linux/fs/xfs/xfs_attr_leaf.c
Dave Chinner a8acad7073 xfs: kill XBF_LOCK
Buffers are always returned locked from the lookup routines. Hence
we don't need to tell the lookup routines to return locked buffers,
on to try and lock them. Remove XBF_LOCK from all the callers and
from internal buffer cache usage.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:50 -05:00

3004 lines
84 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_da_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_attr.h"
#include "xfs_attr_leaf.h"
#include "xfs_error.h"
#include "xfs_trace.h"
/*
* xfs_attr_leaf.c
*
* Routines to implement leaf blocks of attributes as Btrees of hashed names.
*/
/*========================================================================
* Function prototypes for the kernel.
*========================================================================*/
/*
* Routines used for growing the Btree.
*/
STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block,
xfs_dabuf_t **bpp);
STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args,
int freemap_index);
STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer);
STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2);
STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *leaf_blk_1,
xfs_da_state_blk_t *leaf_blk_2,
int *number_entries_in_blk1,
int *number_usedbytes_in_blk1);
/*
* Routines used for shrinking the Btree.
*/
STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dabuf_t *bp, int level);
STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dabuf_t *bp);
STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dablk_t blkno, int blkcnt);
/*
* Utility routines.
*/
STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf,
int src_start,
xfs_attr_leafblock_t *dst_leaf,
int dst_start, int move_count,
xfs_mount_t *mp);
STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
/*========================================================================
* Namespace helper routines
*========================================================================*/
/*
* If namespace bits don't match return 0.
* If all match then return 1.
*/
STATIC int
xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
{
return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
}
/*========================================================================
* External routines when attribute fork size < XFS_LITINO(mp).
*========================================================================*/
/*
* Query whether the requested number of additional bytes of extended
* attribute space will be able to fit inline.
*
* Returns zero if not, else the di_forkoff fork offset to be used in the
* literal area for attribute data once the new bytes have been added.
*
* di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
* special case for dev/uuid inodes, they have fixed size data forks.
*/
int
xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
{
int offset;
int minforkoff; /* lower limit on valid forkoff locations */
int maxforkoff; /* upper limit on valid forkoff locations */
int dsize;
xfs_mount_t *mp = dp->i_mount;
offset = (XFS_LITINO(mp) - bytes) >> 3; /* rounded down */
switch (dp->i_d.di_format) {
case XFS_DINODE_FMT_DEV:
minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
return (offset >= minforkoff) ? minforkoff : 0;
case XFS_DINODE_FMT_UUID:
minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
return (offset >= minforkoff) ? minforkoff : 0;
}
/*
* If the requested numbers of bytes is smaller or equal to the
* current attribute fork size we can always proceed.
*
* Note that if_bytes in the data fork might actually be larger than
* the current data fork size is due to delalloc extents. In that
* case either the extent count will go down when they are converted
* to real extents, or the delalloc conversion will take care of the
* literal area rebalancing.
*/
if (bytes <= XFS_IFORK_ASIZE(dp))
return dp->i_d.di_forkoff;
/*
* For attr2 we can try to move the forkoff if there is space in the
* literal area, but for the old format we are done if there is no
* space in the fixed attribute fork.
*/
if (!(mp->m_flags & XFS_MOUNT_ATTR2))
return 0;
dsize = dp->i_df.if_bytes;
switch (dp->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
/*
* If there is no attr fork and the data fork is extents,
* determine if creating the default attr fork will result
* in the extents form migrating to btree. If so, the
* minimum offset only needs to be the space required for
* the btree root.
*/
if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
xfs_default_attroffset(dp))
dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
break;
case XFS_DINODE_FMT_BTREE:
/*
* If we have a data btree then keep forkoff if we have one,
* otherwise we are adding a new attr, so then we set
* minforkoff to where the btree root can finish so we have
* plenty of room for attrs
*/
if (dp->i_d.di_forkoff) {
if (offset < dp->i_d.di_forkoff)
return 0;
return dp->i_d.di_forkoff;
}
dsize = XFS_BMAP_BROOT_SPACE(dp->i_df.if_broot);
break;
}
/*
* A data fork btree root must have space for at least
* MINDBTPTRS key/ptr pairs if the data fork is small or empty.
*/
minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
minforkoff = roundup(minforkoff, 8) >> 3;
/* attr fork btree root can have at least this many key/ptr pairs */
maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
maxforkoff = maxforkoff >> 3; /* rounded down */
if (offset >= maxforkoff)
return maxforkoff;
if (offset >= minforkoff)
return offset;
return 0;
}
/*
* Switch on the ATTR2 superblock bit (implies also FEATURES2)
*/
STATIC void
xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
{
if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
!(xfs_sb_version_hasattr2(&mp->m_sb))) {
spin_lock(&mp->m_sb_lock);
if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
xfs_sb_version_addattr2(&mp->m_sb);
spin_unlock(&mp->m_sb_lock);
xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2);
} else
spin_unlock(&mp->m_sb_lock);
}
}
/*
* Create the initial contents of a shortform attribute list.
*/
void
xfs_attr_shortform_create(xfs_da_args_t *args)
{
xfs_attr_sf_hdr_t *hdr;
xfs_inode_t *dp;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_create(args);
dp = args->dp;
ASSERT(dp != NULL);
ifp = dp->i_afp;
ASSERT(ifp != NULL);
ASSERT(ifp->if_bytes == 0);
if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
ifp->if_flags |= XFS_IFINLINE;
} else {
ASSERT(ifp->if_flags & XFS_IFINLINE);
}
xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
hdr->count = 0;
hdr->totsize = cpu_to_be16(sizeof(*hdr));
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
/*
* Add a name/value pair to the shortform attribute list.
* Overflow from the inode has already been checked for.
*/
void
xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i, offset, size;
xfs_mount_t *mp;
xfs_inode_t *dp;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_add(args);
dp = args->dp;
mp = dp->i_mount;
dp->i_d.di_forkoff = forkoff;
ifp = dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
#ifdef DEBUG
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
ASSERT(0);
#endif
}
offset = (char *)sfe - (char *)sf;
size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
sfe->namelen = args->namelen;
sfe->valuelen = args->valuelen;
sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
memcpy(sfe->nameval, args->name, args->namelen);
memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
sf->hdr.count++;
be16_add_cpu(&sf->hdr.totsize, size);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
xfs_sbversion_add_attr2(mp, args->trans);
}
/*
* After the last attribute is removed revert to original inode format,
* making all literal area available to the data fork once more.
*/
STATIC void
xfs_attr_fork_reset(
struct xfs_inode *ip,
struct xfs_trans *tp)
{
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
ip->i_d.di_forkoff = 0;
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
ASSERT(ip->i_d.di_anextents == 0);
ASSERT(ip->i_afp == NULL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
}
/*
* Remove an attribute from the shortform attribute list structure.
*/
int
xfs_attr_shortform_remove(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int base, size=0, end, totsize, i;
xfs_mount_t *mp;
xfs_inode_t *dp;
trace_xfs_attr_sf_remove(args);
dp = args->dp;
mp = dp->i_mount;
base = sizeof(xfs_attr_sf_hdr_t);
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
end = sf->hdr.count;
for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
base += size, i++) {
size = XFS_ATTR_SF_ENTSIZE(sfe);
if (sfe->namelen != args->namelen)
continue;
if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
break;
}
if (i == end)
return(XFS_ERROR(ENOATTR));
/*
* Fix up the attribute fork data, covering the hole
*/
end = base + size;
totsize = be16_to_cpu(sf->hdr.totsize);
if (end != totsize)
memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
sf->hdr.count--;
be16_add_cpu(&sf->hdr.totsize, -size);
/*
* Fix up the start offset of the attribute fork
*/
totsize -= size;
if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
(mp->m_flags & XFS_MOUNT_ATTR2) &&
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
!(args->op_flags & XFS_DA_OP_ADDNAME)) {
xfs_attr_fork_reset(dp, args->trans);
} else {
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
ASSERT(dp->i_d.di_forkoff);
ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
(args->op_flags & XFS_DA_OP_ADDNAME) ||
!(mp->m_flags & XFS_MOUNT_ATTR2) ||
dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
xfs_trans_log_inode(args->trans, dp,
XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
xfs_sbversion_add_attr2(mp, args->trans);
return(0);
}
/*
* Look up a name in a shortform attribute list structure.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_lookup(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_lookup(args);
ifp = args->dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
return(XFS_ERROR(EEXIST));
}
return(XFS_ERROR(ENOATTR));
}
/*
* Look up a name in a shortform attribute list structure.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_getvalue(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i;
ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = sfe->valuelen;
return(XFS_ERROR(EEXIST));
}
if (args->valuelen < sfe->valuelen) {
args->valuelen = sfe->valuelen;
return(XFS_ERROR(ERANGE));
}
args->valuelen = sfe->valuelen;
memcpy(args->value, &sfe->nameval[args->namelen],
args->valuelen);
return(XFS_ERROR(EEXIST));
}
return(XFS_ERROR(ENOATTR));
}
/*
* Convert from using the shortform to the leaf.
