linux/drivers/hid/bpf/hid_bpf_dispatch.c
David Vernet fb2211a57c bpf: Remove now-unnecessary NULL checks for KF_RELEASE kfuncs
Now that we're not invoking kfunc destructors when the kptr in a map was
NULL, we no longer require NULL checks in many of our KF_RELEASE kfuncs.
This patch removes those NULL checks.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230325213144.486885-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-25 16:56:22 -07:00

549 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* HID-BPF support for Linux
*
* Copyright (c) 2022 Benjamin Tissoires
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitops.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/filter.h>
#include <linux/hid.h>
#include <linux/hid_bpf.h>
#include <linux/init.h>
#include <linux/kfifo.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/workqueue.h>
#include "hid_bpf_dispatch.h"
#include "entrypoints/entrypoints.lskel.h"
struct hid_bpf_ops *hid_bpf_ops;
EXPORT_SYMBOL(hid_bpf_ops);
/**
* hid_bpf_device_event - Called whenever an event is coming in from the device
*
* @ctx: The HID-BPF context
*
* @return %0 on success and keep processing; a positive value to change the
* incoming size buffer; a negative error code to interrupt the processing
* of this event
*
* Declare an %fmod_ret tracing bpf program to this function and attach this
* program through hid_bpf_attach_prog() to have this helper called for
* any incoming event from the device itself.
*
* The function is called while on IRQ context, so we can not sleep.
*/
/* never used by the kernel but declared so we can load and attach a tracepoint */
__weak noinline int hid_bpf_device_event(struct hid_bpf_ctx *ctx)
{
return 0;
}
u8 *
dispatch_hid_bpf_device_event(struct hid_device *hdev, enum hid_report_type type, u8 *data,
u32 *size, int interrupt)
{
struct hid_bpf_ctx_kern ctx_kern = {
.ctx = {
.hid = hdev,
.report_type = type,
.allocated_size = hdev->bpf.allocated_data,
.size = *size,
},
.data = hdev->bpf.device_data,
};
int ret;
if (type >= HID_REPORT_TYPES)
return ERR_PTR(-EINVAL);
/* no program has been attached yet */
if (!hdev->bpf.device_data)
return data;
memset(ctx_kern.data, 0, hdev->bpf.allocated_data);
memcpy(ctx_kern.data, data, *size);
ret = hid_bpf_prog_run(hdev, HID_BPF_PROG_TYPE_DEVICE_EVENT, &ctx_kern);
if (ret < 0)
return ERR_PTR(ret);
if (ret) {
if (ret > ctx_kern.ctx.allocated_size)
return ERR_PTR(-EINVAL);
*size = ret;
}
return ctx_kern.data;
}
EXPORT_SYMBOL_GPL(dispatch_hid_bpf_device_event);
/**
* hid_bpf_rdesc_fixup - Called when the probe function parses the report
* descriptor of the HID device
*
* @ctx: The HID-BPF context
*
* @return 0 on success and keep processing; a positive value to change the
* incoming size buffer; a negative error code to interrupt the processing
* of this event
*
* Declare an %fmod_ret tracing bpf program to this function and attach this
* program through hid_bpf_attach_prog() to have this helper called before any
* parsing of the report descriptor by HID.
