linux/mm/memblock.c
Mike Rapoport a7259df767 memblock: make memblock_find_in_range method private
There are a lot of uses of memblock_find_in_range() along with
memblock_reserve() from the times memblock allocation APIs did not exist.

memblock_find_in_range() is the very core of memblock allocations, so any
future changes to its internal behaviour would mandate updates of all the
users outside memblock.

Replace the calls to memblock_find_in_range() with an equivalent calls to
memblock_phys_alloc() and memblock_phys_alloc_range() and make
memblock_find_in_range() private method of memblock.

This simplifies the callers, ensures that (unlikely) errors in
memblock_reserve() are handled and improves maintainability of
memblock_find_in_range().

Link: https://lkml.kernel.org/r/20210816122622.30279-1-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>		[arm64]
Acked-by: Kirill A. Shutemov <kirill.shtuemov@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>	[ACPI]
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Nick Kossifidis <mick@ics.forth.gr>			[riscv]
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:17 -07:00

2118 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/poison.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>
#include <linux/kmemleak.h>
#include <linux/seq_file.h>
#include <linux/memblock.h>
#include <asm/sections.h>
#include <linux/io.h>
#include "internal.h"
#define INIT_MEMBLOCK_REGIONS 128
#define INIT_PHYSMEM_REGIONS 4
#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
#endif
/**
* DOC: memblock overview
*
* Memblock is a method of managing memory regions during the early
* boot period when the usual kernel memory allocators are not up and
* running.
*
* Memblock views the system memory as collections of contiguous
* regions. There are several types of these collections:
*
* * ``memory`` - describes the physical memory available to the
* kernel; this may differ from the actual physical memory installed
* in the system, for instance when the memory is restricted with
* ``mem=`` command line parameter
* * ``reserved`` - describes the regions that were allocated
* * ``physmem`` - describes the actual physical memory available during
* boot regardless of the possible restrictions and memory hot(un)plug;
* the ``physmem`` type is only available on some architectures.
*
* Each region is represented by struct memblock_region that
* defines the region extents, its attributes and NUMA node id on NUMA
* systems. Every memory type is described by the struct memblock_type
* which contains an array of memory regions along with
* the allocator metadata. The "memory" and "reserved" types are nicely
* wrapped with struct memblock. This structure is statically
* initialized at build time. The region arrays are initially sized to
* %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
* for "reserved". The region array for "physmem" is initially sized to
* %INIT_PHYSMEM_REGIONS.
* The memblock_allow_resize() enables automatic resizing of the region
* arrays during addition of new regions. This feature should be used
* with care so that memory allocated for the region array will not
* overlap with areas that should be reserved, for example initrd.
*
* The early architecture setup should tell memblock what the physical
* memory layout is by using memblock_add() or memblock_add_node()
* functions. The first function does not assign the region to a NUMA
* node and it is appropriate for UMA systems. Yet, it is possible to
* use it on NUMA systems as well and assign the region to a NUMA node
* later in the setup process using memblock_set_node(). The
* memblock_add_node() performs such an assignment directly.
*
* Once memblock is setup the memory can be allocated using one of the
* API variants:
*
* * memblock_phys_alloc*() - these functions return the **physical**
* address of the allocated memory
* * memblock_alloc*() - these functions return the **virtual** address
* of the allocated memory.
*
* Note, that both API variants use implicit assumptions about allowed
* memory ranges and the fallback methods. Consult the documentation
* of memblock_alloc_internal() and memblock_alloc_range_nid()
* functions for more elaborate description.
*
* As the system boot progresses, the architecture specific mem_init()
* function frees all the memory to the buddy page allocator.
*
* Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
* memblock data structures (except "physmem") will be discarded after the
* system initialization completes.
*/
#ifndef CONFIG_NUMA
struct pglist_data __refdata contig_page_data;
EXPORT_SYMBOL(contig_page_data);
#endif
unsigned long max_low_pfn;
unsigned long min_low_pfn;
unsigned long max_pfn;
unsigned long long max_possible_pfn;
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
#endif
struct memblock memblock __initdata_memblock = {
.memory.regions = memblock_memory_init_regions,
.memory.cnt = 1, /* empty dummy entry */
.memory.max = INIT_MEMBLOCK_REGIONS,
.memory.name = "memory",
.reserved.regions = memblock_reserved_init_regions,
.reserved.cnt = 1, /* empty dummy entry */
.reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
.reserved.name = "reserved",
.bottom_up = false,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
};
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
struct memblock_type physmem = {
.regions = memblock_physmem_init_regions,
.cnt = 1, /* empty dummy entry */
.max = INIT_PHYSMEM_REGIONS,
.name = "physmem",
};
#endif
/*
* keep a pointer to &memblock.memory in the text section to use it in
* __next_mem_range() and its helpers.
* For architectures that do not keep memblock data after init, this
* pointer will be reset to NULL at memblock_discard()
*/
static __refdata struct memblock_type *memblock_memory = &memblock.memory;
#define for_each_memblock_type(i, memblock_type, rgn) \
for (i = 0, rgn = &memblock_type->regions[0]; \
i < memblock_type->cnt; \
i++, rgn = &memblock_type->regions[i])
#define memblock_dbg(fmt, ...) \
do { \
if (memblock_debug) \
pr_info(fmt, ##__VA_ARGS__); \
} while (0)
static int memblock_debug __initdata_memblock;
static bool system_has_some_mirror __initdata_memblock = false;
static int memblock_can_resize __initdata_memblock;
static int memblock_memory_in_slab __initdata_memblock = 0;
static int memblock_reserved_in_slab __initdata_memblock = 0;
static enum memblock_flags __init_memblock choose_memblock_flags(void)
{
return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
}
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
{
return *size = min(*size, PHYS_ADDR_MAX - base);
}
/*
* Address comparison utilities
*/
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
phys_addr_t base2, phys_addr_t size2)
{
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}
bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
phys_addr_t base, phys_addr_t size)
{
unsigned long i;
memblock_cap_size(base, &size);
for (i = 0; i < type->cnt; i++)
if (memblock_addrs_overlap(base, size, type->regions[i].base,
type->regions[i].size))
break;
return i < type->cnt;
}
/**
* __memblock_find_range_bottom_up - find free area utility in bottom-up
* @start: start of candidate range
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
* %MEMBLOCK_ALLOC_ACCESSIBLE
* @size: size of free area to find
* @align: alignment of free area to find
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
* @flags: pick from blocks based on memory attributes
*
* Utility called from memblock_find_in_range_node(), find free area bottom-up.