*/
int
xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
{
xfs_inode_t *dp;
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
xfs_da_args_t nargs;
char *tmpbuffer;
int error, i, size;
xfs_dablk_t blkno;
xfs_dabuf_t *bp;
xfs_ifork_t *ifp;
trace_xfs_attr_sf_to_leaf(args);
dp = args->dp;
ifp = dp->i_afp;
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
size = be16_to_cpu(sf->hdr.totsize);
tmpbuffer = kmem_alloc(size, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, ifp->if_u1.if_data, size);
sf = (xfs_attr_shortform_t *)tmpbuffer;
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
bp = NULL;
error = xfs_da_grow_inode(args, &blkno);
if (error) {
/*
* If we hit an IO error middle of the transaction inside
* grow_inode(), we may have inconsistent data. Bail out.
*/
if (error == EIO)
goto out;
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
goto out;
}
ASSERT(blkno == 0);
error = xfs_attr_leaf_create(args, blkno, &bp);
if (error) {
error = xfs_da_shrink_inode(args, 0, bp);
bp = NULL;
if (error)
goto out;
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
goto out;
}
memset((char *)&nargs, 0, sizeof(nargs));
nargs.dp = dp;
nargs.firstblock = args->firstblock;
nargs.flist = args->flist;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.op_flags = XFS_DA_OP_OKNOENT;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; i++) {
nargs.name = sfe->nameval;
nargs.namelen = sfe->namelen;
nargs.value = &sfe->nameval[nargs.namelen];
nargs.valuelen = sfe->valuelen;
nargs.hashval = xfs_da_hashname(sfe->nameval,
sfe->namelen);
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */
ASSERT(error == ENOATTR);
error = xfs_attr_leaf_add(bp, &nargs);
ASSERT(error != ENOSPC);
if (error)
goto out;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
}
error = 0;
out:
if(bp)
xfs_da_buf_done(bp);
kmem_free(tmpbuffer);
return(error);
}
STATIC int
xfs_attr_shortform_compare(const void *a, const void *b)
{
xfs_attr_sf_sort_t *sa, *sb;
sa = (xfs_attr_sf_sort_t *)a;
sb = (xfs_attr_sf_sort_t *)b;
if (sa->hash < sb->hash) {
return(-1);
} else if (sa->hash > sb->hash) {
return(1);
} else {
return(sa->entno - sb->entno);
}
}
#define XFS_ISRESET_CURSOR(cursor) \
(!((cursor)->initted) && !((cursor)->hashval) && \
!((cursor)->blkno) && !((cursor)->offset))
/*
* Copy out entries of shortform attribute lists for attr_list().
* Shortform attribute lists are not stored in hashval sorted order.
* If the output buffer is not large enough to hold them all, then we
* we have to calculate each entries' hashvalue and sort them before
* we can begin returning them to the user.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_list(xfs_attr_list_context_t *context)
{
attrlist_cursor_kern_t *cursor;
xfs_attr_sf_sort_t *sbuf, *sbp;
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
xfs_inode_t *dp;
int sbsize, nsbuf, count, i;
int error;
ASSERT(context != NULL);
dp = context->dp;
ASSERT(dp != NULL);
ASSERT(dp->i_afp != NULL);
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
ASSERT(sf != NULL);
if (!sf->hdr.count)
return(0);
cursor = context->cursor;
ASSERT(cursor != NULL);
trace_xfs_attr_list_sf(context);
/*
* If the buffer is large enough and the cursor is at the start,
* do not bother with sorting since we will return everything in
* one buffer and another call using the cursor won't need to be
* made.
* Note the generous fudge factor of 16 overhead bytes per entry.
* If bufsize is zero then put_listent must be a search function
* and can just scan through what we have.
*/
if (context->bufsize == 0 ||
(XFS_ISRESET_CURSOR(cursor) &&
(dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) {
for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
error = context->put_listent(context,
sfe->flags,
sfe->nameval,
(int)sfe->namelen,
(int)sfe->valuelen,
&sfe->nameval[sfe->namelen]);
/*
* Either search callback finished early or
* didn't fit it all in the buffer after all.
*/
if (context->seen_enough)
break;
if (error)
return error;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
}
trace_xfs_attr_list_sf_all(context);
return(0);
}
/* do no more for a search callback */
if (context->bufsize == 0)
return 0;
/*
* It didn't all fit, so we have to sort everything on hashval.
*/
sbsize = sf->hdr.count * sizeof(*sbuf);
sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP | KM_NOFS);
/*
* Scan the attribute list for the rest of the entries, storing
* the relevant info from only those that match into a buffer.
*/
nsbuf = 0;
for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
if (unlikely(
((char *)sfe < (char *)sf) ||
((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) {
XFS_CORRUPTION_ERROR("xfs_attr_shortform_list",
XFS_ERRLEVEL_LOW,
context->dp->i_mount, sfe);
kmem_free(sbuf);
return XFS_ERROR(EFSCORRUPTED);
}
sbp->entno = i;
sbp->hash = xfs_da_hashname(sfe->nameval, sfe->namelen);
sbp->name = sfe->nameval;
sbp->namelen = sfe->namelen;
/* These are bytes, and both on-disk, don't endian-flip */
sbp->valuelen = sfe->valuelen;
sbp->flags = sfe->flags;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
sbp++;
nsbuf++;
}
/*
* Sort the entries on hash then entno.
*/
xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare);
/*
* Re-find our place IN THE SORTED LIST.
*/
count = 0;
cursor->initted = 1;
cursor->blkno = 0;
for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) {
if (sbp->hash == cursor->hashval) {
if (cursor->offset == count) {
break;
}
count++;
} else if (sbp->hash > cursor->hashval) {
break;
}
}
if (i == nsbuf) {
kmem_free(sbuf);
return(0);
}
/*
* Loop putting entries into the user buffer.
*/
for ( ; i < nsbuf; i++, sbp++) {
if (cursor->hashval != sbp->hash) {
cursor->hashval = sbp->hash;
cursor->offset = 0;
}
error = context->put_listent(context,
sbp->flags,
sbp->name,
sbp->namelen,
sbp->valuelen,
&sbp->name[sbp->namelen]);
if (error)
return error;
if (context->seen_enough)
break;
cursor->offset++;
}
kmem_free(sbuf);
return(0);
}
/*
* Check a leaf attribute block to see if all the entries would fit into
* a shortform attribute list.
*/
int
xfs_attr_shortform_allfit(xfs_dabuf_t *bp, xfs_inode_t *dp)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
int bytes, i;
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
entry = &leaf->entries[0];
bytes = sizeof(struct xfs_attr_sf_hdr);
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!(entry->flags & XFS_ATTR_LOCAL))
return(0);
name_loc = xfs_attr_leaf_name_local(leaf, i);
if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
return(0);
if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
return(0);
bytes += sizeof(struct xfs_attr_sf_entry)-1
+ name_loc->namelen
+ be16_to_cpu(name_loc->valuelen);
}
if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
(bytes == sizeof(struct xfs_attr_sf_hdr)))
return(-1);
return(xfs_attr_shortform_bytesfit(dp, bytes));
}
/*
* Convert a leaf attribute list to shortform attribute list
*/
int
xfs_attr_leaf_to_shortform(xfs_dabuf_t *bp, xfs_da_args_t *args, int forkoff)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_da_args_t nargs;
xfs_inode_t *dp;
char *tmpbuffer;
int error, i;
trace_xfs_attr_leaf_to_sf(args);
dp = args->dp;
tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
ASSERT(tmpbuffer != NULL);
ASSERT(bp != NULL);
memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount));
leaf = (xfs_attr_leafblock_t *)tmpbuffer;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
memset(bp->data, 0, XFS_LBSIZE(dp->i_mount));
/*
* Clean out the prior contents of the attribute list.
*/
error = xfs_da_shrink_inode(args, 0, bp);
if (error)
goto out;
if (forkoff == -1) {
ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
xfs_attr_fork_reset(dp, args->trans);
goto out;
}
xfs_attr_shortform_create(args);
/*
* Copy the attributes
*/
memset((char *)&nargs, 0, sizeof(nargs));
nargs.dp = dp;
nargs.firstblock = args->firstblock;
nargs.flist = args->flist;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.op_flags = XFS_DA_OP_OKNOENT;
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!entry->nameidx)
continue;
ASSERT(entry->flags & XFS_ATTR_LOCAL);
name_loc = xfs_attr_leaf_name_local(leaf, i);
nargs.name = name_loc->nameval;
nargs.namelen = name_loc->namelen;
nargs.value = &name_loc->nameval[nargs.namelen];
nargs.valuelen = be16_to_cpu(name_loc->valuelen);
nargs.hashval = be32_to_cpu(entry->hashval);
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
xfs_attr_shortform_add(&nargs, forkoff);
}
error = 0;
out:
kmem_free(tmpbuffer);
return(error);
}
/*
* Convert from using a single leaf to a root node and a leaf.
*/
int
xfs_attr_leaf_to_node(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_da_intnode_t *node;
xfs_inode_t *dp;
xfs_dabuf_t *bp1, *bp2;
xfs_dablk_t blkno;
int error;
trace_xfs_attr_leaf_to_node(args);
dp = args->dp;
bp1 = bp2 = NULL;
error = xfs_da_grow_inode(args, &blkno);
if (error)
goto out;
error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1,
XFS_ATTR_FORK);
if (error)
goto out;
ASSERT(bp1 != NULL);
bp2 = NULL;
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2,
XFS_ATTR_FORK);
if (error)
goto out;
ASSERT(bp2 != NULL);
memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount));
xfs_da_buf_done(bp1);
bp1 = NULL;
xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1);
/*
* Set up the new root node.
