linux/drivers/scsi/aacraid/dpcsup.c
Mark Haverkamp a8166a5296 [SCSI] aacraid: Fix struct element name issue
Received from Mark Salyzyn,

This patch is to resolve a namespace issue that will result from a patch
expected in the future that adds a new interface; rationalized as
correcting a long term issue where hw_fib, instead of hw_fib_va, refers
to the virtual address space and hw_fib_pa refers to the physical
address space. A small fragment of this patch also cleans up an unused
variable that was close to the patch fragments.

Signed-off-by: Mark Haverkamp <markh@linux-foundation.org>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2007-03-20 10:54:25 -05:00

332 lines
9.6 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* dpcsup.c
*
* Abstract: All DPC processing routines for the cyclone board occur here.
*
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <asm/semaphore.h>
#include "aacraid.h"
/**
* aac_response_normal - Handle command replies
* @q: Queue to read from
*
* This DPC routine will be run when the adapter interrupts us to let us
* know there is a response on our normal priority queue. We will pull off
* all QE there are and wake up all the waiters before exiting. We will
* take a spinlock out on the queue before operating on it.
*/
unsigned int aac_response_normal(struct aac_queue * q)
{
struct aac_dev * dev = q->dev;
struct aac_entry *entry;
struct hw_fib * hwfib;
struct fib * fib;
int consumed = 0;
unsigned long flags;
spin_lock_irqsave(q->lock, flags);
/*
* Keep pulling response QEs off the response queue and waking
* up the waiters until there are no more QEs. We then return
* back to the system. If no response was requesed we just
* deallocate the Fib here and continue.
*/
while(aac_consumer_get(dev, q, &entry))
{
int fast;
u32 index = le32_to_cpu(entry->addr);
fast = index & 0x01;
fib = &dev->fibs[index >> 2];
hwfib = fib->hw_fib_va;
aac_consumer_free(dev, q, HostNormRespQueue);
/*
* Remove this fib from the Outstanding I/O queue.
* But only if it has not already been timed out.
*
* If the fib has been timed out already, then just
* continue. The caller has already been notified that
* the fib timed out.
*/
if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
dev->queues->queue[AdapNormCmdQueue].numpending--;
else {
printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
continue;
}
spin_unlock_irqrestore(q->lock, flags);
if (fast) {
/*
* Doctor the fib
*/
*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
}
FIB_COUNTER_INCREMENT(aac_config.FibRecved);
if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
{
__le32 *pstatus = (__le32 *)hwfib->data;
if (*pstatus & cpu_to_le32(0xffff0000))
*pstatus = cpu_to_le32(ST_OK);
}
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
{
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
else
FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
/*
* NOTE: we cannot touch the fib after this
* call, because it may have been deallocated.
*/
fib->callback(fib->callback_data, fib);
} else {
unsigned long flagv;
spin_lock_irqsave(&fib->event_lock, flagv);
if (!fib->done)
fib->done = 1;
up(&fib->event_wait);
spin_unlock_irqrestore(&fib->event_lock, flagv);
FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
if (fib->done == 2) {
aac_fib_complete(fib);
aac_fib_free(fib);
}
}
consumed++;
spin_lock_irqsave(q->lock, flags);
}
if (consumed > aac_config.peak_fibs)
aac_config.peak_fibs = consumed;
if (consumed == 0)
aac_config.zero_fibs++;
spin_unlock_irqrestore(q->lock, flags);
return 0;
}
/**
* aac_command_normal - handle commands
* @q: queue to process
*
* This DPC routine will be queued when the adapter interrupts us to
* let us know there is a command on our normal priority queue. We will
* pull off all QE there are and wake up all the waiters before exiting.
* We will take a spinlock out on the queue before operating on it.
*/
unsigned int aac_command_normal(struct aac_queue *q)
{
struct aac_dev * dev = q->dev;
struct aac_entry *entry;
unsigned long flags;
spin_lock_irqsave(q->lock, flags);
/*
* Keep pulling response QEs off the response queue and waking
* up the waiters until there are no more QEs. We then return
