Mel Gorman d0164adc89 mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts.  They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve".  __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".

Over time, callers had a requirement to not block when fallback options
were available.  Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.

This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative.  High priority users continue to use
__GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.

This patch then converts a number of sites

o __GFP_ATOMIC is used by callers that are high priority and have memory
  pools for those requests. GFP_ATOMIC uses this flag.

o Callers that have a limited mempool to guarantee forward progress clear
  __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
  into this category where kswapd will still be woken but atomic reserves
  are not used as there is a one-entry mempool to guarantee progress.

o Callers that are checking if they are non-blocking should use the
  helper gfpflags_allow_blocking() where possible. This is because
  checking for __GFP_WAIT as was done historically now can trigger false
  positives. Some exceptions like dm-crypt.c exist where the code intent
  is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
  flag manipulations.

o Callers that built their own GFP flags instead of starting with GFP_KERNEL
  and friends now also need to specify __GFP_KSWAPD_RECLAIM.

The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.

The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL.  They may
now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00

1177 lines
28 KiB
C

/*
* Copyright (c) Intel Corp. 2007.
* All Rights Reserved.
*
* Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
* develop this driver.
*
* This file is part of the Vermilion Range fb driver.
* The Vermilion Range fb driver is free software;
* you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The Vermilion Range fb driver is distributed
* in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors:
* Thomas Hellström <thomas-at-tungstengraphics-dot-com>
* Michel Dänzer <michel-at-tungstengraphics-dot-com>
* Alan Hourihane <alanh-at-tungstengraphics-dot-com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/fb.h>
#include <linux/pci.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <linux/mmzone.h>
/* #define VERMILION_DEBUG */
#include "vermilion.h"
#define MODULE_NAME "vmlfb"
#define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
static struct mutex vml_mutex;
static struct list_head global_no_mode;
static struct list_head global_has_mode;
static struct fb_ops vmlfb_ops;
static struct vml_sys *subsys = NULL;
static char *vml_default_mode = "1024x768@60";
static struct fb_videomode defaultmode = {
NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
0, FB_VMODE_NONINTERLACED
};
static u32 vml_mem_requested = (10 * 1024 * 1024);
static u32 vml_mem_contig = (4 * 1024 * 1024);
static u32 vml_mem_min = (4 * 1024 * 1024);
static u32 vml_clocks[] = {
6750,
13500,
27000,
29700,
37125,
54000,
59400,
74250,
120000,
148500
};
static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
/*
* Allocate a contiguous vram area and make its linear kernel map
* uncached.
*/
static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
unsigned min_order)
{
gfp_t flags;
unsigned long i;
max_order++;
do {
/*
* Really try hard to get the needed memory.
* We need memory below the first 32MB, so we
* add the __GFP_DMA flag that guarantees that we are
* below the first 16MB.
*/
flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM;
va->logical =
__get_free_pages(flags, --max_order);
} while (va->logical == 0 && max_order > min_order);
if (!va->logical)
return -ENOMEM;
va->phys = virt_to_phys((void *)va->logical);
va->size = PAGE_SIZE << max_order;
va->order = max_order;
/*
* It seems like __get_free_pages only ups the usage count
* of the first page. This doesn't work with fault mapping, so
* up the usage count once more (XXX: should use split_page or
* compound page).
*/
memset((void *)va->logical, 0x00, va->size);
for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
get_page(virt_to_page(i));
}
/*
* Change caching policy of the linear kernel map to avoid
* mapping type conflicts with user-space mappings.
*/
set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