*/
error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
if (error)
goto out;
node = bp1->data;
leaf = bp2->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
/* both on-disk, don't endian-flip twice */
node->btree[0].hashval =
leaf->entries[be16_to_cpu(leaf->hdr.count)-1 ].hashval;
node->btree[0].before = cpu_to_be32(blkno);
node->hdr.count = cpu_to_be16(1);
xfs_da_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1);
error = 0;
out:
if (bp1)
xfs_da_buf_done(bp1);
if (bp2)
xfs_da_buf_done(bp2);
return(error);
}
/*========================================================================
* Routines used for growing the Btree.
*========================================================================*/
/*
* Create the initial contents of a leaf attribute list
* or a leaf in a node attribute list.
*/
STATIC int
xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_inode_t *dp;
xfs_dabuf_t *bp;
int error;
trace_xfs_attr_leaf_create(args);
dp = args->dp;
ASSERT(dp != NULL);
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
XFS_ATTR_FORK);
if (error)
return(error);
ASSERT(bp != NULL);
leaf = bp->data;
memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount));
hdr = &leaf->hdr;
hdr->info.magic = cpu_to_be16(XFS_ATTR_LEAF_MAGIC);
hdr->firstused = cpu_to_be16(XFS_LBSIZE(dp->i_mount));
if (!hdr->firstused) {
hdr->firstused = cpu_to_be16(
XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN);
}
hdr->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
hdr->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr->firstused) -
sizeof(xfs_attr_leaf_hdr_t));
xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1);
*bpp = bp;
return(0);
}
/*
* Split the leaf node, rebalance, then add the new entry.
*/
int
xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk,
xfs_da_state_blk_t *newblk)
{
xfs_dablk_t blkno;
int error;
trace_xfs_attr_leaf_split(state->args);
/*
* Allocate space for a new leaf node.
*/
ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
error = xfs_da_grow_inode(state->args, &blkno);
if (error)
return(error);
error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp);
if (error)
return(error);
newblk->blkno = blkno;
newblk->magic = XFS_ATTR_LEAF_MAGIC;
/*
* Rebalance the entries across the two leaves.
* NOTE: rebalance() currently depends on the 2nd block being empty.
*/
xfs_attr_leaf_rebalance(state, oldblk, newblk);
error = xfs_da_blk_link(state, oldblk, newblk);
if (error)
return(error);
/*
* Save info on "old" attribute for "atomic rename" ops, leaf_add()
* modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
* "new" attrs info. Will need the "old" info to remove it later.
*
* Insert the "new" entry in the correct block.
*/
if (state->inleaf) {
trace_xfs_attr_leaf_add_old(state->args);
error = xfs_attr_leaf_add(oldblk->bp, state->args);
} else {
trace_xfs_attr_leaf_add_new(state->args);
error = xfs_attr_leaf_add(newblk->bp, state->args);
}
/*
* Update last hashval in each block since we added the name.
*/
oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
return(error);
}
/*
* Add a name to the leaf attribute list structure.
*/
int
xfs_attr_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_attr_leaf_map_t *map;
int tablesize, entsize, sum, tmp, i;
trace_xfs_attr_leaf_add(args);
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT((args->index >= 0)
&& (args->index <= be16_to_cpu(leaf->hdr.count)));
hdr = &leaf->hdr;
entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
args->trans->t_mountp->m_sb.sb_blocksize, NULL);
/*
* Search through freemap for first-fit on new name length.
* (may need to figure in size of entry struct too)
*/
tablesize = (be16_to_cpu(hdr->count) + 1)
* sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1];
for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) {
if (tablesize > be16_to_cpu(hdr->firstused)) {
sum += be16_to_cpu(map->size);
continue;
}
if (!map->size)
continue; /* no space in this map */
tmp = entsize;
if (be16_to_cpu(map->base) < be16_to_cpu(hdr->firstused))
tmp += sizeof(xfs_attr_leaf_entry_t);
if (be16_to_cpu(map->size) >= tmp) {
tmp = xfs_attr_leaf_add_work(bp, args, i);
return(tmp);
}
sum += be16_to_cpu(map->size);
}
/*
* If there are no holes in the address space of the block,
* and we don't have enough freespace, then compaction will do us
* no good and we should just give up.
*/
if (!hdr->holes && (sum < entsize))
return(XFS_ERROR(ENOSPC));
/*
* Compact the entries to coalesce free space.
* This may change the hdr->count via dropping INCOMPLETE entries.
*/
xfs_attr_leaf_compact(args->trans, bp);
/*
* After compaction, the block is guaranteed to have only one
* free region, in freemap[0]. If it is not big enough, give up.
*/
if (be16_to_cpu(hdr->freemap[0].size)
< (entsize + sizeof(xfs_attr_leaf_entry_t)))
return(XFS_ERROR(ENOSPC));
return(xfs_attr_leaf_add_work(bp, args, 0));
}
/*
* Add a name to a leaf attribute list structure.
*/
STATIC int
xfs_attr_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int mapindex)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_attr_leaf_map_t *map;
xfs_mount_t *mp;
int tmp, i;
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
hdr = &leaf->hdr;
ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE));
ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(hdr->count)));
/*
* Force open some space in the entry array and fill it in.
*/
entry = &leaf->entries[args->index];
if (args->index < be16_to_cpu(hdr->count)) {
tmp = be16_to_cpu(hdr->count) - args->index;
tmp *= sizeof(xfs_attr_leaf_entry_t);
memmove((char *)(entry+1), (char *)entry, tmp);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
}
be16_add_cpu(&hdr->count, 1);
/*
* Allocate space for the new string (at the end of the run).
*/
map = &hdr->freemap[mapindex];
mp = args->trans->t_mountp;
ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
ASSERT((be16_to_cpu(map->base) & 0x3) == 0);
ASSERT(be16_to_cpu(map->size) >=
xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
mp->m_sb.sb_blocksize, NULL));
ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
ASSERT((be16_to_cpu(map->size) & 0x3) == 0);
be16_add_cpu(&map->size,
-xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
mp->m_sb.sb_blocksize, &tmp));
entry->nameidx = cpu_to_be16(be16_to_cpu(map->base) +
be16_to_cpu(map->size));
entry->hashval = cpu_to_be32(args->hashval);
entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
if (args->op_flags & XFS_DA_OP_RENAME) {
entry->flags |= XFS_ATTR_INCOMPLETE;
if ((args->blkno2 == args->blkno) &&
(args->index2 <= args->index)) {
args->index2++;
}
}
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
ASSERT((args->index == 0) ||
(be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
ASSERT((args->index == be16_to_cpu(hdr->count)-1) ||
(be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
/*
* For "remote" attribute values, simply note that we need to
* allocate space for the "remote" value. We can't actually
* allocate the extents in this transaction, and we can't decide
* which blocks they should be as we might allocate more blocks
* as part of this transaction (a split operation for example).
*/
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr_leaf_name_local(leaf, args->index);
name_loc->namelen = args->namelen;
name_loc->valuelen = cpu_to_be16(args->valuelen);
memcpy((char *)name_loc->nameval, args->name, args->namelen);
memcpy((char *)&name_loc->nameval[args->namelen], args->value,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = xfs_attr_leaf_name_remote(leaf, args->index);
name_rmt->namelen = args->namelen;
memcpy((char *)name_rmt->name, args->name, args->namelen);
entry->flags |= XFS_ATTR_INCOMPLETE;
/* just in case */
name_rmt->valuelen = 0;
name_rmt->valueblk = 0;
args->rmtblkno = 1;
args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen);
}
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, xfs_attr_leaf_name(leaf, args->index),
xfs_attr_leaf_entsize(leaf, args->index)));
/*
* Update the control info for this leaf node
*/
if (be16_to_cpu(entry->nameidx) < be16_to_cpu(hdr->firstused)) {
/* both on-disk, don't endian-flip twice */
hdr->firstused = entry->nameidx;
}
ASSERT(be16_to_cpu(hdr->firstused) >=
((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
tmp = (be16_to_cpu(hdr->count)-1) * sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
map = &hdr->freemap[0];
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
if (be16_to_cpu(map->base) == tmp) {
be16_add_cpu(&map->base, sizeof(xfs_attr_leaf_entry_t));
be16_add_cpu(&map->size,
-((int)sizeof(xfs_attr_leaf_entry_t)));
}
}
be16_add_cpu(&hdr->usedbytes, xfs_attr_leaf_entsize(leaf, args->index));
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
return(0);
}
/*
* Garbage collect a leaf attribute list block by copying it to a new buffer.
*/
STATIC void
xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp)
{
xfs_attr_leafblock_t *leaf_s, *leaf_d;
xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
xfs_mount_t *mp;
char *tmpbuffer;
mp = trans->t_mountp;
tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, bp->data, XFS_LBSIZE(mp));
memset(bp->data, 0, XFS_LBSIZE(mp));
/*
* Copy basic information
*/
leaf_s = (xfs_attr_leafblock_t *)tmpbuffer;
leaf_d = bp->data;
hdr_s = &leaf_s->hdr;
hdr_d = &leaf_d->hdr;
hdr_d->info = hdr_s->info; /* struct copy */
hdr_d->firstused = cpu_to_be16(XFS_LBSIZE(mp));
/* handle truncation gracefully */
if (!hdr_d->firstused) {
hdr_d->firstused = cpu_to_be16(
XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN);
}
hdr_d->usedbytes = 0;
hdr_d->count = 0;
hdr_d->holes = 0;
hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) -
sizeof(xfs_attr_leaf_hdr_t));
/*
* Copy all entry's in the same (sorted) order,
* but allocate name/value pairs packed and in sequence.
