linux/tools/power/x86/turbostat/turbostat.8
Len Brown a729617c58 tools/power turbostat: relax dependency on APERF_MSR
While turbostat is significantly less useful on systems
with no APERF_MSR, it seems more friendly
to run on such systems and report what we can,
rather than refusing to run.

Update man page to reflect recent changes.

Signed-off-by: Len Brown <len.brown@intel.com>
2015-02-09 18:28:18 -05:00

246 lines
11 KiB
Groff

.TH TURBOSTAT 8
.SH NAME
turbostat \- Report processor frequency and idle statistics
.SH SYNOPSIS
.ft B
.B turbostat
.RB [ Options ]
.RB command
.br
.B turbostat
.RB [ Options ]
.RB [ "\-i interval_sec" ]
.SH DESCRIPTION
\fBturbostat \fP reports processor topology, frequency,
idle power-state statistics, temperature and power on X86 processors.
There are two ways to invoke turbostat.
The first method is to supply a
\fBcommand\fP, which is forked and statistics are printed
upon its completion.
The second method is to omit the command,
and turbodstat will print statistics every 5 seconds.
The 5-second interval can changed using the -i option.
Some information is not availalbe on older processors.
.SS Options
The \fB-p\fP option limits output to the 1st thread in 1st core of each package.
.PP
The \fB-P\fP option limits output to the 1st thread in each Package.
.PP
The \fB-S\fP option limits output to a 1-line System Summary for each interval.
.PP
The \fB-v\fP option increases verbosity.
.PP
The \fB-c MSR#\fP option includes the delta of the specified 32-bit MSR counter.
.PP
The \fB-C MSR#\fP option includes the delta of the specified 64-bit MSR counter.
.PP
The \fB-m MSR#\fP option includes the the specified 32-bit MSR value.
.PP
The \fB-M MSR#\fP option includes the the specified 64-bit MSR value.
.PP
The \fB-i interval_sec\fP option prints statistics every \fiinterval_sec\fP seconds.
The default is 5 seconds.
.PP
The \fBcommand\fP parameter forks \fBcommand\fP and upon its exit,
displays the statistics gathered since it was forked.
.PP
.SH FIELD DESCRIPTIONS
.nf
\fBPackage\fP processor package number.
\fBCore\fP processor core number.
\fBCPU\fP Linux CPU (logical processor) number.
Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology.
\fBAVG_MHz\fP number of cycles executed divided by time elapsed.
\fB%Buzy\fP percent of the interval that the CPU retired instructions, aka. % of time in "C0" state.
\fBBzy_MHz\fP average clock rate while the CPU was busy (in "c0" state).
\fBTSC_MHz\fP average MHz that the TSC ran during the entire interval.
\fBCPU%c1, CPU%c3, CPU%c6, CPU%c7\fP show the percentage residency in hardware core idle states.
\fBCoreTmp\fP Degrees Celsius reported by the per-core Digital Thermal Sensor.
\fBPkgTtmp\fP Degrees Celsius reported by the per-package Package Thermal Monitor.
\fBPkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7\fP percentage residency in hardware package idle states.
\fBPkgWatt\fP Watts consumed by the whole package.
\fBCorWatt\fP Watts consumed by the core part of the package.
\fBGFXWatt\fP Watts consumed by the Graphics part of the package -- available only on client processors.
\fBRAMWatt\fP Watts consumed by the DRAM DIMMS -- available only on server processors.
\fBPKG_%\fP percent of the interval that RAPL throttling was active on the Package.
\fBRAM_%\fP percent of the interval that RAPL throttling was active on DRAM.
.fi
.PP
.SH EXAMPLE
Without any parameters, turbostat prints out counters ever 5 seconds.
(override interval with "-i sec" option, or specify a command
for turbostat to fork).
The first row of statistics is a summary for the entire system.
For residency % columns, the summary is a weighted average.
For Temperature columns, the summary is the column maximum.
For Watts columns, the summary is a system total.
Subsequent rows show per-CPU statistics.