* back to the system.
*/
while(aac_consumer_get(dev, q, &entry))
{
struct fib fibctx;
struct hw_fib * hw_fib;
u32 index;
struct fib *fib = &fibctx;
index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
hw_fib = &dev->aif_base_va[index];
/*
* Allocate a FIB at all costs. For non queued stuff
* we can just use the stack so we are happy. We need
* a fib object in order to manage the linked lists
*/
if (dev->aif_thread)
if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
fib = &fibctx;
memset(fib, 0, sizeof(struct fib));
INIT_LIST_HEAD(&fib->fiblink);
fib->type = FSAFS_NTC_FIB_CONTEXT;
fib->size = sizeof(struct fib);
fib->hw_fib_va = hw_fib;
fib->data = hw_fib->data;
fib->dev = dev;
if (dev->aif_thread && fib != &fibctx) {
list_add_tail(&fib->fiblink, &q->cmdq);
aac_consumer_free(dev, q, HostNormCmdQueue);
wake_up_interruptible(&q->cmdready);
} else {
aac_consumer_free(dev, q, HostNormCmdQueue);
spin_unlock_irqrestore(q->lock, flags);
/*
* Set the status of this FIB
*/
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
aac_fib_adapter_complete(fib, sizeof(u32));
spin_lock_irqsave(q->lock, flags);
}
}
spin_unlock_irqrestore(q->lock, flags);
return 0;
}
/**
* aac_intr_normal - Handle command replies
* @dev: Device
* @index: completion reference
*
* This DPC routine will be run when the adapter interrupts us to let us
* know there is a response on our normal priority queue. We will pull off
* all QE there are and wake up all the waiters before exiting.
*/
unsigned int aac_intr_normal(struct aac_dev * dev, u32 Index)
{
u32 index = le32_to_cpu(Index);
dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, Index));
if ((index & 0x00000002L)) {
struct hw_fib * hw_fib;
struct fib * fib;
struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
unsigned long flags;
if (index == 0xFFFFFFFEL) /* Special Case */
return 0; /* Do nothing */
/*
* Allocate a FIB. For non queued stuff we can just use
* the stack so we are happy. We need a fib object in order to
* manage the linked lists.
*/
if ((!dev->aif_thread)
|| (!(fib = kmalloc(sizeof(struct fib),GFP_ATOMIC))))
return 1;
if (!(hw_fib = kmalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
kfree (fib);
return 1;
}
memset(hw_fib, 0, sizeof(struct hw_fib));
memcpy(hw_fib, (struct hw_fib *)(((unsigned long)(dev->regs.sa)) + (index & ~0x00000002L)), sizeof(struct hw_fib));
memset(fib, 0, sizeof(struct fib));
INIT_LIST_HEAD(&fib->fiblink);
fib->type = FSAFS_NTC_FIB_CONTEXT;
fib->size = sizeof(struct fib);
fib->hw_fib_va = hw_fib;
fib->data = hw_fib->data;
fib->dev = dev;
spin_lock_irqsave(q->lock, flags);
list_add_tail(&fib->fiblink, &q->cmdq);
wake_up_interruptible(&q->cmdready);
spin_unlock_irqrestore(q->lock, flags);
return 1;
} else {
int fast = index & 0x01;
struct fib * fib = &dev->fibs[index >> 2];
struct hw_fib * hwfib = fib->hw_fib_va;
/*
* Remove this fib from the Outstanding I/O queue.
* But only if it has not already been timed out.
*
* If the fib has been timed out already, then just
* continue. The caller has already been notified that
* the fib timed out.
*/
if ((fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
printk(KERN_DEBUG"aacraid: hwfib=%p index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
return 0;
}
dev->queues->queue[AdapNormCmdQueue].numpending--;
if (fast) {
/*
* Doctor the fib
*/
*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
}
FIB_COUNTER_INCREMENT(aac_config.FibRecved);
if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
{
u32 *pstatus = (u32 *)hwfib->data;
if (*pstatus & cpu_to_le32(0xffff0000))
*pstatus = cpu_to_le32(ST_OK);
}
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
{
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
else
FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
/*
* NOTE: we cannot touch the fib after this
* call, because it may have been deallocated.
*/
fib->callback(fib->callback_data, fib);
} else {
unsigned long flagv;
dprintk((KERN_INFO "event_wait up\n"));
spin_lock_irqsave(&fib->event_lock, flagv);
if (!fib->done)
fib->done = 1;
up(&fib->event_wait);
spin_unlock_irqrestore(&fib->event_lock, flagv);
FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
}
return 0;
}
}