*/
xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0,
be16_to_cpu(hdr_s->count), mp);
xfs_da_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1);
kmem_free(tmpbuffer);
}
/*
* Redistribute the attribute list entries between two leaf nodes,
* taking into account the size of the new entry.
*
* NOTE: if new block is empty, then it will get the upper half of the
* old block. At present, all (one) callers pass in an empty second block.
*
* This code adjusts the args->index/blkno and args->index2/blkno2 fields
* to match what it is doing in splitting the attribute leaf block. Those
* values are used in "atomic rename" operations on attributes. Note that
* the "new" and "old" values can end up in different blocks.
*/
STATIC void
xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2)
{
xfs_da_args_t *args;
xfs_da_state_blk_t *tmp_blk;
xfs_attr_leafblock_t *leaf1, *leaf2;
xfs_attr_leaf_hdr_t *hdr1, *hdr2;
int count, totallen, max, space, swap;
/*
* Set up environment.
*/
ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
ASSERT(leaf1->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(leaf2->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
args = state->args;
trace_xfs_attr_leaf_rebalance(args);
/*
* Check ordering of blocks, reverse if it makes things simpler.
*
* NOTE: Given that all (current) callers pass in an empty
* second block, this code should never set "swap".
*/
swap = 0;
if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) {
tmp_blk = blk1;
blk1 = blk2;
blk2 = tmp_blk;
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
swap = 1;
}
hdr1 = &leaf1->hdr;
hdr2 = &leaf2->hdr;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum. Then get
* the direction to copy and the number of elements to move.
*
* "inleaf" is true if the new entry should be inserted into blk1.
* If "swap" is also true, then reverse the sense of "inleaf".
*/
state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2,
&count, &totallen);
if (swap)
state->inleaf = !state->inleaf;
/*
* Move any entries required from leaf to leaf:
*/
if (count < be16_to_cpu(hdr1->count)) {
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count = be16_to_cpu(hdr1->count) - count;
space = be16_to_cpu(hdr1->usedbytes) - totallen;
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf2 is the destination, compact it if it looks tight.
*/
max = be16_to_cpu(hdr2->firstused)
- sizeof(xfs_attr_leaf_hdr_t);
max -= be16_to_cpu(hdr2->count) * sizeof(xfs_attr_leaf_entry_t);
if (space > max) {
xfs_attr_leaf_compact(args->trans, blk2->bp);
}
/*
* Move high entries from leaf1 to low end of leaf2.
*/
xfs_attr_leaf_moveents(leaf1, be16_to_cpu(hdr1->count) - count,
leaf2, 0, count, state->mp);
xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
} else if (count > be16_to_cpu(hdr1->count)) {
/*
* I assert that since all callers pass in an empty
* second buffer, this code should never execute.
*/
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count -= be16_to_cpu(hdr1->count);
space = totallen - be16_to_cpu(hdr1->usedbytes);
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf1 is the destination, compact it if it looks tight.
*/
max = be16_to_cpu(hdr1->firstused)
- sizeof(xfs_attr_leaf_hdr_t);
max -= be16_to_cpu(hdr1->count) * sizeof(xfs_attr_leaf_entry_t);
if (space > max) {
xfs_attr_leaf_compact(args->trans, blk1->bp);
}
/*
* Move low entries from leaf2 to high end of leaf1.
*/
xfs_attr_leaf_moveents(leaf2, 0, leaf1,
be16_to_cpu(hdr1->count), count, state->mp);
xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
}
/*
* Copy out last hashval in each block for B-tree code.
*/
blk1->hashval = be32_to_cpu(
leaf1->entries[be16_to_cpu(leaf1->hdr.count)-1].hashval);
blk2->hashval = be32_to_cpu(
leaf2->entries[be16_to_cpu(leaf2->hdr.count)-1].hashval);
/*
* Adjust the expected index for insertion.
* NOTE: this code depends on the (current) situation that the
* second block was originally empty.
*
* If the insertion point moved to the 2nd block, we must adjust
* the index. We must also track the entry just following the
* new entry for use in an "atomic rename" operation, that entry
* is always the "old" entry and the "new" entry is what we are
* inserting. The index/blkno fields refer to the "old" entry,
* while the index2/blkno2 fields refer to the "new" entry.
*/
if (blk1->index > be16_to_cpu(leaf1->hdr.count)) {
ASSERT(state->inleaf == 0);
blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count);
args->index = args->index2 = blk2->index;
args->blkno = args->blkno2 = blk2->blkno;
} else if (blk1->index == be16_to_cpu(leaf1->hdr.count)) {
if (state->inleaf) {
args->index = blk1->index;
args->blkno = blk1->blkno;
args->index2 = 0;
args->blkno2 = blk2->blkno;
} else {
blk2->index = blk1->index
- be16_to_cpu(leaf1->hdr.count);
args->index = args->index2 = blk2->index;
args->blkno = args->blkno2 = blk2->blkno;
}
} else {
ASSERT(state->inleaf == 1);
args->index = args->index2 = blk1->index;
args->blkno = args->blkno2 = blk1->blkno;
}
}
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
* GROT: Is this really necessary? With other than a 512 byte blocksize,
* GROT: there will always be enough room in either block for a new entry.
* GROT: Do a double-split for this case?
*/
STATIC int
xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2,
int *countarg, int *usedbytesarg)
{
xfs_attr_leafblock_t *leaf1, *leaf2;
xfs_attr_leaf_hdr_t *hdr1, *hdr2;
xfs_attr_leaf_entry_t *entry;
int count, max, index, totallen, half;
int lastdelta, foundit, tmp;
/*
* Set up environment.
*/
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
hdr1 = &leaf1->hdr;
hdr2 = &leaf2->hdr;
foundit = 0;
totallen = 0;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
*/
max = be16_to_cpu(hdr1->count) + be16_to_cpu(hdr2->count);
half = (max+1) * sizeof(*entry);
half += be16_to_cpu(hdr1->usedbytes) +
be16_to_cpu(hdr2->usedbytes) +
xfs_attr_leaf_newentsize(
state->args->namelen,
state->args->valuelen,
state->blocksize, NULL);
half /= 2;
lastdelta = state->blocksize;
entry = &leaf1->entries[0];
for (count = index = 0; count < max; entry++, index++, count++) {
#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
/*
* The new entry is in the first block, account for it.
*/
if (count == blk1->index) {
tmp = totallen + sizeof(*entry) +
xfs_attr_leaf_newentsize(
state->args->namelen,
state->args->valuelen,
state->blocksize, NULL);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
foundit = 1;
}
/*
* Wrap around into the second block if necessary.
*/
if (count == be16_to_cpu(hdr1->count)) {
leaf1 = leaf2;
entry = &leaf1->entries[0];
index = 0;
}
/*
* Figure out if next leaf entry would be too much.
*/
tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
index);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
#undef XFS_ATTR_ABS
}
/*
* Calculate the number of usedbytes that will end up in lower block.
* If new entry not in lower block, fix up the count.
*/
totallen -= count * sizeof(*entry);
if (foundit) {
totallen -= sizeof(*entry) +
xfs_attr_leaf_newentsize(
state->args->namelen,
state->args->valuelen,
state->blocksize, NULL);
}
*countarg = count;
*usedbytesarg = totallen;
return(foundit);
}
/*========================================================================
* Routines used for shrinking the Btree.
*========================================================================*/
/*
* Check a leaf block and its neighbors to see if the block should be
* collapsed into one or the other neighbor. Always keep the block
* with the smaller block number.
* If the current block is over 50% full, don't try to join it, return 0.
* If the block is empty, fill in the state structure and return 2.
* If it can be collapsed, fill in the state structure and return 1.
* If nothing can be done, return 0.
*
* GROT: allow for INCOMPLETE entries in calculation.
*/
int
xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action)
{
xfs_attr_leafblock_t *leaf;
xfs_da_state_blk_t *blk;
xfs_da_blkinfo_t *info;
int count, bytes, forward, error, retval, i;
xfs_dablk_t blkno;
xfs_dabuf_t *bp;
/*
* Check for the degenerate case of the block being over 50% full.
* If so, it's not worth even looking to see if we might be able
* to coalesce with a sibling.
*/
blk = &state->path.blk[ state->path.active-1 ];
info = blk->bp->data;
ASSERT(info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
leaf = (xfs_attr_leafblock_t *)info;
count = be16_to_cpu(leaf->hdr.count);
bytes = sizeof(xfs_attr_leaf_hdr_t) +
count * sizeof(xfs_attr_leaf_entry_t) +
be16_to_cpu(leaf->hdr.usedbytes);
if (bytes > (state->blocksize >> 1)) {
*action = 0; /* blk over 50%, don't try to join */
return(0);
}
/*
* Check for the degenerate case of the block being empty.
* If the block is empty, we'll simply delete it, no need to
* coalesce it with a sibling block. We choose (arbitrarily)
* to merge with the forward block unless it is NULL.
*/
if (count == 0) {
/*
* Make altpath point to the block we want to keep and
* path point to the block we want to drop (this one).