*
* Return:
* Found address on success, 0 on failure.
*/
static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
phys_addr_t size, phys_addr_t align, int nid,
enum memblock_flags flags)
{
phys_addr_t this_start, this_end, cand;
u64 i;
for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
this_start = clamp(this_start, start, end);
this_end = clamp(this_end, start, end);
cand = round_up(this_start, align);
if (cand < this_end && this_end - cand >= size)
return cand;
}
return 0;
}
/**
* __memblock_find_range_top_down - find free area utility, in top-down
* @start: start of candidate range
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
* %MEMBLOCK_ALLOC_ACCESSIBLE
* @size: size of free area to find
* @align: alignment of free area to find
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
* @flags: pick from blocks based on memory attributes
*
* Utility called from memblock_find_in_range_node(), find free area top-down.
*
* Return:
* Found address on success, 0 on failure.
*/
static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
phys_addr_t size, phys_addr_t align, int nid,
enum memblock_flags flags)
{
phys_addr_t this_start, this_end, cand;
u64 i;
for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
NULL) {
this_start = clamp(this_start, start, end);
this_end = clamp(this_end, start, end);
if (this_end < size)
continue;
cand = round_down(this_end - size, align);
if (cand >= this_start)
return cand;
}
return 0;
}
/**
* memblock_find_in_range_node - find free area in given range and node
* @size: size of free area to find
* @align: alignment of free area to find
* @start: start of candidate range
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
* %MEMBLOCK_ALLOC_ACCESSIBLE
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
* @flags: pick from blocks based on memory attributes
*
* Find @size free area aligned to @align in the specified range and node.
*
* Return:
* Found address on success, 0 on failure.
*/
static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
phys_addr_t align, phys_addr_t start,
phys_addr_t end, int nid,
enum memblock_flags flags)
{
/* pump up @end */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
end == MEMBLOCK_ALLOC_KASAN)
end = memblock.current_limit;
/* avoid allocating the first page */
start = max_t(phys_addr_t, start, PAGE_SIZE);
end = max(start, end);
if (memblock_bottom_up())
return __memblock_find_range_bottom_up(start, end, size, align,
nid, flags);
else
return __memblock_find_range_top_down(start, end, size, align,
nid, flags);
}
/**
* memblock_find_in_range - find free area in given range
* @start: start of candidate range
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
* %MEMBLOCK_ALLOC_ACCESSIBLE
* @size: size of free area to find
* @align: alignment of free area to find
*
* Find @size free area aligned to @align in the specified range.
*
* Return:
* Found address on success, 0 on failure.
*/
static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
phys_addr_t align)
{
phys_addr_t ret;
enum memblock_flags flags = choose_memblock_flags();
again:
ret = memblock_find_in_range_node(size, align, start, end,
NUMA_NO_NODE, flags);
if (!ret && (flags & MEMBLOCK_MIRROR)) {
pr_warn("Could not allocate %pap bytes of mirrored memory\n",
&size);
flags &= ~MEMBLOCK_MIRROR;
goto again;
}
return ret;
}
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
{
type->total_size -= type->regions[r].size;
memmove(&type->regions[r], &type->regions[r + 1],
(type->cnt - (r + 1)) * sizeof(type->regions[r]));
type->cnt--;
/* Special case for empty arrays */
if (type->cnt == 0) {
WARN_ON(type->total_size != 0);
type->cnt = 1;
type->regions[0].base = 0;
type->regions[0].size = 0;
type->regions[0].flags = 0;
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
}
}
#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
/**
* memblock_discard - discard memory and reserved arrays if they were allocated
*/
void __init memblock_discard(void)
{
phys_addr_t addr, size;
if (memblock.reserved.regions != memblock_reserved_init_regions) {
addr = __pa(memblock.reserved.regions);
size = PAGE_ALIGN(sizeof(struct memblock_region) *
memblock.reserved.max);
__memblock_free_late(addr, size);
}
if (memblock.memory.regions != memblock_memory_init_regions) {
addr = __pa(memblock.memory.regions);
size = PAGE_ALIGN(sizeof(struct memblock_region) *
memblock.memory.max);
__memblock_free_late(addr, size);
}
memblock_memory = NULL;
}
#endif
/**
* memblock_double_array - double the size of the memblock regions array
* @type: memblock type of the regions array being doubled
* @new_area_start: starting address of memory range to avoid overlap with
* @new_area_size: size of memory range to avoid overlap with
*
* Double the size of the @type regions array. If memblock is being used to
* allocate memory for a new reserved regions array and there is a previously
* allocated memory range [@new_area_start, @new_area_start + @new_area_size]
* waiting to be reserved, ensure the memory used by the new array does
* not overlap.
*
* Return:
* 0 on success, -1 on failure.
*/
static int __init_memblock memblock_double_array(struct memblock_type *type,
phys_addr_t new_area_start,
phys_addr_t new_area_size)
{
struct memblock_region *new_array, *old_array;
phys_addr_t old_alloc_size, new_alloc_size;
phys_addr_t old_size, new_size, addr, new_end;
int use_slab = slab_is_available();
int *in_slab;
/* We don't allow resizing until we know about the reserved regions
* of memory that aren't suitable for allocation
*/
if (!memblock_can_resize)
return -1;
/* Calculate new doubled size */
old_size = type->max * sizeof(struct memblock_region);
new_size = old_size << 1;
/*
* We need to allocated new one align to PAGE_SIZE,
* so we can free them completely later.
*/
old_alloc_size = PAGE_ALIGN(old_size);
new_alloc_size = PAGE_ALIGN(new_size);
/* Retrieve the slab flag */
if (type == &memblock.memory)
in_slab = &memblock_memory_in_slab;
else
in_slab = &memblock_reserved_in_slab;
/* Try to find some space for it */
if (use_slab) {
new_array = kmalloc(new_size, GFP_KERNEL);
addr = new_array ? __pa(new_array) : 0;
} else {
/* only exclude range when trying to double reserved.regions */
if (type != &memblock.reserved)
new_area_start = new_area_size = 0;
addr = memblock_find_in_range(new_area_start + new_area_size,
memblock.current_limit,
new_alloc_size, PAGE_SIZE);
if (!addr && new_area_size)
addr = memblock_find_in_range(0,
min(new_area_start, memblock.current_limit),
new_alloc_size, PAGE_SIZE);
new_array = addr ? __va(addr) : NULL;
}
if (!addr) {
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
type->name, type->max, type->max * 2);
return -1;
}
new_end = addr + new_size - 1;
memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
type->name, type->max * 2, &addr, &new_end);
/*
* Found space, we now need to move the array over before we add the
* reserved region since it may be our reserved array itself that is
* full.
