|
|
sblkctl = ahd_inb(ahd, SBLKCTL);
|
|
cur_channel = (sblkctl & SELBUSB)
|
|
? 'B' : 'A';
|
|
if ((ahd->features & AHD_TWIN) == 0)
|
|
cur_channel = 'A';
|
|
swap = cur_channel != channel;
|
|
ahd->our_id = target;
|
|
|
|
if (swap)
|
|
ahd_outb(ahd, SBLKCTL,
|
|
sblkctl ^ SELBUSB);
|
|
|
|
ahd_outb(ahd, SCSIID, target);
|
|
|
|
if (swap)
|
|
ahd_outb(ahd, SBLKCTL, sblkctl);
|
|
}
|
|
}
|
|
} else
|
|
ahd->black_hole = lstate;
|
|
/* Allow select-in operations */
|
|
if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
|
|
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
|
|
scsiseq1 |= ENSELI;
|
|
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
|
|
scsiseq1 = ahd_inb(ahd, SCSISEQ1);
|
|
scsiseq1 |= ENSELI;
|
|
ahd_outb(ahd, SCSISEQ1, scsiseq1);
|
|
}
|
|
ahd_unpause(ahd);
|
|
ahd_unlock(ahd, &s);
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Lun now enabled for target mode\n");
|
|
} else {
|
|
struct scb *scb;
|
|
int i, empty;
|
|
|
|
if (lstate == NULL) {
|
|
ccb->ccb_h.status = CAM_LUN_INVALID;
|
|
return;
|
|
}
|
|
|
|
ahd_lock(ahd, &s);
|
|
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
|
|
struct ccb_hdr *ccbh;
|
|
|
|
ccbh = &scb->io_ctx->ccb_h;
|
|
if (ccbh->func_code == XPT_CONT_TARGET_IO
|
|
&& !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
|
|
printk("CTIO pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
ahd_unlock(ahd, &s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
|
|
printk("ATIOs pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
}
|
|
|
|
if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
|
|
printk("INOTs pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
}
|
|
|
|
if (ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
ahd_unlock(ahd, &s);
|
|
return;
|
|
}
|
|
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Target mode disabled\n");
|
|
xpt_free_path(lstate->path);
|
|
kfree(lstate);
|
|
|
|
ahd_pause(ahd);
|
|
/* Can we clean up the target too? */
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
tstate->enabled_luns[lun] = NULL;
|
|
ahd->enabled_luns--;
|
|
for (empty = 1, i = 0; i < 8; i++)
|
|
if (tstate->enabled_luns[i] != NULL) {
|
|
empty = 0;
|
|
break;
|
|
}
|
|
|
|
if (empty) {
|
|
ahd_free_tstate(ahd, target, channel,
|
|
/*force*/FALSE);
|
|
if (ahd->features & AHD_MULTI_TID) {
|
|
u_int targid_mask;
|
|
|
|
targid_mask = ahd_inw(ahd, TARGID);
|
|
targid_mask &= ~target_mask;
|
|
ahd_outw(ahd, TARGID, targid_mask);
|
|
ahd_update_scsiid(ahd, targid_mask);
|
|
}
|
|
}
|
|
} else {
|
|
|
|
ahd->black_hole = NULL;
|
|
|
|
/*
|
|
* We can't allow selections without
|
|
* our black hole device.
|
|
*/
|
|
empty = TRUE;
|
|
}
|
|
if (ahd->enabled_luns == 0) {
|
|
/* Disallow select-in */
|
|
u_int scsiseq1;
|
|
|
|
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
|
|
scsiseq1 &= ~ENSELI;
|
|
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
|
|
scsiseq1 = ahd_inb(ahd, SCSISEQ1);
|
|
scsiseq1 &= ~ENSELI;
|
|
ahd_outb(ahd, SCSISEQ1, scsiseq1);
|
|
|
|
if ((ahd->features & AHD_MULTIROLE) == 0) {
|
|
printk("Configuring Initiator Mode\n");
|
|
ahd->flags &= ~AHD_TARGETROLE;
|
|
ahd->flags |= AHD_INITIATORROLE;
|
|
ahd_pause(ahd);
|
|
ahd_loadseq(ahd);
|
|
ahd_restart(ahd);
|
|
/*
|
|
* Unpaused. The extra unpause
|
|
* that follows is harmless.
|
|
*/
|
|
}
|
|
}
|
|
ahd_unpause(ahd);
|
|
ahd_unlock(ahd, &s);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
|
|
{
|
|
#if NOT_YET
|
|
u_int scsiid_mask;
|
|
u_int scsiid;
|
|
|
|
if ((ahd->features & AHD_MULTI_TID) == 0)
|
|
panic("ahd_update_scsiid called on non-multitid unit\n");
|
|
|
|
/*
|
|
* Since we will rely on the TARGID mask
|
|
* for selection enables, ensure that OID
|
|
* in SCSIID is not set to some other ID
|
|
* that we don't want to allow selections on.