*/
/* never used by the kernel but declared so we can load and attach a tracepoint */
__weak noinline int hid_bpf_rdesc_fixup(struct hid_bpf_ctx *ctx)
{
return 0;
}
u8 *call_hid_bpf_rdesc_fixup(struct hid_device *hdev, u8 *rdesc, unsigned int *size)
{
int ret;
struct hid_bpf_ctx_kern ctx_kern = {
.ctx = {
.hid = hdev,
.size = *size,
.allocated_size = HID_MAX_DESCRIPTOR_SIZE,
},
};
ctx_kern.data = kzalloc(ctx_kern.ctx.allocated_size, GFP_KERNEL);
if (!ctx_kern.data)
goto ignore_bpf;
memcpy(ctx_kern.data, rdesc, min_t(unsigned int, *size, HID_MAX_DESCRIPTOR_SIZE));
ret = hid_bpf_prog_run(hdev, HID_BPF_PROG_TYPE_RDESC_FIXUP, &ctx_kern);
if (ret < 0)
goto ignore_bpf;
if (ret) {
if (ret > ctx_kern.ctx.allocated_size)
goto ignore_bpf;
*size = ret;
}
rdesc = krealloc(ctx_kern.data, *size, GFP_KERNEL);
return rdesc;
ignore_bpf:
kfree(ctx_kern.data);
return kmemdup(rdesc, *size, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(call_hid_bpf_rdesc_fixup);
/**
* hid_bpf_get_data - Get the kernel memory pointer associated with the context @ctx
*
* @ctx: The HID-BPF context
* @offset: The offset within the memory
* @rdwr_buf_size: the const size of the buffer
*
* @returns %NULL on error, an %__u8 memory pointer on success
*/
noinline __u8 *
hid_bpf_get_data(struct hid_bpf_ctx *ctx, unsigned int offset, const size_t rdwr_buf_size)
{
struct hid_bpf_ctx_kern *ctx_kern;
if (!ctx)
return NULL;
ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
if (rdwr_buf_size + offset > ctx->allocated_size)
return NULL;
return ctx_kern->data + offset;
}
/*
* The following set contains all functions we agree BPF programs
* can use.
*/
BTF_SET8_START(hid_bpf_kfunc_ids)
BTF_ID_FLAGS(func, hid_bpf_get_data, KF_RET_NULL)
BTF_SET8_END(hid_bpf_kfunc_ids)
static const struct btf_kfunc_id_set hid_bpf_kfunc_set = {
.owner = THIS_MODULE,
.set = &hid_bpf_kfunc_ids,
};
static int device_match_id(struct device *dev, const void *id)
{
struct hid_device *hdev = to_hid_device(dev);
return hdev->id == *(int *)id;
}
static int __hid_bpf_allocate_data(struct hid_device *hdev, u8 **data, u32 *size)
{
u8 *alloc_data;
unsigned int i, j, max_report_len = 0;
size_t alloc_size = 0;
/* compute the maximum report length for this device */
for (i = 0; i < HID_REPORT_TYPES; i++) {
struct hid_report_enum *report_enum = hdev->report_enum + i;
for (j = 0; j < HID_MAX_IDS; j++) {
struct hid_report *report = report_enum->report_id_hash[j];
if (report)
max_report_len = max(max_report_len, hid_report_len(report));
}
}
/*
* Give us a little bit of extra space and some predictability in the
* buffer length we create. This way, we can tell users that they can
* work on chunks of 64 bytes of memory without having the bpf verifier
* scream at them.
*/
alloc_size = DIV_ROUND_UP(max_report_len, 64) * 64;
alloc_data = kzalloc(alloc_size, GFP_KERNEL);
if (!alloc_data)
return -ENOMEM;
*data = alloc_data;
*size = alloc_size;
return 0;
}
static int hid_bpf_allocate_event_data(struct hid_device *hdev)
{
/* hdev->bpf.device_data is already allocated, abort */
if (hdev->bpf.device_data)
return 0;
return __hid_bpf_allocate_data(hdev, &hdev->bpf.device_data, &hdev->bpf.allocated_data);
}
int hid_bpf_reconnect(struct hid_device *hdev)
{
if (!test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
return device_reprobe(&hdev->dev);
return 0;
}
/**
* hid_bpf_attach_prog - Attach the given @prog_fd to the given HID device
*
* @hid_id: the system unique identifier of the HID device
* @prog_fd: an fd in the user process representing the program to attach
* @flags: any logical OR combination of &enum hid_bpf_attach_flags
*
* @returns an fd of a bpf_link object on success (> %0), an error code otherwise.
* Closing this fd will detach the program from the HID device (unless the bpf_link
* is pinned to the BPF file system).