*/
memcpy(new_array, type->regions, old_size);
memset(new_array + type->max, 0, old_size);
old_array = type->regions;
type->regions = new_array;
type->max <<= 1;
/* Free old array. We needn't free it if the array is the static one */
if (*in_slab)
kfree(old_array);
else if (old_array != memblock_memory_init_regions &&
old_array != memblock_reserved_init_regions)
memblock_free(__pa(old_array), old_alloc_size);
/*
* Reserve the new array if that comes from the memblock. Otherwise, we
* needn't do it
*/
if (!use_slab)
BUG_ON(memblock_reserve(addr, new_alloc_size));
/* Update slab flag */
*in_slab = use_slab;
return 0;
}
/**
* memblock_merge_regions - merge neighboring compatible regions
* @type: memblock type to scan
*
* Scan @type and merge neighboring compatible regions.
*/
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
{
int i = 0;
/* cnt never goes below 1 */
while (i < type->cnt - 1) {
struct memblock_region *this = &type->regions[i];
struct memblock_region *next = &type->regions[i + 1];
if (this->base + this->size != next->base ||
memblock_get_region_node(this) !=
memblock_get_region_node(next) ||
this->flags != next->flags) {
BUG_ON(this->base + this->size > next->base);
i++;
continue;
}
this->size += next->size;
/* move forward from next + 1, index of which is i + 2 */
memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
type->cnt--;
}
}
/**
* memblock_insert_region - insert new memblock region
* @type: memblock type to insert into
* @idx: index for the insertion point
* @base: base address of the new region
* @size: size of the new region
* @nid: node id of the new region
* @flags: flags of the new region
*
* Insert new memblock region [@base, @base + @size) into @type at @idx.
* @type must already have extra room to accommodate the new region.
*/
static void __init_memblock memblock_insert_region(struct memblock_type *type,
int idx, phys_addr_t base,
phys_addr_t size,
int nid,
enum memblock_flags flags)
{
struct memblock_region *rgn = &type->regions[idx];
BUG_ON(type->cnt >= type->max);
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
rgn->base = base;
rgn->size = size;
rgn->flags = flags;
memblock_set_region_node(rgn, nid);
type->cnt++;
type->total_size += size;
}
/**
* memblock_add_range - add new memblock region
* @type: memblock type to add new region into
* @base: base address of the new region
* @size: size of the new region
* @nid: nid of the new region
* @flags: flags of the new region
*
* Add new memblock region [@base, @base + @size) into @type. The new region
* is allowed to overlap with existing ones - overlaps don't affect already
* existing regions. @type is guaranteed to be minimal (all neighbouring
* compatible regions are merged) after the addition.
*
* Return:
* 0 on success, -errno on failure.
*/
static int __init_memblock memblock_add_range(struct memblock_type *type,
phys_addr_t base, phys_addr_t size,
int nid, enum memblock_flags flags)
{
bool insert = false;
phys_addr_t obase = base;
phys_addr_t end = base + memblock_cap_size(base, &size);
int idx, nr_new;
struct memblock_region *rgn;
if (!size)
return 0;
/* special case for empty array */
if (type->regions[0].size == 0) {
WARN_ON(type->cnt != 1 || type->total_size);
type->regions[0].base = base;
type->regions[0].size = size;
type->regions[0].flags = flags;
memblock_set_region_node(&type->regions[0], nid);
type->total_size = size;
return 0;
}
repeat:
/*
* The following is executed twice. Once with %false @insert and
* then with %true. The first counts the number of regions needed
* to accommodate the new area. The second actually inserts them.
*/
base = obase;
nr_new = 0;
for_each_memblock_type(idx, type, rgn) {
phys_addr_t rbase = rgn->base;
phys_addr_t rend = rbase + rgn->size;
if (rbase >= end)
break;
if (rend <= base)
continue;
/*
* @rgn overlaps. If it separates the lower part of new
* area, insert that portion.
*/
if (rbase > base) {
#ifdef CONFIG_NUMA
WARN_ON(nid != memblock_get_region_node(rgn));
#endif
WARN_ON(flags != rgn->flags);
nr_new++;
if (insert)
memblock_insert_region(type, idx++, base,
rbase - base, nid,
flags);
}
/* area below @rend is dealt with, forget about it */
base = min(rend, end);
}
/* insert the remaining portion */
if (base < end) {
nr_new++;
if (insert)
memblock_insert_region(type, idx, base, end - base,
nid, flags);
}
if (!nr_new)
return 0;
/*
* If this was the first round, resize array and repeat for actual
* insertions; otherwise, merge and return.
*/
if (!insert) {
while (type->cnt + nr_new > type->max)
if (memblock_double_array(type, obase, size) < 0)
return -ENOMEM;
insert = true;
goto repeat;
} else {
memblock_merge_regions(type);
return 0;
}
}
/**
* memblock_add_node - add new memblock region within a NUMA node
* @base: base address of the new region
* @size: size of the new region
* @nid: nid of the new region
*
* Add new memblock region [@base, @base + @size) to the "memory"
* type. See memblock_add_range() description for mode details
*
* Return:
* 0 on success, -errno on failure.
*/
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
int nid)
{
return memblock_add_range(&memblock.memory, base, size, nid, 0);
}
/**
* memblock_add - add new memblock region
* @base: base address of the new region
* @size: size of the new region
*
* Add new memblock region [@base, @base + @size) to the "memory"
* type. See memblock_add_range() description for mode details
*
* Return:
* 0 on success, -errno on failure.
*/
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
{
phys_addr_t end = base + size - 1;
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
&base, &end, (void *)_RET_IP_);
return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
}
/**
* memblock_isolate_range - isolate given range into disjoint memblocks
* @type: memblock type to isolate range for
* @base: base of range to isolate
* @size: size of range to isolate
* @start_rgn: out parameter for the start of isolated region
* @end_rgn: out parameter for the end of isolated region
*
* Walk @type and ensure that regions don't cross the boundaries defined by
* [@base, @base + @size). Crossing regions are split at the boundaries,
* which may create at most two more regions. The index of the first
* region inside the range is returned in *@start_rgn and end in *@end_rgn.