printk(KERN_DEBUG MODULE_NAME
": Allocated %ld bytes vram area at 0x%08lx\n",
va->size, va->phys);
return 0;
}
/*
* Free a contiguous vram area and reset its linear kernel map
* mapping type.
*/
static void vmlfb_free_vram_area(struct vram_area *va)
{
unsigned long j;
if (va->logical) {
/*
* Reset the linear kernel map caching policy.
*/
set_pages_wb(virt_to_page(va->logical),
va->size >> PAGE_SHIFT);
/*
* Decrease the usage count on the pages we've used
* to compensate for upping when allocating.
*/
for (j = va->logical; j < va->logical + va->size;
j += PAGE_SIZE) {
(void)put_page_testzero(virt_to_page(j));
}
printk(KERN_DEBUG MODULE_NAME
": Freeing %ld bytes vram area at 0x%08lx\n",
va->size, va->phys);
free_pages(va->logical, va->order);
va->logical = 0;
}
}
/*
* Free allocated vram.
*/
static void vmlfb_free_vram(struct vml_info *vinfo)
{
int i;
for (i = 0; i < vinfo->num_areas; ++i) {
vmlfb_free_vram_area(&vinfo->vram[i]);
}
vinfo->num_areas = 0;
}
/*
* Allocate vram. Currently we try to allocate contiguous areas from the
* __GFP_DMA zone and puzzle them together. A better approach would be to
* allocate one contiguous area for scanout and use one-page allocations for
* offscreen areas. This requires user-space and GPU virtual mappings.
*/
static int vmlfb_alloc_vram(struct vml_info *vinfo,
size_t requested,
size_t min_total, size_t min_contig)
{
int i, j;
int order;
int contiguous;
int err;
struct vram_area *va;
struct vram_area *va2;
vinfo->num_areas = 0;
for (i = 0; i < VML_VRAM_AREAS; ++i) {
va = &vinfo->vram[i];
order = 0;
while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
order++;
err = vmlfb_alloc_vram_area(va, order, 0);
if (err)
break;
if (i == 0) {
vinfo->vram_start = va->phys;
vinfo->vram_logical = (void __iomem *) va->logical;
vinfo->vram_contig_size = va->size;
vinfo->num_areas = 1;
} else {
contiguous = 0;
for (j = 0; j < i; ++j) {
va2 = &vinfo->vram[j];
if (va->phys + va->size == va2->phys ||
va2->phys + va2->size == va->phys) {
contiguous = 1;
break;
}
}
if (contiguous) {
vinfo->num_areas++;
if (va->phys < vinfo->vram_start) {
vinfo->vram_start = va->phys;
vinfo->vram_logical =
(void __iomem *)va->logical;
}
vinfo->vram_contig_size += va->size;
} else {
vmlfb_free_vram_area(va);
break;
}
}
if (requested < va->size)
break;
else
requested -= va->size;
}
if (vinfo->vram_contig_size > min_total &&
vinfo->vram_contig_size > min_contig) {
printk(KERN_DEBUG MODULE_NAME
": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
(unsigned long)vinfo->vram_contig_size,
(unsigned long)vinfo->vram_start);
return 0;
}
printk(KERN_ERR MODULE_NAME
": Could not allocate requested minimal amount of vram.\n");
vmlfb_free_vram(vinfo);
return -ENOMEM;
}
/*
* Find the GPU to use with our display controller.
*/
static int vmlfb_get_gpu(struct vml_par *par)
{
mutex_lock(&vml_mutex);
par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
if (!par->gpu) {
mutex_unlock(&vml_mutex);
return -ENODEV;
}
mutex_unlock(&vml_mutex);
if (pci_enable_device(par->gpu) < 0)
return -ENODEV;
return 0;
}
/*
* Find a contiguous vram area that contains a given offset from vram start.
*/
static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
{
unsigned long aoffset;
unsigned i;
for (i = 0; i < vinfo->num_areas; ++i) {
aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
if (aoffset < vinfo->vram[i].size) {
return 0;
}
}
return -EINVAL;
}
/*
* Remap the MMIO register spaces of the VDC and the GPU.
*/
static int vmlfb_enable_mmio(struct vml_par *par)
{
int err;
par->vdc_mem_base = pci_resource_start(par->vdc, 0);
par->vdc_mem_size = pci_resource_len(par->vdc, 0);
if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
printk(KERN_ERR MODULE_NAME
": Could not claim display controller MMIO.\n");
return -EBUSY;
}
par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
if (par->vdc_mem == NULL) {
printk(KERN_ERR MODULE_NAME
": Could not map display controller MMIO.\n");
err = -ENOMEM;
goto out_err_0;
}
par->gpu_mem_base = pci_resource_start(par->gpu, 0);
par->gpu_mem_size = pci_resource_len(par->gpu, 0);
if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
err = -EBUSY;
goto out_err_1;
}
par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
if (par->gpu_mem == NULL) {
printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
err = -ENOMEM;
goto out_err_2;
}
return 0;
out_err_2:
release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
out_err_1:
iounmap(par->vdc_mem);
out_err_0:
release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
return err;
}
/*
* Unmap the VDC and GPU register spaces.
*/
static void vmlfb_disable_mmio(struct vml_par *par)
{
iounmap(par->gpu_mem);
release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
iounmap(par->vdc_mem);
release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
}
/*
* Release and uninit the VDC and GPU.
*/
static void vmlfb_release_devices(struct vml_par *par)
{
if (atomic_dec_and_test(&par->refcount)) {
pci_disable_device(par->gpu);
pci_disable_device(par->vdc);
}
}
/*
* Free up allocated resources for a device.
*/
static void vml_pci_remove(struct pci_dev *dev)
{
struct fb_info *info;
struct vml_info *vinfo;
struct vml_par *par;
info = pci_get_drvdata(dev);
if (info) {
vinfo = container_of(info, struct vml_info, info);
par = vinfo->par;
mutex_lock(&vml_mutex);
unregister_framebuffer(info);
fb_dealloc_cmap(&info->cmap);
vmlfb_free_vram(vinfo);
vmlfb_disable_mmio(par);
vmlfb_release_devices(par);
kfree(vinfo);
kfree(par);
mutex_unlock(&vml_mutex);
}
}
static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
{
switch (var->bits_per_pixel) {
case 16:
var->blue.offset = 0;
var->blue.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->red.offset = 10;
var->red.length = 5;
var->transp.offset = 15;
var->transp.length = 1;
break;
case 32:
var->blue.offset = 0;
var->blue.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->red.offset = 16;
var->red.length = 8;
var->transp.offset = 24;
var->transp.length = 0;
break;
default:
break;
}
var->blue.msb_right = var->green.msb_right =
var->red.msb_right = var->transp.msb_right = 0;
}
/*
* Device initialization.
* We initialize one vml_par struct per device and one vml_info
* struct per pipe. Currently we have only one pipe.
*/
static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct vml_info *vinfo;
struct fb_info *info;
struct vml_par *par;
int err = 0;
par = kzalloc(sizeof(*par), GFP_KERNEL);
if (par == NULL)
return -ENOMEM;
vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
if (vinfo == NULL) {
err = -ENOMEM;
goto out_err_0;
}
vinfo->par = par;
par->vdc = dev;
atomic_set(&par->refcount, 1);
switch (id->device) {
case VML_DEVICE_VDC:
if ((err = vmlfb_get_gpu(par)))
goto out_err_1;
pci_set_drvdata(dev, &vinfo->info);
break;
default:
err = -ENODEV;
goto out_err_1;
}
info = &vinfo->info;
info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
err = vmlfb_enable_mmio(par);
if (err)
goto out_err_2;
err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
vml_mem_contig, vml_mem_min);
if (err)
goto out_err_3;
strcpy(info->fix.id, "Vermilion Range");
info->fix.mmio_start = 0;
info->fix.mmio_len = 0;
info->fix.smem_start = vinfo->vram_start;
info->fix.smem_len = vinfo->vram_contig_size;
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = FB_VISUAL_TRUECOLOR;
info->fix.ypanstep = 1;
info->fix.xpanstep = 1;
info->fix.ywrapstep = 0;
info->fix.accel = FB_ACCEL_NONE;
info->screen_base = vinfo->vram_logical;
info->pseudo_palette = vinfo->pseudo_palette;
info->par = par;
info->fbops = &vmlfb_ops;
info->device = &dev->dev;
INIT_LIST_HEAD(&vinfo->head);
vinfo->pipe_disabled = 1;
vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
info->var.grayscale = 0;
info->var.bits_per_pixel = 16;
vmlfb_set_pref_pixel_format(&info->var);
if (!fb_find_mode
(&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
}
if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
err = -ENOMEM;
goto out_err_4;
}
err = register_framebuffer(info);
if (err) {
printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
goto out_err_5;
}
printk("Initialized vmlfb\n");
return 0;
out_err_5:
fb_dealloc_cmap(&info->cmap);
out_err_4:
vmlfb_free_vram(vinfo);
out_err_3:
vmlfb_disable_mmio(par);
out_err_2:
vmlfb_release_devices(par);
out_err_1:
kfree(vinfo);
out_err_0:
kfree(par);
return err;
}
static int vmlfb_open(struct fb_info *info, int user)
{
/*
* Save registers here?
*/
return 0;
}
static int vmlfb_release(struct fb_info *info, int user)
{
/*
* Restore registers here.
*/
return 0;
}
static int vml_nearest_clock(int clock)
{
int i;
int cur_index;
int cur_diff;
int diff;
cur_index = 0;
cur_diff = clock - vml_clocks[0];
cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
for (i = 1; i < vml_num_clocks; ++i) {