*/
/* called from syscall */
noinline int
hid_bpf_attach_prog(unsigned int hid_id, int prog_fd, __u32 flags)
{
struct hid_device *hdev;
struct device *dev;
int fd, err, prog_type = hid_bpf_get_prog_attach_type(prog_fd);
if (!hid_bpf_ops)
return -EINVAL;
if (prog_type < 0)
return prog_type;
if (prog_type >= HID_BPF_PROG_TYPE_MAX)
return -EINVAL;
if ((flags & ~HID_BPF_FLAG_MASK))
return -EINVAL;
dev = bus_find_device(hid_bpf_ops->bus_type, NULL, &hid_id, device_match_id);
if (!dev)
return -EINVAL;
hdev = to_hid_device(dev);
if (prog_type == HID_BPF_PROG_TYPE_DEVICE_EVENT) {
err = hid_bpf_allocate_event_data(hdev);
if (err)
return err;
}
fd = __hid_bpf_attach_prog(hdev, prog_type, prog_fd, flags);
if (fd < 0)
return fd;
if (prog_type == HID_BPF_PROG_TYPE_RDESC_FIXUP) {
err = hid_bpf_reconnect(hdev);
if (err) {
close_fd(fd);
return err;
}
}
return fd;
}
/**
* hid_bpf_allocate_context - Allocate a context to the given HID device
*
* @hid_id: the system unique identifier of the HID device
*
* @returns A pointer to &struct hid_bpf_ctx on success, %NULL on error.
*/
noinline struct hid_bpf_ctx *
hid_bpf_allocate_context(unsigned int hid_id)
{
struct hid_device *hdev;
struct hid_bpf_ctx_kern *ctx_kern = NULL;
struct device *dev;
if (!hid_bpf_ops)
return NULL;
dev = bus_find_device(hid_bpf_ops->bus_type, NULL, &hid_id, device_match_id);
if (!dev)
return NULL;
hdev = to_hid_device(dev);
ctx_kern = kzalloc(sizeof(*ctx_kern), GFP_KERNEL);
if (!ctx_kern)
return NULL;
ctx_kern->ctx.hid = hdev;
return &ctx_kern->ctx;
}
/**
* hid_bpf_release_context - Release the previously allocated context @ctx
*
* @ctx: the HID-BPF context to release
*
*/
noinline void
hid_bpf_release_context(struct hid_bpf_ctx *ctx)
{
struct hid_bpf_ctx_kern *ctx_kern;
ctx_kern = container_of(ctx, struct hid_bpf_ctx_kern, ctx);
kfree(ctx_kern);
}
/**
* hid_bpf_hw_request - Communicate with a HID device
*
* @ctx: the HID-BPF context previously allocated in hid_bpf_allocate_context()
* @buf: a %PTR_TO_MEM buffer
* @buf__sz: the size of the data to transfer
* @rtype: the type of the report (%HID_INPUT_REPORT, %HID_FEATURE_REPORT, %HID_OUTPUT_REPORT)
* @reqtype: the type of the request (%HID_REQ_GET_REPORT, %HID_REQ_SET_REPORT, ...)
*
* @returns %0 on success, a negative error code otherwise.
*/
noinline int
hid_bpf_hw_request(struct hid_bpf_ctx *ctx, __u8 *buf, size_t buf__sz,
enum hid_report_type rtype, enum hid_class_request reqtype)
{
struct hid_device *hdev;
struct hid_report *report;
struct hid_report_enum *report_enum;
u8 *dma_data;
u32 report_len;
int ret;
/* check arguments */
if (!ctx || !hid_bpf_ops || !buf)
return -EINVAL;
switch (rtype) {
case HID_INPUT_REPORT:
case HID_OUTPUT_REPORT:
case HID_FEATURE_REPORT:
break;
default:
return -EINVAL;
}
switch (reqtype) {
case HID_REQ_GET_REPORT:
case HID_REQ_GET_IDLE:
case HID_REQ_GET_PROTOCOL:
case HID_REQ_SET_REPORT:
case HID_REQ_SET_IDLE:
case HID_REQ_SET_PROTOCOL:
break;
default:
return -EINVAL;
}
if (buf__sz < 1)
return -EINVAL;
hdev = (struct hid_device *)ctx->hid; /* discard const */
report_enum = hdev->report_enum + rtype;
report = hid_bpf_ops->hid_get_report(report_enum, buf);
if (!report)
return -EINVAL;
report_len = hid_report_len(report);
if (buf__sz > report_len)
buf__sz = report_len;
dma_data = kmemdup(buf, buf__sz, GFP_KERNEL);
if (!dma_data)
return -ENOMEM;
ret = hid_bpf_ops->hid_hw_raw_request(hdev,
