linux/drivers/soc/ti/pruss.c
Suman Anna 0211cc1e4f soc: ti: pruss: Add helper functions to set GPI mode, MII_RT_event and XFR
The PRUSS CFG module is represented as a syscon node and is currently
managed by the PRUSS platform driver. Add easy accessor functions to set
GPI mode, MII_RT event enable/disable and XFR (XIN XOUT) enable/disable
to enable the PRUSS Ethernet usecase. These functions reuse the generic
pruss_cfg_update() API function.

Signed-off-by: Suman Anna <s-anna@ti.com>
Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>
Signed-off-by: Puranjay Mohan <p-mohan@ti.com>
Reviewed-by: Roger Quadros <rogerq@kernel.org>
Reviewed-by: Tony Lindgren <tony@atomide.com>
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: MD Danish Anwar <danishanwar@ti.com>
Link: https://lore.kernel.org/r/20230414045542.3249939-5-danishanwar@ti.com
Signed-off-by: Nishanth Menon <nm@ti.com>
2023-05-17 09:15:40 -05:00

618 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* PRU-ICSS platform driver for various TI SoCs
*
* Copyright (C) 2014-2020 Texas Instruments Incorporated - http://www.ti.com/
* Author(s):
* Suman Anna <s-anna@ti.com>
* Andrew F. Davis <afd@ti.com>
* Tero Kristo <t-kristo@ti.com>
*/
#include <linux/clk-provider.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/pruss_driver.h>
#include <linux/regmap.h>
#include <linux/remoteproc.h>
#include <linux/slab.h>
#include "pruss.h"
/**
* struct pruss_private_data - PRUSS driver private data
* @has_no_sharedram: flag to indicate the absence of PRUSS Shared Data RAM
* @has_core_mux_clock: flag to indicate the presence of PRUSS core clock
*/
struct pruss_private_data {
bool has_no_sharedram;
bool has_core_mux_clock;
};
/**
* pruss_get() - get the pruss for a given PRU remoteproc
* @rproc: remoteproc handle of a PRU instance
*
* Finds the parent pruss device for a PRU given the @rproc handle of the
* PRU remote processor. This function increments the pruss device's refcount,
* so always use pruss_put() to decrement it back once pruss isn't needed
* anymore.
*
* This API doesn't check if @rproc is valid or not. It is expected the caller
* will have done a pru_rproc_get() on @rproc, before calling this API to make
* sure that @rproc is valid.
*
* Return: pruss handle on success, and an ERR_PTR on failure using one
* of the following error values
* -EINVAL if invalid parameter
* -ENODEV if PRU device or PRUSS device is not found
*/
struct pruss *pruss_get(struct rproc *rproc)
{
struct pruss *pruss;
struct device *dev;
struct platform_device *ppdev;
if (IS_ERR_OR_NULL(rproc))
return ERR_PTR(-EINVAL);
dev = &rproc->dev;
/* make sure it is PRU rproc */
if (!dev->parent || !is_pru_rproc(dev->parent))
return ERR_PTR(-ENODEV);
ppdev = to_platform_device(dev->parent->parent);
pruss = platform_get_drvdata(ppdev);
if (!pruss)
return ERR_PTR(-ENODEV);
get_device(pruss->dev);
return pruss;
}
EXPORT_SYMBOL_GPL(pruss_get);
/**
* pruss_put() - decrement pruss device's usecount
* @pruss: pruss handle
*
* Complimentary function for pruss_get(). Needs to be called
* after the PRUSS is used, and only if the pruss_get() succeeds.
*/
void pruss_put(struct pruss *pruss)
{
if (IS_ERR_OR_NULL(pruss))
return;
put_device(pruss->dev);
}
EXPORT_SYMBOL_GPL(pruss_put);
/**
* pruss_request_mem_region() - request a memory resource
* @pruss: the pruss instance
* @mem_id: the memory resource id
* @region: pointer to memory region structure to be filled in
*
* This function allows a client driver to request a memory resource,
* and if successful, will let the client driver own the particular
* memory region until released using the pruss_release_mem_region()
* API.