*/
forward = (info->forw != 0);
memcpy(&state->altpath, &state->path, sizeof(state->path));
error = xfs_da_path_shift(state, &state->altpath, forward,
0, &retval);
if (error)
return(error);
if (retval) {
*action = 0;
} else {
*action = 2;
}
return(0);
}
/*
* Examine each sibling block to see if we can coalesce with
* at least 25% free space to spare. We need to figure out
* whether to merge with the forward or the backward block.
* We prefer coalescing with the lower numbered sibling so as
* to shrink an attribute list over time.
*/
/* start with smaller blk num */
forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back));
for (i = 0; i < 2; forward = !forward, i++) {
if (forward)
blkno = be32_to_cpu(info->forw);
else
blkno = be32_to_cpu(info->back);
if (blkno == 0)
continue;
error = xfs_da_read_buf(state->args->trans, state->args->dp,
blkno, -1, &bp, XFS_ATTR_FORK);
if (error)
return(error);
ASSERT(bp != NULL);
leaf = (xfs_attr_leafblock_t *)info;
count = be16_to_cpu(leaf->hdr.count);
bytes = state->blocksize - (state->blocksize>>2);
bytes -= be16_to_cpu(leaf->hdr.usedbytes);
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
count += be16_to_cpu(leaf->hdr.count);
bytes -= be16_to_cpu(leaf->hdr.usedbytes);
bytes -= count * sizeof(xfs_attr_leaf_entry_t);
bytes -= sizeof(xfs_attr_leaf_hdr_t);
xfs_da_brelse(state->args->trans, bp);
if (bytes >= 0)
break; /* fits with at least 25% to spare */
}
if (i >= 2) {
*action = 0;
return(0);
}
/*
* Make altpath point to the block we want to keep (the lower
* numbered block) and path point to the block we want to drop.
*/
memcpy(&state->altpath, &state->path, sizeof(state->path));
if (blkno < blk->blkno) {
error = xfs_da_path_shift(state, &state->altpath, forward,
0, &retval);
} else {
error = xfs_da_path_shift(state, &state->path, forward,
0, &retval);
}
if (error)
return(error);
if (retval) {
*action = 0;
} else {
*action = 1;
}
return(0);
}
/*
* Remove a name from the leaf attribute list structure.
*
* Return 1 if leaf is less than 37% full, 0 if >= 37% full.
* If two leaves are 37% full, when combined they will leave 25% free.
*/
int
xfs_attr_leaf_remove(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_attr_leaf_map_t *map;
xfs_attr_leaf_entry_t *entry;
int before, after, smallest, entsize;
int tablesize, tmp, i;
xfs_mount_t *mp;
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
hdr = &leaf->hdr;
mp = args->trans->t_mountp;
ASSERT((be16_to_cpu(hdr->count) > 0)
&& (be16_to_cpu(hdr->count) < (XFS_LBSIZE(mp)/8)));
ASSERT((args->index >= 0)
&& (args->index < be16_to_cpu(hdr->count)));
ASSERT(be16_to_cpu(hdr->firstused) >=
((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
entry = &leaf->entries[args->index];
ASSERT(be16_to_cpu(entry->nameidx) >= be16_to_cpu(hdr->firstused));
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
/*
* Scan through free region table:
* check for adjacency of free'd entry with an existing one,
* find smallest free region in case we need to replace it,
* adjust any map that borders the entry table,
*/
tablesize = be16_to_cpu(hdr->count) * sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
map = &hdr->freemap[0];
tmp = be16_to_cpu(map->size);
before = after = -1;
smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
entsize = xfs_attr_leaf_entsize(leaf, args->index);
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
if (be16_to_cpu(map->base) == tablesize) {
be16_add_cpu(&map->base,
-((int)sizeof(xfs_attr_leaf_entry_t)));
be16_add_cpu(&map->size, sizeof(xfs_attr_leaf_entry_t));
}
if ((be16_to_cpu(map->base) + be16_to_cpu(map->size))
== be16_to_cpu(entry->nameidx)) {
before = i;
} else if (be16_to_cpu(map->base)
== (be16_to_cpu(entry->nameidx) + entsize)) {
after = i;
} else if (be16_to_cpu(map->size) < tmp) {
tmp = be16_to_cpu(map->size);
smallest = i;
}
}
/*
* Coalesce adjacent freemap regions,
* or replace the smallest region.
*/
if ((before >= 0) || (after >= 0)) {
if ((before >= 0) && (after >= 0)) {
map = &hdr->freemap[before];
be16_add_cpu(&map->size, entsize);
be16_add_cpu(&map->size,
be16_to_cpu(hdr->freemap[after].size));
hdr->freemap[after].base = 0;
hdr->freemap[after].size = 0;
} else if (before >= 0) {
map = &hdr->freemap[before];
be16_add_cpu(&map->size, entsize);
} else {
map = &hdr->freemap[after];
/* both on-disk, don't endian flip twice */
map->base = entry->nameidx;
be16_add_cpu(&map->size, entsize);
}
} else {
/*
* Replace smallest region (if it is smaller than free'd entry)
*/
map = &hdr->freemap[smallest];
if (be16_to_cpu(map->size) < entsize) {
map->base = cpu_to_be16(be16_to_cpu(entry->nameidx));
map->size = cpu_to_be16(entsize);
}
}
/*
* Did we remove the first entry?
*/
if (be16_to_cpu(entry->nameidx) == be16_to_cpu(hdr->firstused))
smallest = 1;
else
smallest = 0;
/*
* Compress the remaining entries and zero out the removed stuff.
*/
memset(xfs_attr_leaf_name(leaf, args->index), 0, entsize);
be16_add_cpu(&hdr->usedbytes, -entsize);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, xfs_attr_leaf_name(leaf, args->index),
entsize));
tmp = (be16_to_cpu(hdr->count) - args->index)
* sizeof(xfs_attr_leaf_entry_t);
memmove((char *)entry, (char *)(entry+1), tmp);
be16_add_cpu(&hdr->count, -1);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
entry = &leaf->entries[be16_to_cpu(hdr->count)];
memset((char *)entry, 0, sizeof(xfs_attr_leaf_entry_t));
/*
* If we removed the first entry, re-find the first used byte
* in the name area. Note that if the entry was the "firstused",
* then we don't have a "hole" in our block resulting from
* removing the name.
*/
if (smallest) {
tmp = XFS_LBSIZE(mp);
entry = &leaf->entries[0];
for (i = be16_to_cpu(hdr->count)-1; i >= 0; entry++, i--) {
ASSERT(be16_to_cpu(entry->nameidx) >=
be16_to_cpu(hdr->firstused));
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
if (be16_to_cpu(entry->nameidx) < tmp)
tmp = be16_to_cpu(entry->nameidx);
}
hdr->firstused = cpu_to_be16(tmp);
if (!hdr->firstused) {
hdr->firstused = cpu_to_be16(
tmp - XFS_ATTR_LEAF_NAME_ALIGN);
}
} else {
hdr->holes = 1; /* mark as needing compaction */
}
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
/*
* Check if leaf is less than 50% full, caller may want to
* "join" the leaf with a sibling if so.
*/
tmp = sizeof(xfs_attr_leaf_hdr_t);
tmp += be16_to_cpu(leaf->hdr.count) * sizeof(xfs_attr_leaf_entry_t);
tmp += be16_to_cpu(leaf->hdr.usedbytes);
return(tmp < mp->m_attr_magicpct); /* leaf is < 37% full */
}
/*
* Move all the attribute list entries from drop_leaf into save_leaf.
*/
void
xfs_attr_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk,
xfs_da_state_blk_t *save_blk)
{
xfs_attr_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf;
xfs_attr_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr;
xfs_mount_t *mp;
char *tmpbuffer;
trace_xfs_attr_leaf_unbalance(state->args);
/*
* Set up environment.
*/
mp = state->mp;
ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC);
ASSERT(save_blk->magic == XFS_ATTR_LEAF_MAGIC);
drop_leaf = drop_blk->bp->data;
save_leaf = save_blk->bp->data;
ASSERT(drop_leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(save_leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
drop_hdr = &drop_leaf->hdr;
save_hdr = &save_leaf->hdr;
/*
* Save last hashval from dying block for later Btree fixup.
*/
drop_blk->hashval = be32_to_cpu(
drop_leaf->entries[be16_to_cpu(drop_leaf->hdr.count)-1].hashval);
/*
* Check if we need a temp buffer, or can we do it in place.
* Note that we don't check "leaf" for holes because we will
* always be dropping it, toosmall() decided that for us already.
*/
if (save_hdr->holes == 0) {
/*
* dest leaf has no holes, so we add there. May need
* to make some room in the entry array.
*/
if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, 0,
be16_to_cpu(drop_hdr->count), mp);
} else {
xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf,
be16_to_cpu(save_hdr->count),
be16_to_cpu(drop_hdr->count), mp);
}
} else {
/*
* Destination has holes, so we make a temporary copy
* of the leaf and add them both to that.