diff = clock - vml_clocks[i];
diff = (diff < 0) ? -diff : diff;
if (diff < cur_diff) {
cur_index = i;
cur_diff = diff;
}
}
return vml_clocks[cur_index];
}
static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
struct vml_info *vinfo)
{
u32 pitch;
u64 mem;
int nearest_clock;
int clock;
int clock_diff;
struct fb_var_screeninfo v;
v = *var;
clock = PICOS2KHZ(var->pixclock);
if (subsys && subsys->nearest_clock) {
nearest_clock = subsys->nearest_clock(subsys, clock);
} else {
nearest_clock = vml_nearest_clock(clock);
}
/*
* Accept a 20% diff.
*/
clock_diff = nearest_clock - clock;
clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
if (clock_diff > clock / 5) {
#if 0
printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
#endif
return -EINVAL;
}
v.pixclock = KHZ2PICOS(nearest_clock);
if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
return -EINVAL;
}
if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
printk(KERN_DEBUG MODULE_NAME
": Virtual resolution failure.\n");
return -EINVAL;
}
switch (v.bits_per_pixel) {
case 0 ... 16:
v.bits_per_pixel = 16;
break;
case 17 ... 32:
v.bits_per_pixel = 32;
break;
default:
printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
var->bits_per_pixel);
return -EINVAL;
}
pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
mem = pitch * var->yres_virtual;
if (mem > vinfo->vram_contig_size) {
return -ENOMEM;
}
switch (v.bits_per_pixel) {
case 16:
if (var->blue.offset != 0 ||
var->blue.length != 5 ||
var->green.offset != 5 ||
var->green.length != 5 ||
var->red.offset != 10 ||
var->red.length != 5 ||
var->transp.offset != 15 || var->transp.length != 1) {
vmlfb_set_pref_pixel_format(&v);
}
break;
case 32:
if (var->blue.offset != 0 ||
var->blue.length != 8 ||
var->green.offset != 8 ||
var->green.length != 8 ||
var->red.offset != 16 ||
var->red.length != 8 ||
(var->transp.length != 0 && var->transp.length != 8) ||
(var->transp.length == 8 && var->transp.offset != 24)) {
vmlfb_set_pref_pixel_format(&v);
}
break;
default:
return -EINVAL;
}
*var = v;
return 0;
}
static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
ret = vmlfb_check_var_locked(var, vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static void vml_wait_vblank(struct vml_info *vinfo)
{
/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
mdelay(20);
}
static void vmlfb_disable_pipe(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
/* Disable the MDVO pad */
VML_WRITE32(par, VML_RCOMPSTAT, 0);
while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
/* Disable display planes */
VML_WRITE32(par, VML_DSPCCNTR,
VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
(void)VML_READ32(par, VML_DSPCCNTR);
/* Wait for vblank for the disable to take effect */
vml_wait_vblank(vinfo);
/* Next, disable display pipes */
VML_WRITE32(par, VML_PIPEACONF, 0);
(void)VML_READ32(par, VML_PIPEACONF);
vinfo->pipe_disabled = 1;
}
#ifdef VERMILION_DEBUG
static void vml_dump_regs(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HTOTAL_A));
printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HBLANK_A));
printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_HSYNC_A));
printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VTOTAL_A));
printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VBLANK_A));
printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_VSYNC_A));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCSTRIDE));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCSIZE));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCPOS));
printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPARB));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCADDR));
printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_BCLRPAT_A));
printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
(unsigned)VML_READ32(par, VML_CANVSCLR_A));
printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
(unsigned)VML_READ32(par, VML_PIPEASRC));
printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
(unsigned)VML_READ32(par, VML_PIPEACONF));
printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
(unsigned)VML_READ32(par, VML_DSPCCNTR));
printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
(unsigned)VML_READ32(par, VML_RCOMPSTAT));
printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
}
#endif
static int vmlfb_set_par_locked(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