*
* Return: 0 if requested memory region is available (in such case pointer to
* memory region is returned via @region), an error otherwise
*/
int pruss_request_mem_region(struct pruss *pruss, enum pruss_mem mem_id,
struct pruss_mem_region *region)
{
if (!pruss || !region || mem_id >= PRUSS_MEM_MAX)
return -EINVAL;
mutex_lock(&pruss->lock);
if (pruss->mem_in_use[mem_id]) {
mutex_unlock(&pruss->lock);
return -EBUSY;
}
*region = pruss->mem_regions[mem_id];
pruss->mem_in_use[mem_id] = region;
mutex_unlock(&pruss->lock);
return 0;
}
EXPORT_SYMBOL_GPL(pruss_request_mem_region);
/**
* pruss_release_mem_region() - release a memory resource
* @pruss: the pruss instance
* @region: the memory region to release
*
* This function is the complimentary function to
* pruss_request_mem_region(), and allows the client drivers to
* release back a memory resource.
*
* Return: 0 on success, an error code otherwise
*/
int pruss_release_mem_region(struct pruss *pruss,
struct pruss_mem_region *region)
{
int id;
if (!pruss || !region)
return -EINVAL;
mutex_lock(&pruss->lock);
/* find out the memory region being released */
for (id = 0; id < PRUSS_MEM_MAX; id++) {
if (pruss->mem_in_use[id] == region)
break;
}
if (id == PRUSS_MEM_MAX) {
mutex_unlock(&pruss->lock);
return -EINVAL;
}
pruss->mem_in_use[id] = NULL;
mutex_unlock(&pruss->lock);
return 0;
}
EXPORT_SYMBOL_GPL(pruss_release_mem_region);
/**
* pruss_cfg_get_gpmux() - get the current GPMUX value for a PRU device
* @pruss: pruss instance
* @pru_id: PRU identifier (0-1)
* @mux: pointer to store the current mux value into
*
* Return: 0 on success, or an error code otherwise
*/
int pruss_cfg_get_gpmux(struct pruss *pruss, enum pruss_pru_id pru_id, u8 *mux)
{
int ret;
u32 val;
if (pru_id >= PRUSS_NUM_PRUS || !mux)
return -EINVAL;
ret = pruss_cfg_read(pruss, PRUSS_CFG_GPCFG(pru_id), &val);
if (!ret)
*mux = (u8)((val & PRUSS_GPCFG_PRU_MUX_SEL_MASK) >>
PRUSS_GPCFG_PRU_MUX_SEL_SHIFT);
return ret;
}
EXPORT_SYMBOL_GPL(pruss_cfg_get_gpmux);
/**
* pruss_cfg_set_gpmux() - set the GPMUX value for a PRU device
* @pruss: pruss instance
* @pru_id: PRU identifier (0-1)
* @mux: new mux value for PRU
*
* Return: 0 on success, or an error code otherwise
*/
int pruss_cfg_set_gpmux(struct pruss *pruss, enum pruss_pru_id pru_id, u8 mux)
{
if (mux >= PRUSS_GP_MUX_SEL_MAX ||
pru_id >= PRUSS_NUM_PRUS)
return -EINVAL;
return pruss_cfg_update(pruss, PRUSS_CFG_GPCFG(pru_id),
PRUSS_GPCFG_PRU_MUX_SEL_MASK,
(u32)mux << PRUSS_GPCFG_PRU_MUX_SEL_SHIFT);
}
EXPORT_SYMBOL_GPL(pruss_cfg_set_gpmux);
/**
* pruss_cfg_gpimode() - set the GPI mode of the PRU
* @pruss: the pruss instance handle
* @pru_id: id of the PRU core within the PRUSS
* @mode: GPI mode to set
*
* Sets the GPI mode for a given PRU by programming the
* corresponding PRUSS_CFG_GPCFGx register
*
* Return: 0 on success, or an error code otherwise
*/
int pruss_cfg_gpimode(struct pruss *pruss, enum pruss_pru_id pru_id,
enum pruss_gpi_mode mode)
{
if (pru_id >= PRUSS_NUM_PRUS || mode >= PRUSS_GPI_MODE_MAX)
return -EINVAL;
return pruss_cfg_update(pruss, PRUSS_CFG_GPCFG(pru_id),
PRUSS_GPCFG_PRU_GPI_MODE_MASK,
mode << PRUSS_GPCFG_PRU_GPI_MODE_SHIFT);
}
EXPORT_SYMBOL_GPL(pruss_cfg_gpimode);
/**
* pruss_cfg_miirt_enable() - Enable/disable MII RT Events
* @pruss: the pruss instance
* @enable: enable/disable
*
* Enable/disable the MII RT Events for the PRUSS.