*
* Return:
* 0 on success, -errno on failure.
*/
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
phys_addr_t base, phys_addr_t size,
int *start_rgn, int *end_rgn)
{
phys_addr_t end = base + memblock_cap_size(base, &size);
int idx;
struct memblock_region *rgn;
*start_rgn = *end_rgn = 0;
if (!size)
return 0;
/* we'll create at most two more regions */
while (type->cnt + 2 > type->max)
if (memblock_double_array(type, base, size) < 0)
return -ENOMEM;
for_each_memblock_type(idx, type, rgn) {
phys_addr_t rbase = rgn->base;
phys_addr_t rend = rbase + rgn->size;
if (rbase >= end)
break;
if (rend <= base)
continue;
if (rbase < base) {
/*
* @rgn intersects from below. Split and continue
* to process the next region - the new top half.
*/
rgn->base = base;
rgn->size -= base - rbase;
type->total_size -= base - rbase;
memblock_insert_region(type, idx, rbase, base - rbase,
memblock_get_region_node(rgn),
rgn->flags);
} else if (rend > end) {
/*
* @rgn intersects from above. Split and redo the
* current region - the new bottom half.
*/
rgn->base = end;
rgn->size -= end - rbase;
type->total_size -= end - rbase;
memblock_insert_region(type, idx--, rbase, end - rbase,
memblock_get_region_node(rgn),
rgn->flags);
} else {
/* @rgn is fully contained, record it */
if (!*end_rgn)
*start_rgn = idx;
*end_rgn = idx + 1;
}
}
return 0;
}
static int __init_memblock memblock_remove_range(struct memblock_type *type,
phys_addr_t base, phys_addr_t size)
{
int start_rgn, end_rgn;
int i, ret;
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
if (ret)
return ret;
for (i = end_rgn - 1; i >= start_rgn; i--)
memblock_remove_region(type, i);
return 0;
}
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
{
phys_addr_t end = base + size - 1;
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
&base, &end, (void *)_RET_IP_);
return memblock_remove_range(&memblock.memory, base, size);
}
/**
* memblock_free - free boot memory block
* @base: phys starting address of the boot memory block
* @size: size of the boot memory block in bytes
*
* Free boot memory block previously allocated by memblock_alloc_xx() API.
* The freeing memory will not be released to the buddy allocator.
*/
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
{
phys_addr_t end = base + size - 1;
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
&base, &end, (void *)_RET_IP_);
kmemleak_free_part_phys(base, size);
return memblock_remove_range(&memblock.reserved, base, size);
}
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
{
phys_addr_t end = base + size - 1;
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
&base, &end, (void *)_RET_IP_);
return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
}
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
{
phys_addr_t end = base + size - 1;
memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
&base, &end, (void *)_RET_IP_);
return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
}
#endif
/**
* memblock_setclr_flag - set or clear flag for a memory region
* @base: base address of the region
* @size: size of the region
* @set: set or clear the flag
* @flag: the flag to update
*
* This function isolates region [@base, @base + @size), and sets/clears flag
*
* Return: 0 on success, -errno on failure.
*/
static int __init_memblock memblock_setclr_flag(phys_addr_t base,
phys_addr_t size, int set, int flag)
{
struct memblock_type *type = &memblock.memory;
int i, ret, start_rgn, end_rgn;
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
if (ret)
return ret;
for (i = start_rgn; i < end_rgn; i++) {
struct memblock_region *r = &type->regions[i];
if (set)
r->flags |= flag;
else
r->flags &= ~flag;
}
memblock_merge_regions(type);
return 0;
}
/**
* memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
* @base: the base phys addr of the region
* @size: the size of the region
*
* Return: 0 on success, -errno on failure.
*/
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
{
return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
}
/**
* memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
* @base: the base phys addr of the region
* @size: the size of the region
*
* Return: 0 on success, -errno on failure.
*/
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
{
return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
}
/**
* memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
* @base: the base phys addr of the region
* @size: the size of the region
*
* Return: 0 on success, -errno on failure.
*/
int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
{
system_has_some_mirror = true;
return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
}
/**
* memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
* @base: the base phys addr of the region
* @size: the size of the region
*
* The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
* direct mapping of the physical memory. These regions will still be
* covered by the memory map. The struct page representing NOMAP memory
* frames in the memory map will be PageReserved()
*
* Return: 0 on success, -errno on failure.
*/
int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
{
return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
}
/**
* memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
* @base: the base phys addr of the region
* @size: the size of the region
*
* Return: 0 on success, -errno on failure.
*/
int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
{
return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
}
static bool should_skip_region(struct memblock_type *type,
struct memblock_region *m,
int nid, int flags)
{
int m_nid = memblock_get_region_node(m);
/* we never skip regions when iterating memblock.reserved or physmem */
if (type != memblock_memory)
return false;
/* only memory regions are associated with nodes, check it */
if (nid != NUMA_NO_NODE && nid != m_nid)
return true;
/* skip hotpluggable memory regions if needed */
if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
!(flags & MEMBLOCK_HOTPLUG))
return true;
/* if we want mirror memory skip non-mirror memory regions */
if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
return true;
/* skip nomap memory unless we were asked for it explicitly */
if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
return true;
return false;
}
/**
* __next_mem_range - next function for for_each_free_mem_range() etc.
* @idx: pointer to u64 loop variable
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @type_a: pointer to memblock_type from where the range is taken
* @type_b: pointer to memblock_type which excludes memory from being taken
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @out_nid: ptr to int for nid of the range, can be %NULL
*
* Find the first area from *@idx which matches @nid, fill the out
* parameters, and update *@idx for the next iteration. The lower 32bit of
* *@idx contains index into type_a and the upper 32bit indexes the
* areas before each region in type_b. For example, if type_b regions
* look like the following,
*
* 0:[0-16), 1:[32-48), 2:[128-130)
*
* The upper 32bit indexes the following regions.
*
* 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
*
* As both region arrays are sorted, the function advances the two indices
* in lockstep and returns each intersection.