*/
tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memset(tmpbuffer, 0, state->blocksize);
tmp_leaf = (xfs_attr_leafblock_t *)tmpbuffer;
tmp_hdr = &tmp_leaf->hdr;
tmp_hdr->info = save_hdr->info; /* struct copy */
tmp_hdr->count = 0;
tmp_hdr->firstused = cpu_to_be16(state->blocksize);
if (!tmp_hdr->firstused) {
tmp_hdr->firstused = cpu_to_be16(
state->blocksize - XFS_ATTR_LEAF_NAME_ALIGN);
}
tmp_hdr->usedbytes = 0;
if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, 0,
be16_to_cpu(drop_hdr->count), mp);
xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf,
be16_to_cpu(tmp_leaf->hdr.count),
be16_to_cpu(save_hdr->count), mp);
} else {
xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, 0,
be16_to_cpu(save_hdr->count), mp);
xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf,
be16_to_cpu(tmp_leaf->hdr.count),
be16_to_cpu(drop_hdr->count), mp);
}
memcpy((char *)save_leaf, (char *)tmp_leaf, state->blocksize);
kmem_free(tmpbuffer);
}
xfs_da_log_buf(state->args->trans, save_blk->bp, 0,
state->blocksize - 1);
/*
* Copy out last hashval in each block for B-tree code.
*/
save_blk->hashval = be32_to_cpu(
save_leaf->entries[be16_to_cpu(save_leaf->hdr.count)-1].hashval);
}
/*========================================================================
* Routines used for finding things in the Btree.
*========================================================================*/
/*
* Look up a name in a leaf attribute list structure.
* This is the internal routine, it uses the caller's buffer.
*
* Note that duplicate keys are allowed, but only check within the
* current leaf node. The Btree code must check in adjacent leaf nodes.
*
* Return in args->index the index into the entry[] array of either
* the found entry, or where the entry should have been (insert before
* that entry).
*
* Don't change the args->value unless we find the attribute.
*/
int
xfs_attr_leaf_lookup_int(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
int probe, span;
xfs_dahash_t hashval;
trace_xfs_attr_leaf_lookup(args);
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(be16_to_cpu(leaf->hdr.count)
< (XFS_LBSIZE(args->dp->i_mount)/8));
/*
* Binary search. (note: small blocks will skip this loop)
*/
hashval = args->hashval;
probe = span = be16_to_cpu(leaf->hdr.count) / 2;
for (entry = &leaf->entries[probe]; span > 4;
entry = &leaf->entries[probe]) {
span /= 2;
if (be32_to_cpu(entry->hashval) < hashval)
probe += span;
else if (be32_to_cpu(entry->hashval) > hashval)
probe -= span;
else
break;
}
ASSERT((probe >= 0) &&
(!leaf->hdr.count
|| (probe < be16_to_cpu(leaf->hdr.count))));
ASSERT((span <= 4) || (be32_to_cpu(entry->hashval) == hashval));
/*
* Since we may have duplicate hashval's, find the first matching
* hashval in the leaf.
*/
while ((probe > 0) && (be32_to_cpu(entry->hashval) >= hashval)) {
entry--;
probe--;
}
while ((probe < be16_to_cpu(leaf->hdr.count)) &&
(be32_to_cpu(entry->hashval) < hashval)) {
entry++;
probe++;
}
if ((probe == be16_to_cpu(leaf->hdr.count)) ||
(be32_to_cpu(entry->hashval) != hashval)) {
args->index = probe;
return(XFS_ERROR(ENOATTR));
}
/*
* Duplicate keys may be present, so search all of them for a match.
*/
for ( ; (probe < be16_to_cpu(leaf->hdr.count)) &&
(be32_to_cpu(entry->hashval) == hashval);
entry++, probe++) {
/*
* GROT: Add code to remove incomplete entries.
*/
/*
* If we are looking for INCOMPLETE entries, show only those.
* If we are looking for complete entries, show only those.
*/
if ((args->flags & XFS_ATTR_INCOMPLETE) !=
(entry->flags & XFS_ATTR_INCOMPLETE)) {
continue;
}
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr_leaf_name_local(leaf, probe);
if (name_loc->namelen != args->namelen)
continue;
if (memcmp(args->name, (char *)name_loc->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, entry->flags))
continue;
args->index = probe;
return(XFS_ERROR(EEXIST));
} else {
name_rmt = xfs_attr_leaf_name_remote(leaf, probe);
if (name_rmt->namelen != args->namelen)
continue;
if (memcmp(args->name, (char *)name_rmt->name,
args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, entry->flags))
continue;
args->index = probe;
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount,
be32_to_cpu(name_rmt->valuelen));
return(XFS_ERROR(EEXIST));
}
}
args->index = probe;
return(XFS_ERROR(ENOATTR));
}
/*
* Get the value associated with an attribute name from a leaf attribute
* list structure.
*/
int
xfs_attr_leaf_getvalue(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
int valuelen;
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(be16_to_cpu(leaf->hdr.count)
< (XFS_LBSIZE(args->dp->i_mount)/8));
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
entry = &leaf->entries[args->index];
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr_leaf_name_local(leaf, args->index);
ASSERT(name_loc->namelen == args->namelen);
ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
valuelen = be16_to_cpu(name_loc->valuelen);
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = valuelen;
return(0);
}
if (args->valuelen < valuelen) {
args->valuelen = valuelen;
return(XFS_ERROR(ERANGE));
}
args->valuelen = valuelen;
memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
} else {
name_rmt = xfs_attr_leaf_name_remote(leaf, args->index);
ASSERT(name_rmt->namelen == args->namelen);
ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
valuelen = be32_to_cpu(name_rmt->valuelen);
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen);
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = valuelen;
return(0);
}
if (args->valuelen < valuelen) {
args->valuelen = valuelen;
return(XFS_ERROR(ERANGE));
}
args->valuelen = valuelen;
}
return(0);
}
/*========================================================================
* Utility routines.
*========================================================================*/
/*
* Move the indicated entries from one leaf to another.
* NOTE: this routine modifies both source and destination leaves.
*/
/*ARGSUSED*/
STATIC void
xfs_attr_leaf_moveents(xfs_attr_leafblock_t *leaf_s, int start_s,
xfs_attr_leafblock_t *leaf_d, int start_d,
int count, xfs_mount_t *mp)
{
xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
xfs_attr_leaf_entry_t *entry_s, *entry_d;
int desti, tmp, i;
/*
* Check for nothing to do.
*/
if (count == 0)
return;
/*
* Set up environment.
*/
ASSERT(leaf_s->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(leaf_d->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
hdr_s = &leaf_s->hdr;
hdr_d = &leaf_d->hdr;
ASSERT((be16_to_cpu(hdr_s->count) > 0) &&
(be16_to_cpu(hdr_s->count) < (XFS_LBSIZE(mp)/8)));
ASSERT(be16_to_cpu(hdr_s->firstused) >=
((be16_to_cpu(hdr_s->count)
* sizeof(*entry_s))+sizeof(*hdr_s)));
ASSERT(be16_to_cpu(hdr_d->count) < (XFS_LBSIZE(mp)/8));
ASSERT(be16_to_cpu(hdr_d->firstused) >=
((be16_to_cpu(hdr_d->count)
* sizeof(*entry_d))+sizeof(*hdr_d)));
ASSERT(start_s < be16_to_cpu(hdr_s->count));
ASSERT(start_d <= be16_to_cpu(hdr_d->count));
ASSERT(count <= be16_to_cpu(hdr_s->count));
/*
* Move the entries in the destination leaf up to make a hole?
*/
if (start_d < be16_to_cpu(hdr_d->count)) {
tmp = be16_to_cpu(hdr_d->count) - start_d;
tmp *= sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_d->entries[start_d];
entry_d = &leaf_d->entries[start_d + count];
memmove((char *)entry_d, (char *)entry_s, tmp);
}
/*
* Copy all entry's in the same (sorted) order,
* but allocate attribute info packed and in sequence.
*/
entry_s = &leaf_s->entries[start_s];
entry_d = &leaf_d->entries[start_d];
desti = start_d;
for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
ASSERT(be16_to_cpu(entry_s->nameidx)
>= be16_to_cpu(hdr_s->firstused));
tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
#ifdef GROT
/*
* Code to drop INCOMPLETE entries. Difficult to use as we
* may also need to change the insertion index. Code turned
* off for 6.2, should be revisited later.
*/
if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
memset(xfs_attr_leaf_name(leaf_s, start_s + i), 0, tmp);
be16_add_cpu(&hdr_s->usedbytes, -tmp);
be16_add_cpu(&hdr_s->count, -1);
entry_d--; /* to compensate for ++ in loop hdr */
desti--;
if ((start_s + i) < offset)
result++; /* insertion index adjustment */
} else {
#endif /* GROT */
be16_add_cpu(&hdr_d->firstused, -tmp);
/* both on-disk, don't endian flip twice */
entry_d->hashval = entry_s->hashval;
/* both on-disk, don't endian flip twice */
entry_d->nameidx = hdr_d->firstused;
entry_d->flags = entry_s->flags;
ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
<= XFS_LBSIZE(mp));
memmove(xfs_attr_leaf_name(leaf_d, desti),
xfs_attr_leaf_name(leaf_s, start_s + i), tmp);
ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
<= XFS_LBSIZE(mp));
memset(xfs_attr_leaf_name(leaf_s, start_s + i), 0, tmp);
be16_add_cpu(&hdr_s->usedbytes, -tmp);
be16_add_cpu(&hdr_d->usedbytes, tmp);
be16_add_cpu(&hdr_s->count, -1);
be16_add_cpu(&hdr_d->count, 1);
tmp = be16_to_cpu(hdr_d->count)
* sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
ASSERT(be16_to_cpu(hdr_d->firstused) >= tmp);
#ifdef GROT
}
#endif /* GROT */
}
/*
* Zero out the entries we just copied.