*
* Return: 0 on success, or an error code otherwise
*/
int pruss_cfg_miirt_enable(struct pruss *pruss, bool enable)
{
u32 set = enable ? PRUSS_MII_RT_EVENT_EN : 0;
return pruss_cfg_update(pruss, PRUSS_CFG_MII_RT,
PRUSS_MII_RT_EVENT_EN, set);
}
EXPORT_SYMBOL_GPL(pruss_cfg_miirt_enable);
/**
* pruss_cfg_xfr_enable() - Enable/disable XIN XOUT shift functionality
* @pruss: the pruss instance
* @pru_type: PRU core type identifier
* @enable: enable/disable
*
* Return: 0 on success, or an error code otherwise
*/
int pruss_cfg_xfr_enable(struct pruss *pruss, enum pru_type pru_type,
bool enable)
{
u32 mask, set;
switch (pru_type) {
case PRU_TYPE_PRU:
mask = PRUSS_SPP_XFER_SHIFT_EN;
break;
case PRU_TYPE_RTU:
mask = PRUSS_SPP_RTU_XFR_SHIFT_EN;
break;
default:
return -EINVAL;
}
set = enable ? mask : 0;
return pruss_cfg_update(pruss, PRUSS_CFG_SPP, mask, set);
}
EXPORT_SYMBOL_GPL(pruss_cfg_xfr_enable);
static void pruss_of_free_clk_provider(void *data)
{
struct device_node *clk_mux_np = data;
of_clk_del_provider(clk_mux_np);
of_node_put(clk_mux_np);
}
static void pruss_clk_unregister_mux(void *data)
{
clk_unregister_mux(data);
}
static int pruss_clk_mux_setup(struct pruss *pruss, struct clk *clk_mux,
char *mux_name, struct device_node *clks_np)
{
struct device_node *clk_mux_np;
struct device *dev = pruss->dev;
char *clk_mux_name;
unsigned int num_parents;
const char **parent_names;
void __iomem *reg;
u32 reg_offset;
int ret;
clk_mux_np = of_get_child_by_name(clks_np, mux_name);
if (!clk_mux_np) {
dev_err(dev, "%pOF is missing its '%s' node\n", clks_np,
mux_name);
return -ENODEV;
}
num_parents = of_clk_get_parent_count(clk_mux_np);
if (num_parents < 1) {
dev_err(dev, "mux-clock %pOF must have parents\n", clk_mux_np);
ret = -EINVAL;
goto put_clk_mux_np;
}
parent_names = devm_kcalloc(dev, sizeof(*parent_names), num_parents,
GFP_KERNEL);
if (!parent_names) {
ret = -ENOMEM;
goto put_clk_mux_np;
}
of_clk_parent_fill(clk_mux_np, parent_names, num_parents);
clk_mux_name = devm_kasprintf(dev, GFP_KERNEL, "%s.%pOFn",
dev_name(dev), clk_mux_np);
if (!clk_mux_name) {
ret = -ENOMEM;
goto put_clk_mux_np;
}
ret = of_property_read_u32(clk_mux_np, "reg", &reg_offset);
if (ret)
goto put_clk_mux_np;
reg = pruss->cfg_base + reg_offset;
clk_mux = clk_register_mux(NULL, clk_mux_name, parent_names,
num_parents, 0, reg, 0, 1, 0, NULL);
if (IS_ERR(clk_mux)) {
ret = PTR_ERR(clk_mux);
goto put_clk_mux_np;
}
ret = devm_add_action_or_reset(dev, pruss_clk_unregister_mux, clk_mux);
if (ret) {
dev_err(dev, "failed to add clkmux unregister action %d", ret);
goto put_clk_mux_np;
}
ret = of_clk_add_provider(clk_mux_np, of_clk_src_simple_get, clk_mux);
if (ret)
goto put_clk_mux_np;
ret = devm_add_action_or_reset(dev, pruss_of_free_clk_provider,
clk_mux_np);
if (ret) {