*/
void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
struct memblock_type *type_a,
struct memblock_type *type_b, phys_addr_t *out_start,
phys_addr_t *out_end, int *out_nid)
{
int idx_a = *idx & 0xffffffff;
int idx_b = *idx >> 32;
if (WARN_ONCE(nid == MAX_NUMNODES,
"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
nid = NUMA_NO_NODE;
for (; idx_a < type_a->cnt; idx_a++) {
struct memblock_region *m = &type_a->regions[idx_a];
phys_addr_t m_start = m->base;
phys_addr_t m_end = m->base + m->size;
int m_nid = memblock_get_region_node(m);
if (should_skip_region(type_a, m, nid, flags))
continue;
if (!type_b) {
if (out_start)
*out_start = m_start;
if (out_end)
*out_end = m_end;
if (out_nid)
*out_nid = m_nid;
idx_a++;
*idx = (u32)idx_a | (u64)idx_b << 32;
return;
}
/* scan areas before each reservation */
for (; idx_b < type_b->cnt + 1; idx_b++) {
struct memblock_region *r;
phys_addr_t r_start;
phys_addr_t r_end;
r = &type_b->regions[idx_b];
r_start = idx_b ? r[-1].base + r[-1].size : 0;
r_end = idx_b < type_b->cnt ?
r->base : PHYS_ADDR_MAX;
/*
* if idx_b advanced past idx_a,
* break out to advance idx_a
*/
if (r_start >= m_end)
break;
/* if the two regions intersect, we're done */
if (m_start < r_end) {
if (out_start)
*out_start =
max(m_start, r_start);
if (out_end)
*out_end = min(m_end, r_end);
if (out_nid)
*out_nid = m_nid;
/*
* The region which ends first is
* advanced for the next iteration.
*/
if (m_end <= r_end)
idx_a++;
else
idx_b++;
*idx = (u32)idx_a | (u64)idx_b << 32;
return;
}
}
}
/* signal end of iteration */
*idx = ULLONG_MAX;
}
/**
* __next_mem_range_rev - generic next function for for_each_*_range_rev()
*
* @idx: pointer to u64 loop variable
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @type_a: pointer to memblock_type from where the range is taken
* @type_b: pointer to memblock_type which excludes memory from being taken
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @out_nid: ptr to int for nid of the range, can be %NULL
*
* Finds the next range from type_a which is not marked as unsuitable
* in type_b.
*
* Reverse of __next_mem_range().
*/
void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
enum memblock_flags flags,
struct memblock_type *type_a,
struct memblock_type *type_b,
phys_addr_t *out_start,
phys_addr_t *out_end, int *out_nid)
{
int idx_a = *idx & 0xffffffff;
int idx_b = *idx >> 32;
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
nid = NUMA_NO_NODE;
if (*idx == (u64)ULLONG_MAX) {
idx_a = type_a->cnt - 1;
if (type_b != NULL)
idx_b = type_b->cnt;
else
idx_b = 0;
}
for (; idx_a >= 0; idx_a--) {
struct memblock_region *m = &type_a->regions[idx_a];
phys_addr_t m_start = m->base;
phys_addr_t m_end = m->base + m->size;
int m_nid = memblock_get_region_node(m);
if (should_skip_region(type_a, m, nid, flags))
continue;
if (!type_b) {
if (out_start)
*out_start = m_start;
if (out_end)
*out_end = m_end;
if (out_nid)
*out_nid = m_nid;
idx_a--;
*idx = (u32)idx_a | (u64)idx_b << 32;
return;
}
/* scan areas before each reservation */
for (; idx_b >= 0; idx_b--) {
struct memblock_region *r;
phys_addr_t r_start;
phys_addr_t r_end;
r = &type_b->regions[idx_b];
r_start = idx_b ? r[-1].base + r[-1].size : 0;
r_end = idx_b < type_b->cnt ?
r->base : PHYS_ADDR_MAX;
/*
* if idx_b advanced past idx_a,
* break out to advance idx_a
*/
if (r_end <= m_start)
break;
/* if the two regions intersect, we're done */
if (m_end > r_start) {
if (out_start)
*out_start = max(m_start, r_start);
if (out_end)
*out_end = min(m_end, r_end);
if (out_nid)
*out_nid = m_nid;
if (m_start >= r_start)
idx_a--;
else
idx_b--;
*idx = (u32)idx_a | (u64)idx_b << 32;
return;
}
}
}
/* signal end of iteration */
*idx = ULLONG_MAX;
}
/*
* Common iterator interface used to define for_each_mem_pfn_range().
*/
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
unsigned long *out_start_pfn,
unsigned long *out_end_pfn, int *out_nid)
{
struct memblock_type *type = &memblock.memory;
struct memblock_region *r;
int r_nid;
while (++*idx < type->cnt) {
r = &type->regions[*idx];
r_nid = memblock_get_region_node(r);
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
continue;
if (nid == MAX_NUMNODES || nid == r_nid)
break;
}
if (*idx >= type->cnt) {
*idx = -1;
return;
}
if (out_start_pfn)
*out_start_pfn = PFN_UP(r->base);
if (out_end_pfn)
*out_end_pfn = PFN_DOWN(r->base + r->size);
if (out_nid)
*out_nid = r_nid;
}
/**
* memblock_set_node - set node ID on memblock regions
* @base: base of area to set node ID for
* @size: size of area to set node ID for
* @type: memblock type to set node ID for
* @nid: node ID to set
*
* Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
* Regions which cross the area boundaries are split as necessary.
*
* Return:
* 0 on success, -errno on failure.
*/
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
struct memblock_type *type, int nid)
{
#ifdef CONFIG_NUMA
int start_rgn, end_rgn;
int i, ret;
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
if (ret)
return ret;
for (i = start_rgn; i < end_rgn; i++)
memblock_set_region_node(&type->regions[i], nid);
memblock_merge_regions(type);
#endif
return 0;
}
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/**
* __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
*
* @idx: pointer to u64 loop variable
* @zone: zone in which all of the memory blocks reside
* @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
* @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
*
* This function is meant to be a zone/pfn specific wrapper for the
* for_each_mem_range type iterators. Specifically they are used in the
* deferred memory init routines and as such we were duplicating much of
* this logic throughout the code. So instead of having it in multiple
* locations it seemed like it would make more sense to centralize this to
* one new iterator that does everything they need.
*/
void __init_memblock
__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
unsigned long *out_spfn, unsigned long *out_epfn)
{
int zone_nid = zone_to_nid(zone);
phys_addr_t spa, epa;
int nid;
__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
&memblock.memory, &memblock.reserved,
&spa, &epa, &nid);
while (*idx != U64_MAX) {
unsigned long epfn = PFN_DOWN(epa);
unsigned long spfn = PFN_UP(spa);
/*
* Verify the end is at least past the start of the zone and
* that we have at least one PFN to initialize.