.nf
[root@ivy]# ./turbostat
Core CPU Avg_MHz %Busy Bzy_MHz TSC_MHz SMI CPU%c1 CPU%c3 CPU%c6 CPU%c7 CoreTmp PkgTmp Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt
- - 6 0.36 1596 3492 0 0.59 0.01 99.04 0.00 23 24 23.82 0.01 72.47 0.00 6.40 1.01 0.00
0 0 9 0.58 1596 3492 0 0.28 0.01 99.13 0.00 23 24 23.82 0.01 72.47 0.00 6.40 1.01 0.00
0 4 1 0.07 1596 3492 0 0.79
1 1 10 0.65 1596 3492 0 0.59 0.00 98.76 0.00 23
1 5 5 0.28 1596 3492 0 0.95
2 2 10 0.66 1596 3492 0 0.41 0.01 98.92 0.00 23
2 6 2 0.10 1597 3492 0 0.97
3 3 3 0.20 1596 3492 0 0.44 0.00 99.37 0.00 23
3 7 5 0.31 1596 3492 0 0.33
.fi
.SH VERBOSE EXAMPLE
The "-v" option adds verbosity to the output:
.nf
[root@ivy]# turbostat -v
turbostat v3.0 November 23, 2012 - Len Brown <lenb@kernel.org>
CPUID(0): GenuineIntel 13 CPUID levels; family:model:stepping 0x6:3a:9 (6:58:9)
CPUID(6): APERF, DTS, PTM, EPB
RAPL: 851 sec. Joule Counter Range
cpu0: MSR_NHM_PLATFORM_INFO: 0x81010f0012300
16 * 100 = 1600 MHz max efficiency
35 * 100 = 3500 MHz TSC frequency
cpu0: MSR_NHM_SNB_PKG_CST_CFG_CTL: 0x1e008402 (UNdemote-C3, UNdemote-C1, demote-C3, demote-C1, locked: pkg-cstate-limit=2: pc6-noret)
cpu0: MSR_NHM_TURBO_RATIO_LIMIT: 0x25262727
37 * 100 = 3700 MHz max turbo 4 active cores
38 * 100 = 3800 MHz max turbo 3 active cores
39 * 100 = 3900 MHz max turbo 2 active cores
39 * 100 = 3900 MHz max turbo 1 active cores
cpu0: MSR_IA32_ENERGY_PERF_BIAS: 0x00000006 (balanced)
cpu0: MSR_RAPL_POWER_UNIT: 0x000a1003 (0.125000 Watts, 0.000015 Joules, 0.000977 sec.)
cpu0: MSR_PKG_POWER_INFO: 0x01e00268 (77 W TDP, RAPL 60 - 0 W, 0.000000 sec.)
cpu0: MSR_PKG_POWER_LIMIT: 0x830000148268 (UNlocked)
cpu0: PKG Limit #1: ENabled (77.000000 Watts, 1.000000 sec, clamp DISabled)
cpu0: PKG Limit #2: ENabled (96.000000 Watts, 0.000977* sec, clamp DISabled)
cpu0: MSR_PP0_POLICY: 0
cpu0: MSR_PP0_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: Cores Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_PP1_POLICY: 0
cpu0: MSR_PP1_POWER_LIMIT: 0x00000000 (UNlocked)
cpu0: GFX Limit: DISabled (0.000000 Watts, 0.000977 sec, clamp DISabled)
cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00691400 (105 C)
cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x884e0000 (27 C)
cpu0: MSR_IA32_THERM_STATUS: 0x88560000 (19 C +/- 1)
cpu1: MSR_IA32_THERM_STATUS: 0x88560000 (19 C +/- 1)
cpu2: MSR_IA32_THERM_STATUS: 0x88540000 (21 C +/- 1)
cpu3: MSR_IA32_THERM_STATUS: 0x884e0000 (27 C +/- 1)
...
.fi
The \fBmax efficiency\fP frequency, a.k.a. Low Frequency Mode, is the frequency
available at the minimum package voltage. The \fBTSC frequency\fP is the base
frequency of the processor -- this should match the brand string
in /proc/cpuinfo. This base frequency
should be sustainable on all CPUs indefinitely, given nominal power and cooling.
The remaining rows show what maximum turbo frequency is possible
depending on the number of idle cores. Note that not all information is
available on all processors.