dma_data[0],
dma_data,
buf__sz,
rtype,
reqtype);
if (ret > 0)
memcpy(buf, dma_data, ret);
kfree(dma_data);
return ret;
}
/* our HID-BPF entrypoints */
BTF_SET8_START(hid_bpf_fmodret_ids)
BTF_ID_FLAGS(func, hid_bpf_device_event)
BTF_ID_FLAGS(func, hid_bpf_rdesc_fixup)
BTF_ID_FLAGS(func, __hid_bpf_tail_call)
BTF_SET8_END(hid_bpf_fmodret_ids)
static const struct btf_kfunc_id_set hid_bpf_fmodret_set = {
.owner = THIS_MODULE,
.set = &hid_bpf_fmodret_ids,
};
/* for syscall HID-BPF */
BTF_SET8_START(hid_bpf_syscall_kfunc_ids)
BTF_ID_FLAGS(func, hid_bpf_attach_prog)
BTF_ID_FLAGS(func, hid_bpf_allocate_context, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, hid_bpf_release_context, KF_RELEASE)
BTF_ID_FLAGS(func, hid_bpf_hw_request)
BTF_SET8_END(hid_bpf_syscall_kfunc_ids)
static const struct btf_kfunc_id_set hid_bpf_syscall_kfunc_set = {
.owner = THIS_MODULE,
.set = &hid_bpf_syscall_kfunc_ids,
};
int hid_bpf_connect_device(struct hid_device *hdev)
{
struct hid_bpf_prog_list *prog_list;
rcu_read_lock();
prog_list = rcu_dereference(hdev->bpf.progs[HID_BPF_PROG_TYPE_DEVICE_EVENT]);
rcu_read_unlock();
/* only allocate BPF data if there are programs attached */
if (!prog_list)
return 0;
return hid_bpf_allocate_event_data(hdev);
}
EXPORT_SYMBOL_GPL(hid_bpf_connect_device);
void hid_bpf_disconnect_device(struct hid_device *hdev)
{
kfree(hdev->bpf.device_data);
hdev->bpf.device_data = NULL;
hdev->bpf.allocated_data = 0;
}
EXPORT_SYMBOL_GPL(hid_bpf_disconnect_device);
void hid_bpf_destroy_device(struct hid_device *hdev)
{
if (!hdev)
return;
/* mark the device as destroyed in bpf so we don't reattach it */
hdev->bpf.destroyed = true;
__hid_bpf_destroy_device(hdev);
}
EXPORT_SYMBOL_GPL(hid_bpf_destroy_device);
void hid_bpf_device_init(struct hid_device *hdev)
{
spin_lock_init(&hdev->bpf.progs_lock);
}
EXPORT_SYMBOL_GPL(hid_bpf_device_init);
static int __init hid_bpf_init(void)
{
int err;
/* Note: if we exit with an error any time here, we would entirely break HID, which
* is probably not something we want. So we log an error and return success.
*
* This is not a big deal: the syscall allowing to attach a BPF program to a HID device
* will not be available, so nobody will be able to use the functionality.
*/
err = register_btf_fmodret_id_set(&hid_bpf_fmodret_set);
if (err) {
pr_warn("error while registering fmodret entrypoints: %d", err);
return 0;
}
err = hid_bpf_preload_skel();
if (err) {
pr_warn("error while preloading HID BPF dispatcher: %d", err);
return 0;
}
/* register tracing kfuncs after we are sure we can load our preloaded bpf program */
err = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &hid_bpf_kfunc_set);
if (err) {
pr_warn("error while setting HID BPF tracing kfuncs: %d", err);
return 0;
}
/* register syscalls after we are sure we can load our preloaded bpf program */
err = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &hid_bpf_syscall_kfunc_set);
if (err) {
pr_warn("error while setting HID BPF syscall kfuncs: %d", err);
return 0;
}
return 0;
}
static void __exit hid_bpf_exit(void)
{
/* HID depends on us, so if we hit that code, we are guaranteed that hid
* has been removed and thus we do not need to clear the HID devices
*/
hid_bpf_free_links_and_skel();
}
late_initcall(hid_bpf_init);
module_exit(hid_bpf_exit);
MODULE_AUTHOR("Benjamin Tissoires");
MODULE_LICENSE("GPL");