struct fb_info *info = &vinfo->info;
struct fb_var_screeninfo *var = &info->var;
u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
u32 dspcntr;
int clock;
vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
info->fix.line_length = vinfo->stride;
if (!subsys)
return 0;
htotal =
var->xres + var->right_margin + var->hsync_len + var->left_margin;
hactive = var->xres;
hblank_start = var->xres;
hblank_end = htotal;
hsync_start = hactive + var->right_margin;
hsync_end = hsync_start + var->hsync_len;
vtotal =
var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
vactive = var->yres;
vblank_start = var->yres;
vblank_end = vtotal;
vsync_start = vactive + var->lower_margin;
vsync_end = vsync_start + var->vsync_len;
dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
clock = PICOS2KHZ(var->pixclock);
if (subsys->nearest_clock) {
clock = subsys->nearest_clock(subsys, clock);
} else {
clock = vml_nearest_clock(clock);
}
printk(KERN_DEBUG MODULE_NAME
": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
((clock / htotal) * 1000) / vtotal);
switch (var->bits_per_pixel) {
case 16:
dspcntr |= VML_GFX_ARGB1555;
break;
case 32:
if (var->transp.length == 8)
dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
else
dspcntr |= VML_GFX_RGB0888;
break;
default:
return -EINVAL;
}
vmlfb_disable_pipe(vinfo);
mb();
if (subsys->set_clock)
subsys->set_clock(subsys, clock);
else
return -EINVAL;
VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
VML_WRITE32(par, VML_HBLANK_A,
((hblank_end - 1) << 16) | (hblank_start - 1));
VML_WRITE32(par, VML_HSYNC_A,
((hsync_end - 1) << 16) | (hsync_start - 1));
VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
VML_WRITE32(par, VML_VBLANK_A,
((vblank_end - 1) << 16) | (vblank_start - 1));
VML_WRITE32(par, VML_VSYNC_A,
((vsync_end - 1) << 16) | (vsync_start - 1));
VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
VML_WRITE32(par, VML_DSPCSIZE,
((var->yres - 1) << 16) | (var->xres - 1));
VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
VML_WRITE32(par, VML_PIPEASRC,
((var->xres - 1) << 16) | (var->yres - 1));
wmb();
VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
wmb();
VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
wmb();
VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
var->yoffset * vinfo->stride +
var->xoffset * vinfo->bytes_per_pixel);
VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
while (!(VML_READ32(par, VML_RCOMPSTAT) &
(VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
vinfo->pipe_disabled = 0;
#ifdef VERMILION_DEBUG
vml_dump_regs(vinfo);
#endif
return 0;
}
static int vmlfb_set_par(struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
ret = vmlfb_set_par_locked(vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static int vmlfb_blank_locked(struct vml_info *vinfo)
{
struct vml_par *par = vinfo->par;
u32 cur = VML_READ32(par, VML_PIPEACONF);
switch (vinfo->cur_blank_mode) {
case FB_BLANK_UNBLANK:
if (vinfo->pipe_disabled) {
vmlfb_set_par_locked(vinfo);
}
VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
(void)VML_READ32(par, VML_PIPEACONF);
break;
case FB_BLANK_NORMAL:
if (vinfo->pipe_disabled) {
vmlfb_set_par_locked(vinfo);
}
VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
(void)VML_READ32(par, VML_PIPEACONF);
break;
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
if (!vinfo->pipe_disabled) {
vmlfb_disable_pipe(vinfo);
}
break;
case FB_BLANK_POWERDOWN:
if (!vinfo->pipe_disabled) {
vmlfb_disable_pipe(vinfo);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int vmlfb_blank(int blank_mode, struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
int ret;
mutex_lock(&vml_mutex);
vinfo->cur_blank_mode = blank_mode;
ret = vmlfb_blank_locked(vinfo);
mutex_unlock(&vml_mutex);
return ret;
}
static int vmlfb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
struct vml_par *par = vinfo->par;
mutex_lock(&vml_mutex);
VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
var->yoffset * vinfo->stride +
var->xoffset * vinfo->bytes_per_pixel);
(void)VML_READ32(par, VML_DSPCADDR);
mutex_unlock(&vml_mutex);
return 0;
}
static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
u32 v;
if (regno >= 16)
return -EINVAL;
if (info->var.grayscale) {
red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
}
if (info->fix.visual != FB_VISUAL_TRUECOLOR)
return -EINVAL;