*/
if (start_s == be16_to_cpu(hdr_s->count)) {
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_s->entries[start_s];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + XFS_LBSIZE(mp)));
memset((char *)entry_s, 0, tmp);
} else {
/*
* Move the remaining entries down to fill the hole,
* then zero the entries at the top.
*/
tmp = be16_to_cpu(hdr_s->count) - count;
tmp *= sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_s->entries[start_s + count];
entry_d = &leaf_s->entries[start_s];
memmove((char *)entry_d, (char *)entry_s, tmp);
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_s->entries[be16_to_cpu(hdr_s->count)];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + XFS_LBSIZE(mp)));
memset((char *)entry_s, 0, tmp);
}
/*
* Fill in the freemap information
*/
hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
be16_add_cpu(&hdr_d->freemap[0].base, be16_to_cpu(hdr_d->count) *
sizeof(xfs_attr_leaf_entry_t));
hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused)
- be16_to_cpu(hdr_d->freemap[0].base));
hdr_d->freemap[1].base = 0;
hdr_d->freemap[2].base = 0;
hdr_d->freemap[1].size = 0;
hdr_d->freemap[2].size = 0;
hdr_s->holes = 1; /* leaf may not be compact */
}
/*
* Compare two leaf blocks "order".
* Return 0 unless leaf2 should go before leaf1.
*/
int
xfs_attr_leaf_order(xfs_dabuf_t *leaf1_bp, xfs_dabuf_t *leaf2_bp)
{
xfs_attr_leafblock_t *leaf1, *leaf2;
leaf1 = leaf1_bp->data;
leaf2 = leaf2_bp->data;
ASSERT((leaf1->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)) &&
(leaf2->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)));
if ((be16_to_cpu(leaf1->hdr.count) > 0) &&
(be16_to_cpu(leaf2->hdr.count) > 0) &&
((be32_to_cpu(leaf2->entries[0].hashval) <
be32_to_cpu(leaf1->entries[0].hashval)) ||
(be32_to_cpu(leaf2->entries[
be16_to_cpu(leaf2->hdr.count)-1].hashval) <
be32_to_cpu(leaf1->entries[
be16_to_cpu(leaf1->hdr.count)-1].hashval)))) {
return(1);
}
return(0);
}
/*
* Pick up the last hashvalue from a leaf block.
*/
xfs_dahash_t
xfs_attr_leaf_lasthash(xfs_dabuf_t *bp, int *count)
{
xfs_attr_leafblock_t *leaf;
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
if (count)
*count = be16_to_cpu(leaf->hdr.count);
if (!leaf->hdr.count)
return(0);
return be32_to_cpu(leaf->entries[be16_to_cpu(leaf->hdr.count)-1].hashval);
}
/*
* Calculate the number of bytes used to store the indicated attribute
* (whether local or remote only calculate bytes in this block).
*/
STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
{
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
int size;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
if (leaf->entries[index].flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr_leaf_name_local(leaf, index);
size = xfs_attr_leaf_entsize_local(name_loc->namelen,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = xfs_attr_leaf_name_remote(leaf, index);
size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
}
return(size);
}
/*
* Calculate the number of bytes that would be required to store the new
* attribute (whether local or remote only calculate bytes in this block).
* This routine decides as a side effect whether the attribute will be
* a "local" or a "remote" attribute.
*/
int
xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local)
{
int size;
size = xfs_attr_leaf_entsize_local(namelen, valuelen);
if (size < xfs_attr_leaf_entsize_local_max(blocksize)) {
if (local) {
*local = 1;
}
} else {
size = xfs_attr_leaf_entsize_remote(namelen);
if (local) {
*local = 0;
}
}
return(size);
}
/*
* Copy out attribute list entries for attr_list(), for leaf attribute lists.
*/
int
xfs_attr_leaf_list_int(xfs_dabuf_t *bp, xfs_attr_list_context_t *context)
{
attrlist_cursor_kern_t *cursor;
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
int retval, i;
ASSERT(bp != NULL);
leaf = bp->data;
cursor = context->cursor;
cursor->initted = 1;
trace_xfs_attr_list_leaf(context);
/*
* Re-find our place in the leaf block if this is a new syscall.
*/
if (context->resynch) {
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (be32_to_cpu(entry->hashval) == cursor->hashval) {
if (cursor->offset == context->dupcnt) {
context->dupcnt = 0;
break;
}
context->dupcnt++;
} else if (be32_to_cpu(entry->hashval) >
cursor->hashval) {
context->dupcnt = 0;
break;
}
}
if (i == be16_to_cpu(leaf->hdr.count)) {
trace_xfs_attr_list_notfound(context);
return(0);
}
} else {
entry = &leaf->entries[0];
i = 0;
}
context->resynch = 0;
/*
* We have found our place, start copying out the new attributes.
*/
retval = 0;
for ( ; (i < be16_to_cpu(leaf->hdr.count)); entry++, i++) {
if (be32_to_cpu(entry->hashval) != cursor->hashval) {
cursor->hashval = be32_to_cpu(entry->hashval);
cursor->offset = 0;
}
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* skip incomplete entries */
if (entry->flags & XFS_ATTR_LOCAL) {
xfs_attr_leaf_name_local_t *name_loc =
xfs_attr_leaf_name_local(leaf, i);
retval = context->put_listent(context,
entry->flags,
name_loc->nameval,
(int)name_loc->namelen,
be16_to_cpu(name_loc->valuelen),
&name_loc->nameval[name_loc->namelen]);
if (retval)
return retval;
} else {
xfs_attr_leaf_name_remote_t *name_rmt =
xfs_attr_leaf_name_remote(leaf, i);
int valuelen = be32_to_cpu(name_rmt->valuelen);
if (context->put_value) {
xfs_da_args_t args;
memset((char *)&args, 0, sizeof(args));
args.dp = context->dp;
args.whichfork = XFS_ATTR_FORK;
args.valuelen = valuelen;
args.value = kmem_alloc(valuelen, KM_SLEEP | KM_NOFS);
args.rmtblkno = be32_to_cpu(name_rmt->valueblk);
args.rmtblkcnt = XFS_B_TO_FSB(args.dp->i_mount, valuelen);
retval = xfs_attr_rmtval_get(&args);
if (retval)
return retval;
retval = context->put_listent(context,
entry->flags,
name_rmt->name,
(int)name_rmt->namelen,
valuelen,
args.value);
kmem_free(args.value);
} else {
retval = context->put_listent(context,
entry->flags,
name_rmt->name,
(int)name_rmt->namelen,
valuelen,
NULL);
}
if (retval)
return retval;
}
if (context->seen_enough)
break;
cursor->offset++;
}
trace_xfs_attr_list_leaf_end(context);
return(retval);
}
/*========================================================================
* Manage the INCOMPLETE flag in a leaf entry
*========================================================================*/
/*
* Clear the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr_leaf_clearflag(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_dabuf_t *bp;
int error;
#ifdef DEBUG
xfs_attr_leaf_name_local_t *name_loc;
int namelen;
char *name;
#endif /* DEBUG */
trace_xfs_attr_leaf_clearflag(args);
/*
* Set up the operation.
*/
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp != NULL);
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
ASSERT(args->index >= 0);
entry = &leaf->entries[ args->index ];
ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
#ifdef DEBUG
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr_leaf_name_local(leaf, args->index);
namelen = name_loc->namelen;
name = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr_leaf_name_remote(leaf, args->index);
namelen = name_rmt->namelen;
name = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
ASSERT(namelen == args->namelen);
ASSERT(memcmp(name, args->name, namelen) == 0);
#endif /* DEBUG */
entry->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if (args->rmtblkno) {
ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = xfs_attr_leaf_name_remote(leaf, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->valuelen);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
xfs_da_buf_done(bp);
/*
* Commit the flag value change and start the next trans in series.
*/
return xfs_trans_roll(&args->trans, args->dp);
}
/*
* Set the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr_leaf_setflag(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_dabuf_t *bp;
int error;
trace_xfs_attr_leaf_setflag(args);
/*
* Set up the operation.
*/
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp != NULL);
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
ASSERT(args->index >= 0);
entry = &leaf->entries[ args->index ];
ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
entry->flags |= XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = xfs_attr_leaf_name_remote(leaf, args->index);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
xfs_da_buf_done(bp);
/*
* Commit the flag value change and start the next trans in series.
*/
return xfs_trans_roll(&args->trans, args->dp);
}
/*
* In a single transaction, clear the INCOMPLETE flag on the leaf entry
* given by args->blkno/index and set the INCOMPLETE flag on the leaf
* entry given by args->blkno2/index2.
*
* Note that they could be in different blocks, or in the same block.