.SH FORK EXAMPLE
If turbostat is invoked with a command, it will fork that command
and output the statistics gathered when the command exits.
eg. Here a cycle soaker is run on 1 CPU (see %c0) for a few seconds
until ^C while the other CPUs are mostly idle:
.nf
root@ivy: turbostat cat /dev/zero > /dev/null
^C
Core CPU Avg_MHz %Busy Bzy_MHz TSC_MHz SMI CPU%c1 CPU%c3 CPU%c6 CPU%c7 CoreTmp PkgTmp Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt
- - 496 12.75 3886 3492 0 13.16 0.04 74.04 0.00 36 36 0.00 0.00 0.00 0.00 23.15 17.65 0.00
0 0 22 0.57 3830 3492 0 0.83 0.02 98.59 0.00 27 36 0.00 0.00 0.00 0.00 23.15 17.65 0.00
0 4 9 0.24 3829 3492 0 1.15
1 1 4 0.09 3783 3492 0 99.91 0.00 0.00 0.00 36
1 5 3880 99.82 3888 3492 0 0.18
2 2 17 0.44 3813 3492 0 0.77 0.04 98.75 0.00 28
2 6 12 0.32 3823 3492 0 0.89
3 3 16 0.43 3844 3492 0 0.63 0.11 98.84 0.00 30
3 7 4 0.11 3827 3492 0 0.94
30.372243 sec
.fi
Above the cycle soaker drives cpu5 up its 3.8 GHz turbo limit
while the other processors are generally in various states of idle.
Note that cpu1 and cpu5 are HT siblings within core1.
As cpu5 is very busy, it prevents its sibling, cpu1,
from entering a c-state deeper than c1.
Note that the Avg_MHz column reflects the total number of cycles executed
divided by the measurement interval. If the %Busy column is 100%,
then the processor was running at that speed the entire interval.
The Avg_MHz multiplied by the %Busy results in the Bzy_MHz --
which is the average frequency while the processor was executing --
not including any non-busy idle time.
.SH NOTES
.B "turbostat "
must be run as root.
Alternatively, non-root users can be enabled to run turbostat this way:
# setcap cap_sys_rawio=ep ./turbostat
# chmod +r /dev/cpu/*/msr
.B "turbostat "
reads hardware counters, but doesn't write them.
So it will not interfere with the OS or other programs, including
multiple invocations of itself.
\fBturbostat \fP
may work poorly on Linux-2.6.20 through 2.6.29,
as \fBacpi-cpufreq \fPperiodically cleared the APERF and MPERF MSRs
in those kernels.
AVG_MHz = APERF_delta/measurement_interval. This is the actual
number of elapsed cycles divided by the entire sample interval --
including idle time. Note that this calculation is resiliant
to systems lacking a non-stop TSC.
TSC_MHz = TSC_delta/measurement_interval.
On a system with an invariant TSC, this value will be constant
and will closely match the base frequency value shown
in the brand string in /proc/cpuinfo. On a system where
the TSC stops in idle, TSC_MHz will drop
below the processor's base frequency.
%Busy = MPERF_delta/TSC_delta
Bzy_MHz = TSC_delta/APERF_delta/MPERF_delta/measurement_interval
Note that these calculations depend on TSC_delta, so they
are not reliable during intervals when TSC_MHz is not running at the base frequency.
Turbostat data collection is not atomic.
Extremely short measurement intervals (much less than 1 second),
or system activity that prevents turbostat from being able
to run on all CPUS to quickly collect data, will result in
inconsistent results.
The APERF, MPERF MSRs are defined to count non-halted cycles.
Although it is not guaranteed by the architecture, turbostat assumes
that they count at TSC rate, which is true on all processors tested to date.
.SH REFERENCES
"Intel® Turbo Boost Technology
in Intel® Core™ Microarchitecture (Nehalem) Based Processors"
http://download.intel.com/design/processor/applnots/320354.pdf
"Intel® 64 and IA-32 Architectures Software Developer's Manual
Volume 3B: System Programming Guide"
http://www.intel.com/products/processor/manuals/
.SH FILES
.ta
.nf
/dev/cpu/*/msr
.fi
.SH "SEE ALSO"
msr(4), vmstat(8)
.PP
.SH AUTHOR
.nf
Written by Len Brown <len.brown@intel.com>