|
|
*/
|
|
if ((ahd->features & AHD_ULTRA2) != 0)
|
|
scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
|
|
else
|
|
scsiid = ahd_inb(ahd, SCSIID);
|
|
scsiid_mask = 0x1 << (scsiid & OID);
|
|
if ((targid_mask & scsiid_mask) == 0) {
|
|
u_int our_id;
|
|
|
|
/* ffs counts from 1 */
|
|
our_id = ffs(targid_mask);
|
|
if (our_id == 0)
|
|
our_id = ahd->our_id;
|
|
else
|
|
our_id--;
|
|
scsiid &= TID;
|
|
scsiid |= our_id;
|
|
}
|
|
if ((ahd->features & AHD_ULTRA2) != 0)
|
|
ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
|
|
else
|
|
ahd_outb(ahd, SCSIID, scsiid);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
|
|
{
|
|
struct target_cmd *cmd;
|
|
|
|
ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
|
|
while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
|
|
|
|
/*
|
|
* Only advance through the queue if we
|
|
* have the resources to process the command.
|
|
*/
|
|
if (ahd_handle_target_cmd(ahd, cmd) != 0)
|
|
break;
|
|
|
|
cmd->cmd_valid = 0;
|
|
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
|
|
ahd->shared_data_map.dmamap,
|
|
ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
|
|
sizeof(struct target_cmd),
|
|
BUS_DMASYNC_PREREAD);
|
|
ahd->tqinfifonext++;
|
|
|
|
/*
|
|
* Lazily update our position in the target mode incoming
|
|
* command queue as seen by the sequencer.
|
|
*/
|
|
if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
|
|
u_int hs_mailbox;
|
|
|
|
hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
|
|
hs_mailbox &= ~HOST_TQINPOS;
|
|
hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
|
|
ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
|
|
{
|
|
struct ahd_tmode_tstate *tstate;
|
|
struct ahd_tmode_lstate *lstate;
|
|
struct ccb_accept_tio *atio;
|
|
uint8_t *byte;
|
|
int initiator;
|
|
int target;
|
|
int lun;
|
|
|
|
initiator = SCSIID_TARGET(ahd, cmd->scsiid);
|
|
target = SCSIID_OUR_ID(cmd->scsiid);
|
|
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
|
|
|
|
byte = cmd->bytes;
|
|
tstate = ahd->enabled_targets[target];
|
|
lstate = NULL;
|
|
if (tstate != NULL)
|
|
lstate = tstate->enabled_luns[lun];
|
|
|
|
/*
|
|
* Commands for disabled luns go to the black hole driver.
|
|
*/
|
|
if (lstate == NULL)
|
|
lstate = ahd->black_hole;
|
|
|
|
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
|
|
if (atio == NULL) {
|
|
ahd->flags |= AHD_TQINFIFO_BLOCKED;
|
|
/*
|
|
* Wait for more ATIOs from the peripheral driver for this lun.
|
|
*/
|
|
return (1);
|
|
} else
|
|
ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_TQIN) != 0)
|
|
printk("Incoming command from %d for %d:%d%s\n",
|
|
initiator, target, lun,
|
|
lstate == ahd->black_hole ? "(Black Holed)" : "");
|
|
#endif
|
|
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
|
|
|
|
if (lstate == ahd->black_hole) {
|
|
/* Fill in the wildcards */
|
|
atio->ccb_h.target_id = target;
|
|
atio->ccb_h.target_lun = lun;
|
|
}
|
|
|
|
/*
|
|
* Package it up and send it off to
|
|
* whomever has this lun enabled.
|
|
*/
|
|
atio->sense_len = 0;
|
|
atio->init_id = initiator;
|
|
if (byte[0] != 0xFF) {
|
|
/* Tag was included */
|
|
atio->tag_action = *byte++;
|
|
atio->tag_id = *byte++;
|
|
atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
|
|
} else {
|
|
atio->ccb_h.flags = 0;
|
|
}
|
|
byte++;
|
|
|
|
/* Okay. Now determine the cdb size based on the command code */
|
|
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
|
|
case 0:
|
|
atio->cdb_len = 6;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
atio->cdb_len = 10;
|
|
break;
|
|
case 4:
|
|
atio->cdb_len = 16;
|
|
break;
|
|
case 5:
|
|
atio->cdb_len = 12;
|
|
break;
|
|
case 3:
|
|
default:
|
|
/* Only copy the opcode. */
|
|
atio->cdb_len = 1;
|
|
printk("Reserved or VU command code type encountered\n");
|
|
break;
|
|
}
|
|
|
|
memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
|
|
|
|
atio->ccb_h.status |= CAM_CDB_RECVD;
|
|
|
|
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
|
|
/*
|
|
* We weren't allowed to disconnect.
|
|
* We're hanging on the bus until a
|
|
* continue target I/O comes in response
|
|
* to this accept tio.
|
|
*/
|
|
#ifdef AHD_DEBUG
|
|
if ((ahd_debug & AHD_SHOW_TQIN) != 0)
|
|
printk("Received Immediate Command %d:%d:%d - %p\n",
|
|
initiator, target, lun, ahd->pending_device);
|
|
#endif
|
|
ahd->pending_device = lstate;
|
|
ahd_freeze_ccb((union ccb *)atio);
|
|
atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
|
|
}
|
|
xpt_done((union ccb*)atio);
|
|
return (0);
|
|
}
|
|
|
|
#endif
|