*/
if (zone->zone_start_pfn < epfn && spfn < epfn) {
/* if we went too far just stop searching */
if (zone_end_pfn(zone) <= spfn) {
*idx = U64_MAX;
break;
}
if (out_spfn)
*out_spfn = max(zone->zone_start_pfn, spfn);
if (out_epfn)
*out_epfn = min(zone_end_pfn(zone), epfn);
return;
}
__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
&memblock.memory, &memblock.reserved,
&spa, &epa, &nid);
}
/* signal end of iteration */
if (out_spfn)
*out_spfn = ULONG_MAX;
if (out_epfn)
*out_epfn = 0;
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
/**
* memblock_alloc_range_nid - allocate boot memory block
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @start: the lower bound of the memory region to allocate (phys address)
* @end: the upper bound of the memory region to allocate (phys address)
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
* @exact_nid: control the allocation fall back to other nodes
*
* The allocation is performed from memory region limited by
* memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
*
* If the specified node can not hold the requested memory and @exact_nid
* is false, the allocation falls back to any node in the system.
*
* For systems with memory mirroring, the allocation is attempted first
* from the regions with mirroring enabled and then retried from any
* memory region.
*
* In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
* allocated boot memory block, so that it is never reported as leaks.
*
* Return:
* Physical address of allocated memory block on success, %0 on failure.
*/
phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
phys_addr_t align, phys_addr_t start,
phys_addr_t end, int nid,
bool exact_nid)
{
enum memblock_flags flags = choose_memblock_flags();
phys_addr_t found;
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
nid = NUMA_NO_NODE;
if (!align) {
/* Can't use WARNs this early in boot on powerpc */
dump_stack();
align = SMP_CACHE_BYTES;
}
again:
found = memblock_find_in_range_node(size, align, start, end, nid,
flags);
if (found && !memblock_reserve(found, size))
goto done;
if (nid != NUMA_NO_NODE && !exact_nid) {
found = memblock_find_in_range_node(size, align, start,
end, NUMA_NO_NODE,
flags);
if (found && !memblock_reserve(found, size))
goto done;
}
if (flags & MEMBLOCK_MIRROR) {
flags &= ~MEMBLOCK_MIRROR;
pr_warn("Could not allocate %pap bytes of mirrored memory\n",
&size);
goto again;
}
return 0;
done:
/* Skip kmemleak for kasan_init() due to high volume. */
if (end != MEMBLOCK_ALLOC_KASAN)
/*
* The min_count is set to 0 so that memblock allocated
* blocks are never reported as leaks. This is because many
* of these blocks are only referred via the physical
* address which is not looked up by kmemleak.
*/
kmemleak_alloc_phys(found, size, 0, 0);
return found;
}
/**
* memblock_phys_alloc_range - allocate a memory block inside specified range
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @start: the lower bound of the memory region to allocate (physical address)
* @end: the upper bound of the memory region to allocate (physical address)
*
* Allocate @size bytes in the between @start and @end.
*
* Return: physical address of the allocated memory block on success,
* %0 on failure.
*/
phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
phys_addr_t align,
phys_addr_t start,
phys_addr_t end)
{
memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
__func__, (u64)size, (u64)align, &start, &end,
(void *)_RET_IP_);
return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
false);
}
/**
* memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
*
* Allocates memory block from the specified NUMA node. If the node
* has no available memory, attempts to allocated from any node in the
* system.
*
* Return: physical address of the allocated memory block on success,
* %0 on failure.
*/
phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{
return memblock_alloc_range_nid(size, align, 0,
MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
}
/**
* memblock_alloc_internal - allocate boot memory block
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @min_addr: the lower bound of the memory region to allocate (phys address)
* @max_addr: the upper bound of the memory region to allocate (phys address)
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
* @exact_nid: control the allocation fall back to other nodes
*
* Allocates memory block using memblock_alloc_range_nid() and
* converts the returned physical address to virtual.
*
* The @min_addr limit is dropped if it can not be satisfied and the allocation
* will fall back to memory below @min_addr. Other constraints, such
* as node and mirrored memory will be handled again in
* memblock_alloc_range_nid().
*
* Return:
* Virtual address of allocated memory block on success, NULL on failure.
*/
static void * __init memblock_alloc_internal(
phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid, bool exact_nid)
{
phys_addr_t alloc;
/*
* Detect any accidental use of these APIs after slab is ready, as at
* this moment memblock may be deinitialized already and its
* internal data may be destroyed (after execution of memblock_free_all)
*/
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, nid);
if (max_addr > memblock.current_limit)
max_addr = memblock.current_limit;
alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
exact_nid);
/* retry allocation without lower limit */
if (!alloc && min_addr)
alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
exact_nid);
if (!alloc)
return NULL;
return phys_to_virt(alloc);
}
/**
* memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
* without zeroing memory
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @min_addr: the lower bound of the memory region from where the allocation
* is preferred (phys address)
* @max_addr: the upper bound of the memory region from where the allocation
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
* allocate only from memory limited by memblock.current_limit value
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
*
* Public function, provides additional debug information (including caller
* info), if enabled. Does not zero allocated memory.
*
* Return:
* Virtual address of allocated memory block on success, NULL on failure.
*/
void * __init memblock_alloc_exact_nid_raw(
phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid)
{
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
__func__, (u64)size, (u64)align, nid, &min_addr,
&max_addr, (void *)_RET_IP_);
return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
true);
}
/**
* memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
* memory and without panicking
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @min_addr: the lower bound of the memory region from where the allocation
* is preferred (phys address)
* @max_addr: the upper bound of the memory region from where the allocation
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
* allocate only from memory limited by memblock.current_limit value
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
*
* Public function, provides additional debug information (including caller
* info), if enabled. Does not zero allocated memory, does not panic if request
* cannot be satisfied.
*
* Return:
* Virtual address of allocated memory block on success, NULL on failure.
*/
void * __init memblock_alloc_try_nid_raw(
phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid)
{
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
__func__, (u64)size, (u64)align, nid, &min_addr,
&max_addr, (void *)_RET_IP_);
return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
false);
}
/**
* memblock_alloc_try_nid - allocate boot memory block
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @min_addr: the lower bound of the memory region from where the allocation
* is preferred (phys address)
* @max_addr: the upper bound of the memory region from where the allocation
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
* allocate only from memory limited by memblock.current_limit value
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
*
* Public function, provides additional debug information (including caller
* info), if enabled. This function zeroes the allocated memory.