dev_err(dev, "failed to add clkmux free action %d", ret);
goto put_clk_mux_np;
}
return 0;
put_clk_mux_np:
of_node_put(clk_mux_np);
return ret;
}
static int pruss_clk_init(struct pruss *pruss, struct device_node *cfg_node)
{
const struct pruss_private_data *data;
struct device_node *clks_np;
struct device *dev = pruss->dev;
int ret = 0;
data = of_device_get_match_data(dev);
clks_np = of_get_child_by_name(cfg_node, "clocks");
if (!clks_np) {
dev_err(dev, "%pOF is missing its 'clocks' node\n", cfg_node);
return -ENODEV;
}
if (data && data->has_core_mux_clock) {
ret = pruss_clk_mux_setup(pruss, pruss->core_clk_mux,
"coreclk-mux", clks_np);
if (ret) {
dev_err(dev, "failed to setup coreclk-mux\n");
goto put_clks_node;
}
}
ret = pruss_clk_mux_setup(pruss, pruss->iep_clk_mux, "iepclk-mux",
clks_np);
if (ret) {
dev_err(dev, "failed to setup iepclk-mux\n");
goto put_clks_node;
}
put_clks_node:
of_node_put(clks_np);
return ret;
}
static struct regmap_config regmap_conf = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static int pruss_cfg_of_init(struct device *dev, struct pruss *pruss)
{
struct device_node *np = dev_of_node(dev);
struct device_node *child;
struct resource res;
int ret;
child = of_get_child_by_name(np, "cfg");
if (!child) {
dev_err(dev, "%pOF is missing its 'cfg' node\n", child);
return -ENODEV;
}
if (of_address_to_resource(child, 0, &res)) {
ret = -ENOMEM;
goto node_put;
}
pruss->cfg_base = devm_ioremap(dev, res.start, resource_size(&res));
if (!pruss->cfg_base) {
ret = -ENOMEM;
goto node_put;
}
regmap_conf.name = kasprintf(GFP_KERNEL, "%pOFn@%llx", child,
(u64)res.start);
regmap_conf.max_register = resource_size(&res) - 4;
pruss->cfg_regmap = devm_regmap_init_mmio(dev, pruss->cfg_base,
&regmap_conf);
kfree(regmap_conf.name);
if (IS_ERR(pruss->cfg_regmap)) {
dev_err(dev, "regmap_init_mmio failed for cfg, ret = %ld\n",
PTR_ERR(pruss->cfg_regmap));
ret = PTR_ERR(pruss->cfg_regmap);
goto node_put;
}
ret = pruss_clk_init(pruss, child);
if (ret)
dev_err(dev, "pruss_clk_init failed, ret = %d\n", ret);
node_put:
of_node_put(child);
return ret;
}
static int pruss_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev_of_node(dev);
struct device_node *child;
struct pruss *pruss;
struct resource res;
int ret, i, index;
const struct pruss_private_data *data;
const char *mem_names[PRUSS_MEM_MAX] = { "dram0", "dram1", "shrdram2" };
data = of_device_get_match_data(&pdev->dev);
ret = dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "failed to set the DMA coherent mask");
return ret;
}
pruss = devm_kzalloc(dev, sizeof(*pruss), GFP_KERNEL);
if (!pruss)
return -ENOMEM;
pruss->dev = dev;
mutex_init(&pruss->lock);
child = of_get_child_by_name(np, "memories");
if (!child) {
dev_err(dev, "%pOF is missing its 'memories' node\n", child);
return -ENODEV;