*/
int
xfs_attr_leaf_flipflags(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf1, *leaf2;
xfs_attr_leaf_entry_t *entry1, *entry2;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_dabuf_t *bp1, *bp2;
int error;
#ifdef DEBUG
xfs_attr_leaf_name_local_t *name_loc;
int namelen1, namelen2;
char *name1, *name2;
#endif /* DEBUG */
trace_xfs_attr_leaf_flipflags(args);
/*
* Read the block containing the "old" attr
*/
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp1,
XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp1 != NULL);
/*
* Read the block containing the "new" attr, if it is different
*/
if (args->blkno2 != args->blkno) {
error = xfs_da_read_buf(args->trans, args->dp, args->blkno2,
-1, &bp2, XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp2 != NULL);
} else {
bp2 = bp1;
}
leaf1 = bp1->data;
ASSERT(leaf1->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(args->index < be16_to_cpu(leaf1->hdr.count));
ASSERT(args->index >= 0);
entry1 = &leaf1->entries[ args->index ];
leaf2 = bp2->data;
ASSERT(leaf2->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
ASSERT(args->index2 < be16_to_cpu(leaf2->hdr.count));
ASSERT(args->index2 >= 0);
entry2 = &leaf2->entries[ args->index2 ];
#ifdef DEBUG
if (entry1->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr_leaf_name_local(leaf1, args->index);
namelen1 = name_loc->namelen;
name1 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr_leaf_name_remote(leaf1, args->index);
namelen1 = name_rmt->namelen;
name1 = (char *)name_rmt->name;
}
if (entry2->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr_leaf_name_local(leaf2, args->index2);
namelen2 = name_loc->namelen;
name2 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr_leaf_name_remote(leaf2, args->index2);
namelen2 = name_rmt->namelen;
name2 = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
ASSERT(namelen1 == namelen2);
ASSERT(memcmp(name1, name2, namelen1) == 0);
#endif /* DEBUG */
ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
entry1->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
if (args->rmtblkno) {
ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = xfs_attr_leaf_name_remote(leaf1, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->valuelen);
xfs_da_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
}
entry2->flags |= XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = xfs_attr_leaf_name_remote(leaf2, args->index2);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_da_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
}
xfs_da_buf_done(bp1);
if (bp1 != bp2)
xfs_da_buf_done(bp2);
/*
* Commit the flag value change and start the next trans in series.
*/
error = xfs_trans_roll(&args->trans, args->dp);
return(error);
}
/*========================================================================
* Indiscriminately delete the entire attribute fork
*========================================================================*/
/*
* Recurse (gasp!) through the attribute nodes until we find leaves.
* We're doing a depth-first traversal in order to invalidate everything.
*/
int
xfs_attr_root_inactive(xfs_trans_t **trans, xfs_inode_t *dp)
{
xfs_da_blkinfo_t *info;
xfs_daddr_t blkno;
xfs_dabuf_t *bp;
int error;
/*
* Read block 0 to see what we have to work with.
* We only get here if we have extents, since we remove
* the extents in reverse order the extent containing
* block 0 must still be there.
*/
error = xfs_da_read_buf(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK);
if (error)
return(error);
blkno = xfs_da_blkno(bp);
/*
* Invalidate the tree, even if the "tree" is only a single leaf block.
* This is a depth-first traversal!
*/
info = bp->data;
if (info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC)) {
error = xfs_attr_node_inactive(trans, dp, bp, 1);
} else if (info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)) {
error = xfs_attr_leaf_inactive(trans, dp, bp);
} else {
error = XFS_ERROR(EIO);
xfs_da_brelse(*trans, bp);
}
if (error)
return(error);
/*
* Invalidate the incore copy of the root block.
*/
error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK);
if (error)
return(error);
xfs_da_binval(*trans, bp); /* remove from cache */
/*
* Commit the invalidate and start the next transaction.
*/
error = xfs_trans_roll(trans, dp);
return (error);
}
/*
* Recurse (gasp!) through the attribute nodes until we find leaves.
* We're doing a depth-first traversal in order to invalidate everything.
*/
STATIC int
xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp,
int level)
{
xfs_da_blkinfo_t *info;
xfs_da_intnode_t *node;
xfs_dablk_t child_fsb;
xfs_daddr_t parent_blkno, child_blkno;
int error, count, i;
xfs_dabuf_t *child_bp;
/*
* Since this code is recursive (gasp!) we must protect ourselves.
*/
if (level > XFS_DA_NODE_MAXDEPTH) {
xfs_da_brelse(*trans, bp); /* no locks for later trans */
return(XFS_ERROR(EIO));
}
node = bp->data;
ASSERT(node->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC));
parent_blkno = xfs_da_blkno(bp); /* save for re-read later */
count = be16_to_cpu(node->hdr.count);
if (!count) {
xfs_da_brelse(*trans, bp);
return(0);
}
child_fsb = be32_to_cpu(node->btree[0].before);
xfs_da_brelse(*trans, bp); /* no locks for later trans */
/*
* If this is the node level just above the leaves, simply loop
* over the leaves removing all of them. If this is higher up
* in the tree, recurse downward.
*/
for (i = 0; i < count; i++) {
/*
* Read the subsidiary block to see what we have to work with.
* Don't do this in a transaction. This is a depth-first
* traversal of the tree so we may deal with many blocks
* before we come back to this one.
*/
error = xfs_da_read_buf(*trans, dp, child_fsb, -2, &child_bp,
XFS_ATTR_FORK);
if (error)
return(error);
if (child_bp) {
/* save for re-read later */
child_blkno = xfs_da_blkno(child_bp);
/*
* Invalidate the subtree, however we have to.
*/
info = child_bp->data;
if (info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC)) {
error = xfs_attr_node_inactive(trans, dp,
child_bp, level+1);
} else if (info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC)) {
error = xfs_attr_leaf_inactive(trans, dp,
child_bp);
} else {
error = XFS_ERROR(EIO);
xfs_da_brelse(*trans, child_bp);
}
if (error)
return(error);
/*
* Remove the subsidiary block from the cache
* and from the log.
*/
error = xfs_da_get_buf(*trans, dp, 0, child_blkno,
&child_bp, XFS_ATTR_FORK);
if (error)
return(error);
xfs_da_binval(*trans, child_bp);
}
/*
* If we're not done, re-read the parent to get the next
* child block number.
*/
if ((i+1) < count) {
error = xfs_da_read_buf(*trans, dp, 0, parent_blkno,
&bp, XFS_ATTR_FORK);
if (error)
return(error);
child_fsb = be32_to_cpu(node->btree[i+1].before);
xfs_da_brelse(*trans, bp);
}
/*
* Atomically commit the whole invalidate stuff.
*/
error = xfs_trans_roll(trans, dp);
if (error)
return (error);
}
return(0);
}
/*
* Invalidate all of the "remote" value regions pointed to by a particular
* leaf block.
* Note that we must release the lock on the buffer so that we are not
* caught holding something that the logging code wants to flush to disk.
*/
STATIC int
xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_attr_inactive_list_t *list, *lp;
int error, count, size, tmp, i;
leaf = bp->data;
ASSERT(leaf->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC));
/*
* Count the number of "remote" value extents.
*/
count = 0;
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (be16_to_cpu(entry->nameidx) &&
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
name_rmt = xfs_attr_leaf_name_remote(leaf, i);
if (name_rmt->valueblk)
count++;
}
}
/*
* If there are no "remote" values, we're done.
*/
if (count == 0) {
xfs_da_brelse(*trans, bp);
return(0);
}
/*
* Allocate storage for a list of all the "remote" value extents.
*/
size = count * sizeof(xfs_attr_inactive_list_t);
list = (xfs_attr_inactive_list_t *)kmem_alloc(size, KM_SLEEP);
/*
* Identify each of the "remote" value extents.
*/
lp = list;
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (be16_to_cpu(entry->nameidx) &&
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
name_rmt = xfs_attr_leaf_name_remote(leaf, i);
if (name_rmt->valueblk) {
lp->valueblk = be32_to_cpu(name_rmt->valueblk);
lp->valuelen = XFS_B_TO_FSB(dp->i_mount,
be32_to_cpu(name_rmt->valuelen));
lp++;
}
}
}
xfs_da_brelse(*trans, bp); /* unlock for trans. in freextent() */
/*
* Invalidate each of the "remote" value extents.
*/
error = 0;
for (lp = list, i = 0; i < count; i++, lp++) {
tmp = xfs_attr_leaf_freextent(trans, dp,
lp->valueblk, lp->valuelen);
if (error == 0)
error = tmp; /* save only the 1st errno */
}
kmem_free((xfs_caddr_t)list);
return(error);
}
/*
* Look at all the extents for this logical region,
* invalidate any buffers that are incore/in transactions.
*/
STATIC int
xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dablk_t blkno, int blkcnt)
{
xfs_bmbt_irec_t map;
xfs_dablk_t tblkno;
int tblkcnt, dblkcnt, nmap, error;
xfs_daddr_t dblkno;
xfs_buf_t *bp;
/*
* Roll through the "value", invalidating the attribute value's
* blocks.
*/
tblkno = blkno;
tblkcnt = blkcnt;
while (tblkcnt > 0) {
/*
* Try to remember where we decided to put the value.
*/
nmap = 1;
error = xfs_bmapi_read(dp, (xfs_fileoff_t)tblkno, tblkcnt,
&map, &nmap, XFS_BMAPI_ATTRFORK);
if (error) {
return(error);
}
ASSERT(nmap == 1);
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
/*
* If it's a hole, these are already unmapped
* so there's nothing to invalidate.
*/
if (map.br_startblock != HOLESTARTBLOCK) {
dblkno = XFS_FSB_TO_DADDR(dp->i_mount,
map.br_startblock);
dblkcnt = XFS_FSB_TO_BB(dp->i_mount,
map.br_blockcount);
bp = xfs_trans_get_buf(*trans,
dp->i_mount->m_ddev_targp,
dblkno, dblkcnt, 0);
if (!bp)
return ENOMEM;
xfs_trans_binval(*trans, bp);
/*
* Roll to next transaction.
*/
error = xfs_trans_roll(trans, dp);
if (error)
return (error);
}
tblkno += map.br_blockcount;
tblkcnt -= map.br_blockcount;
}
return(0);
}