red = VML_TOHW(red, info->var.red.length);
blue = VML_TOHW(blue, info->var.blue.length);
green = VML_TOHW(green, info->var.green.length);
transp = VML_TOHW(transp, info->var.transp.length);
v = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset) |
(transp << info->var.transp.offset);
switch (info->var.bits_per_pixel) {
case 16:
((u32 *) info->pseudo_palette)[regno] = v;
break;
case 24:
case 32:
((u32 *) info->pseudo_palette)[regno] = v;
break;
}
return 0;
}
static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
struct vml_info *vinfo = container_of(info, struct vml_info, info);
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
int ret;
unsigned long prot;
ret = vmlfb_vram_offset(vinfo, offset);
if (ret)
return -EINVAL;
prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK;
pgprot_val(vma->vm_page_prot) =
prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS);
return vm_iomap_memory(vma, vinfo->vram_start,
vinfo->vram_contig_size);
}
static int vmlfb_sync(struct fb_info *info)
{
return 0;
}
static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
return -EINVAL; /* just to force soft_cursor() call */
}
static struct fb_ops vmlfb_ops = {
.owner = THIS_MODULE,
.fb_open = vmlfb_open,
.fb_release = vmlfb_release,
.fb_check_var = vmlfb_check_var,
.fb_set_par = vmlfb_set_par,
.fb_blank = vmlfb_blank,
.fb_pan_display = vmlfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_cursor = vmlfb_cursor,
.fb_sync = vmlfb_sync,
.fb_mmap = vmlfb_mmap,
.fb_setcolreg = vmlfb_setcolreg
};
static struct pci_device_id vml_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
{0}
};
static struct pci_driver vmlfb_pci_driver = {
.name = "vmlfb",
.id_table = vml_ids,
.probe = vml_pci_probe,
.remove = vml_pci_remove,
};
static void __exit vmlfb_cleanup(void)
{
pci_unregister_driver(&vmlfb_pci_driver);
}
static int __init vmlfb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options(MODULE_NAME, &option))
return -ENODEV;
#endif
printk(KERN_DEBUG MODULE_NAME ": initializing\n");
mutex_init(&vml_mutex);
INIT_LIST_HEAD(&global_no_mode);
INIT_LIST_HEAD(&global_has_mode);
return pci_register_driver(&vmlfb_pci_driver);
}
int vmlfb_register_subsys(struct vml_sys *sys)
{
struct vml_info *entry;
struct list_head *list;
u32 save_activate;
mutex_lock(&vml_mutex);
if (subsys != NULL) {
subsys->restore(subsys);
}
subsys = sys;
subsys->save(subsys);
/*
* We need to restart list traversal for each item, since we
* release the list mutex in the loop.
*/
list = global_no_mode.next;
while (list != &global_no_mode) {
list_del_init(list);
entry = list_entry(list, struct vml_info, head);
/*
* First, try the current mode which might not be
* completely validated with respect to the pixel clock.
*/
if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
vmlfb_set_par_locked(entry);
list_add_tail(list, &global_has_mode);
} else {
/*
* Didn't work. Try to find another mode,
* that matches this subsys.
*/
mutex_unlock(&vml_mutex);
save_activate = entry->info.var.activate;
entry->info.var.bits_per_pixel = 16;
vmlfb_set_pref_pixel_format(&entry->info.var);
if (fb_find_mode(&entry->info.var,
&entry->info,
vml_default_mode, NULL, 0, NULL, 16)) {
entry->info.var.activate |=
FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
fb_set_var(&entry->info, &entry->info.var);
} else {
printk(KERN_ERR MODULE_NAME
": Sorry. no mode found for this subsys.\n");
}
entry->info.var.activate = save_activate;
mutex_lock(&vml_mutex);
}
vmlfb_blank_locked(entry);
list = global_no_mode.next;
}
mutex_unlock(&vml_mutex);
printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
subsys->name ? subsys->name : "unknown");
return 0;
}
EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
void vmlfb_unregister_subsys(struct vml_sys *sys)
{
struct vml_info *entry, *next;
mutex_lock(&vml_mutex);
if (subsys != sys) {
mutex_unlock(&vml_mutex);
return;
}
subsys->restore(subsys);
subsys = NULL;
list_for_each_entry_safe(entry, next, &global_has_mode, head) {
printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
vmlfb_disable_pipe(entry);
list_move_tail(&entry->head, &global_no_mode);
}
mutex_unlock(&vml_mutex);
}
EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
module_init(vmlfb_init);
module_exit(vmlfb_cleanup);
MODULE_AUTHOR("Tungsten Graphics");
MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
MODULE_VERSION("1.0.0");
MODULE_LICENSE("GPL");