}
for (i = 0; i < PRUSS_MEM_MAX; i++) {
/*
* On AM437x one of two PRUSS units don't contain Shared RAM,
* skip it
*/
if (data && data->has_no_sharedram && i == PRUSS_MEM_SHRD_RAM2)
continue;
index = of_property_match_string(child, "reg-names",
mem_names[i]);
if (index < 0) {
of_node_put(child);
return index;
}
if (of_address_to_resource(child, index, &res)) {
of_node_put(child);
return -EINVAL;
}
pruss->mem_regions[i].va = devm_ioremap(dev, res.start,
resource_size(&res));
if (!pruss->mem_regions[i].va) {
dev_err(dev, "failed to parse and map memory resource %d %s\n",
i, mem_names[i]);
of_node_put(child);
return -ENOMEM;
}
pruss->mem_regions[i].pa = res.start;
pruss->mem_regions[i].size = resource_size(&res);
dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
mem_names[i], &pruss->mem_regions[i].pa,
pruss->mem_regions[i].size, pruss->mem_regions[i].va);
}
of_node_put(child);
platform_set_drvdata(pdev, pruss);
pm_runtime_enable(dev);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "couldn't enable module\n");
goto rpm_disable;
}
ret = pruss_cfg_of_init(dev, pruss);
if (ret < 0)
goto rpm_put;
ret = devm_of_platform_populate(dev);
if (ret) {
dev_err(dev, "failed to register child devices\n");
goto rpm_put;
}
return 0;
rpm_put:
pm_runtime_put_sync(dev);
rpm_disable:
pm_runtime_disable(dev);
return ret;
}
static int pruss_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
devm_of_platform_depopulate(dev);
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
return 0;
}
/* instance-specific driver private data */
static const struct pruss_private_data am437x_pruss1_data = {
.has_no_sharedram = false,
};
static const struct pruss_private_data am437x_pruss0_data = {
.has_no_sharedram = true,
};
static const struct pruss_private_data am65x_j721e_pruss_data = {
.has_core_mux_clock = true,
};
static const struct of_device_id pruss_of_match[] = {
{ .compatible = "ti,am3356-pruss" },
{ .compatible = "ti,am4376-pruss0", .data = &am437x_pruss0_data, },
{ .compatible = "ti,am4376-pruss1", .data = &am437x_pruss1_data, },
{ .compatible = "ti,am5728-pruss" },
{ .compatible = "ti,k2g-pruss" },
{ .compatible = "ti,am654-icssg", .data = &am65x_j721e_pruss_data, },
{ .compatible = "ti,j721e-icssg", .data = &am65x_j721e_pruss_data, },
{ .compatible = "ti,am642-icssg", .data = &am65x_j721e_pruss_data, },
{ .compatible = "ti,am625-pruss", .data = &am65x_j721e_pruss_data, },
{},
};
MODULE_DEVICE_TABLE(of, pruss_of_match);
static struct platform_driver pruss_driver = {
.driver = {
.name = "pruss",
.of_match_table = pruss_of_match,
},
.probe = pruss_probe,
.remove = pruss_remove,
};
module_platform_driver(pruss_driver);
MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
MODULE_DESCRIPTION("PRU-ICSS Subsystem Driver");
MODULE_LICENSE("GPL v2");