*
* Return:
* Virtual address of allocated memory block on success, NULL on failure.
*/
void * __init memblock_alloc_try_nid(
phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid)
{
void *ptr;
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
__func__, (u64)size, (u64)align, nid, &min_addr,
&max_addr, (void *)_RET_IP_);
ptr = memblock_alloc_internal(size, align,
min_addr, max_addr, nid, false);
if (ptr)
memset(ptr, 0, size);
return ptr;
}
/**
* __memblock_free_late - free pages directly to buddy allocator
* @base: phys starting address of the boot memory block
* @size: size of the boot memory block in bytes
*
* This is only useful when the memblock allocator has already been torn
* down, but we are still initializing the system. Pages are released directly
* to the buddy allocator.
*/
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
{
phys_addr_t cursor, end;
end = base + size - 1;
memblock_dbg("%s: [%pa-%pa] %pS\n",
__func__, &base, &end, (void *)_RET_IP_);
kmemleak_free_part_phys(base, size);
cursor = PFN_UP(base);
end = PFN_DOWN(base + size);
for (; cursor < end; cursor++) {
memblock_free_pages(pfn_to_page(cursor), cursor, 0);
totalram_pages_inc();
}
}
/*
* Remaining API functions
*/
phys_addr_t __init_memblock memblock_phys_mem_size(void)
{
return memblock.memory.total_size;
}
phys_addr_t __init_memblock memblock_reserved_size(void)
{
return memblock.reserved.total_size;
}
/* lowest address */
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
{
return memblock.memory.regions[0].base;
}
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
{
int idx = memblock.memory.cnt - 1;
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
}
static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
{
phys_addr_t max_addr = PHYS_ADDR_MAX;
struct memblock_region *r;
/*
* translate the memory @limit size into the max address within one of
* the memory memblock regions, if the @limit exceeds the total size
* of those regions, max_addr will keep original value PHYS_ADDR_MAX
*/
for_each_mem_region(r) {
if (limit <= r->size) {
max_addr = r->base + limit;
break;
}
limit -= r->size;
}
return max_addr;
}
void __init memblock_enforce_memory_limit(phys_addr_t limit)
{
phys_addr_t max_addr;
if (!limit)
return;
max_addr = __find_max_addr(limit);
/* @limit exceeds the total size of the memory, do nothing */
if (max_addr == PHYS_ADDR_MAX)
return;
/* truncate both memory and reserved regions */
memblock_remove_range(&memblock.memory, max_addr,
PHYS_ADDR_MAX);
memblock_remove_range(&memblock.reserved, max_addr,
PHYS_ADDR_MAX);
}
void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
{
int start_rgn, end_rgn;
int i, ret;
if (!size)
return;
ret = memblock_isolate_range(&memblock.memory, base, size,
&start_rgn, &end_rgn);
if (ret)
return;
/* remove all the MAP regions */
for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
if (!memblock_is_nomap(&memblock.memory.regions[i]))
memblock_remove_region(&memblock.memory, i);
for (i = start_rgn - 1; i >= 0; i--)
if (!memblock_is_nomap(&memblock.memory.regions[i]))
memblock_remove_region(&memblock.memory, i);
/* truncate the reserved regions */
memblock_remove_range(&memblock.reserved, 0, base);
memblock_remove_range(&memblock.reserved,
base + size, PHYS_ADDR_MAX);
}
void __init memblock_mem_limit_remove_map(phys_addr_t limit)
{
phys_addr_t max_addr;
if (!limit)
return;
max_addr = __find_max_addr(limit);
/* @limit exceeds the total size of the memory, do nothing */
if (max_addr == PHYS_ADDR_MAX)
return;
memblock_cap_memory_range(0, max_addr);
}
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
{
unsigned int left = 0, right = type->cnt;
do {
unsigned int mid = (right + left) / 2;
if (addr < type->regions[mid].base)
right = mid;
else if (addr >= (type->regions[mid].base +
type->regions[mid].size))
left = mid + 1;
else
return mid;
} while (left < right);
return -1;
}
bool __init_memblock memblock_is_reserved(phys_addr_t addr)
{
return memblock_search(&memblock.reserved, addr) != -1;
}
bool __init_memblock memblock_is_memory(phys_addr_t addr)
{
return memblock_search(&memblock.memory, addr) != -1;
}
bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
{
int i = memblock_search(&memblock.memory, addr);
if (i == -1)
return false;
return !memblock_is_nomap(&memblock.memory.regions[i]);
}
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
unsigned long *start_pfn, unsigned long *end_pfn)
{
struct memblock_type *type = &memblock.memory;
int mid = memblock_search(type, PFN_PHYS(pfn));
if (mid == -1)
return -1;
*start_pfn = PFN_DOWN(type->regions[mid].base);
*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
return memblock_get_region_node(&type->regions[mid]);
}
/**
* memblock_is_region_memory - check if a region is a subset of memory
* @base: base of region to check
* @size: size of region to check
*
* Check if the region [@base, @base + @size) is a subset of a memory block.
*
* Return:
* 0 if false, non-zero if true
*/
bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
{
int idx = memblock_search(&memblock.memory, base);
phys_addr_t end = base + memblock_cap_size(base, &size);
if (idx == -1)
return false;
return (memblock.memory.regions[idx].base +
memblock.memory.regions[idx].size) >= end;
}
/**
* memblock_is_region_reserved - check if a region intersects reserved memory
* @base: base of region to check
* @size: size of region to check
*
* Check if the region [@base, @base + @size) intersects a reserved
* memory block.
*
* Return:
* True if they intersect, false if not.
*/
bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
{
return memblock_overlaps_region(&memblock.reserved, base, size);
}
void __init_memblock memblock_trim_memory(phys_addr_t align)
{
phys_addr_t start, end, orig_start, orig_end;
struct memblock_region *r;
for_each_mem_region(r) {
orig_start = r->base;
orig_end = r->base + r->size;
start = round_up(orig_start, align);
end = round_down(orig_end, align);
if (start == orig_start && end == orig_end)
continue;
if (start < end) {
r->base = start;
r->size = end - start;
} else {
memblock_remove_region(&memblock.memory,
r - memblock.memory.regions);
r--;
}
}
}
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
{
memblock.current_limit = limit;
}
phys_addr_t __init_memblock memblock_get_current_limit(void)
{
return memblock.current_limit;
}
static void __init_memblock memblock_dump(struct memblock_type *type)
{
phys_addr_t base, end, size;
enum memblock_flags flags;
int idx;
struct memblock_region *rgn;
pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
for_each_memblock_type(idx, type, rgn) {
char nid_buf[32] = "";
base = rgn->base;
size = rgn->size;
end = base + size - 1;
flags = rgn->flags;
#ifdef CONFIG_NUMA
if (memblock_get_region_node(rgn) != MAX_NUMNODES)
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
memblock_get_region_node(rgn));
#endif
pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
type->name, idx, &base, &end, &size, nid_buf, flags);
}
}
static void __init_memblock __memblock_dump_all(void)
{
pr_info("MEMBLOCK configuration:\n");
pr_info(" memory size = %pa reserved size = %pa\n",
&memblock.memory.total_size,
&memblock.reserved.total_size);
memblock_dump(&memblock.memory);
memblock_dump(&memblock.reserved);
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_dump(&physmem);
#endif
}
void __init_memblock memblock_dump_all(void)
{
if (memblock_debug)
__memblock_dump_all();
}
void __init memblock_allow_resize(void)
{
memblock_can_resize = 1;
}
static int __init early_memblock(char *p)
{
if (p && strstr(p, "debug"))
memblock_debug = 1;
return 0;
}
early_param("memblock", early_memblock);
static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
{
struct page *start_pg, *end_pg;
phys_addr_t pg, pgend;
/*
* Convert start_pfn/end_pfn to a struct page pointer.
*/
start_pg = pfn_to_page(start_pfn - 1) + 1;
end_pg = pfn_to_page(end_pfn - 1) + 1;
/*
* Convert to physical addresses, and round start upwards and end
* downwards.
*/
pg = PAGE_ALIGN(__pa(start_pg));
pgend = __pa(end_pg) & PAGE_MASK;
/*
* If there are free pages between these, free the section of the
* memmap array.
*/
if (pg < pgend)
memblock_free(pg, pgend - pg);
}
/*
* The mem_map array can get very big. Free the unused area of the memory map.
*/
static void __init free_unused_memmap(void)
{
unsigned long start, end, prev_end = 0;
int i;
if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
return;
/*
* This relies on each bank being in address order.
* The banks are sorted previously in bootmem_init().
*/
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
#ifdef CONFIG_SPARSEMEM
/*
* Take care not to free memmap entries that don't exist
* due to SPARSEMEM sections which aren't present.
*/
start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
#endif
/*
* Align down here since many operations in VM subsystem
* presume that there are no holes in the memory map inside
* a pageblock
*/
start = round_down(start, pageblock_nr_pages);
/*
* If we had a previous bank, and there is a space
* between the current bank and the previous, free it.
*/
if (prev_end && prev_end < start)
free_memmap(prev_end, start);
/*
* Align up here since many operations in VM subsystem
* presume that there are no holes in the memory map inside
* a pageblock
*/
prev_end = ALIGN(end, pageblock_nr_pages);
}
#ifdef CONFIG_SPARSEMEM
if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
prev_end = ALIGN(end, pageblock_nr_pages);
free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
}
#endif
}
static void __init __free_pages_memory(unsigned long start, unsigned long end)
{
int order;
while (start < end) {
order = min(MAX_ORDER - 1UL, __ffs(start));
while (start + (1UL << order) > end)
order--;
memblock_free_pages(pfn_to_page(start), start, order);
start += (1UL << order);
}
}
static unsigned long __init __free_memory_core(phys_addr_t start,
phys_addr_t end)
{
unsigned long start_pfn = PFN_UP(start);
unsigned long end_pfn = min_t(unsigned long,
PFN_DOWN(end), max_low_pfn);
if (start_pfn >= end_pfn)
return 0;
__free_pages_memory(start_pfn, end_pfn);
return end_pfn - start_pfn;
}
static void __init memmap_init_reserved_pages(void)
{
struct memblock_region *region;
phys_addr_t start, end;
u64 i;
/* initialize struct pages for the reserved regions */
for_each_reserved_mem_range(i, &start, &end)
reserve_bootmem_region(start, end);
/* and also treat struct pages for the NOMAP regions as PageReserved */
for_each_mem_region(region) {
if (memblock_is_nomap(region)) {
start = region->base;
end = start + region->size;
reserve_bootmem_region(start, end);
}
}
}
static unsigned long __init free_low_memory_core_early(void)
{
unsigned long count = 0;
phys_addr_t start, end;
u64 i;
memblock_clear_hotplug(0, -1);
memmap_init_reserved_pages();
/*
* We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
* because in some case like Node0 doesn't have RAM installed
* low ram will be on Node1
*/
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
NULL)
count += __free_memory_core(start, end);
return count;
}
static int reset_managed_pages_done __initdata;
void reset_node_managed_pages(pg_data_t *pgdat)
{
struct zone *z;
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
atomic_long_set(&z->managed_pages, 0);
}
void __init reset_all_zones_managed_pages(void)
{
struct pglist_data *pgdat;
if (reset_managed_pages_done)
return;
for_each_online_pgdat(pgdat)
reset_node_managed_pages(pgdat);
reset_managed_pages_done = 1;
}
/**
* memblock_free_all - release free pages to the buddy allocator
*/
void __init memblock_free_all(void)
{
unsigned long pages;
free_unused_memmap();
reset_all_zones_managed_pages();
pages = free_low_memory_core_early();
totalram_pages_add(pages);
}
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
static int memblock_debug_show(struct seq_file *m, void *private)
{
struct memblock_type *type = m->private;
struct memblock_region *reg;
int i;
phys_addr_t end;
for (i = 0; i < type->cnt; i++) {
reg = &type->regions[i];
end = reg->base + reg->size - 1;
seq_printf(m, "%4d: ", i);
seq_printf(m, "%pa..%pa\n", &reg->base, &end);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(memblock_debug);
static int __init memblock_init_debugfs(void)
{
struct dentry *root = debugfs_create_dir("memblock", NULL);
debugfs_create_file("memory", 0444, root,
&memblock.memory, &memblock_debug_fops);
debugfs_create_file("reserved", 0444, root,
&memblock.reserved, &memblock_debug_fops);
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
debugfs_create_file("physmem", 0444, root, &physmem,
&memblock_debug_fops);
#endif
return 0;
}
__initcall(memblock_init_debugfs);
#endif /* CONFIG_DEBUG_FS */