e9ed22e6e5
Anonymous pages are allocated with the shared mappings colouring, SHM_COLOUR. Since the alias boundary on machines with PA8800 and PA8900 processors is unknown, flush_user_cache_page() might not flush all mappings of a shared anonymous page. Flushing the whole data cache flushes all mappings. This won't fix all coherency issues with shared mappings but it seems to work well in practice. I haven't seen any random memory faults in almost a month on a rp3440 running as a debian buildd machine. There is a small preformance hit. Signed-off-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de> Cc: stable@vger.kernel.org # v5.18+
774 lines
21 KiB
C
774 lines
21 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
|
|
* Copyright (C) 1999 SuSE GmbH Nuernberg
|
|
* Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
|
|
*
|
|
* Cache and TLB management
|
|
*
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <asm/pdc.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/shmparam.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
int split_tlb __ro_after_init;
|
|
int dcache_stride __ro_after_init;
|
|
int icache_stride __ro_after_init;
|
|
EXPORT_SYMBOL(dcache_stride);
|
|
|
|
void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
|
|
EXPORT_SYMBOL(flush_dcache_page_asm);
|
|
void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
|
|
void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
|
|
|
|
/* Internal implementation in arch/parisc/kernel/pacache.S */
|
|
void flush_data_cache_local(void *); /* flushes local data-cache only */
|
|
void flush_instruction_cache_local(void); /* flushes local code-cache only */
|
|
|
|
/* On some machines (i.e., ones with the Merced bus), there can be
|
|
* only a single PxTLB broadcast at a time; this must be guaranteed
|
|
* by software. We need a spinlock around all TLB flushes to ensure
|
|
* this.
|
|
*/
|
|
DEFINE_SPINLOCK(pa_tlb_flush_lock);
|
|
|
|
/* Swapper page setup lock. */
|
|
DEFINE_SPINLOCK(pa_swapper_pg_lock);
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
|
|
int pa_serialize_tlb_flushes __ro_after_init;
|
|
#endif
|
|
|
|
struct pdc_cache_info cache_info __ro_after_init;
|
|
#ifndef CONFIG_PA20
|
|
static struct pdc_btlb_info btlb_info __ro_after_init;
|
|
#endif
|
|
|
|
DEFINE_STATIC_KEY_TRUE(parisc_has_cache);
|
|
DEFINE_STATIC_KEY_TRUE(parisc_has_dcache);
|
|
DEFINE_STATIC_KEY_TRUE(parisc_has_icache);
|
|
|
|
static void cache_flush_local_cpu(void *dummy)
|
|
{
|
|
if (static_branch_likely(&parisc_has_icache))
|
|
flush_instruction_cache_local();
|
|
if (static_branch_likely(&parisc_has_dcache))
|
|
flush_data_cache_local(NULL);
|
|
}
|
|
|
|
void flush_cache_all_local(void)
|
|
{
|
|
cache_flush_local_cpu(NULL);
|
|
}
|
|
|
|
void flush_cache_all(void)
|
|
{
|
|
if (static_branch_likely(&parisc_has_cache))
|
|
on_each_cpu(cache_flush_local_cpu, NULL, 1);
|
|
}
|
|
|
|
static inline void flush_data_cache(void)
|
|
{
|
|
if (static_branch_likely(&parisc_has_dcache))
|
|
on_each_cpu(flush_data_cache_local, NULL, 1);
|
|
}
|
|
|
|
|
|
/* Kernel virtual address of pfn. */
|
|
#define pfn_va(pfn) __va(PFN_PHYS(pfn))
|
|
|
|
void
|
|
__update_cache(pte_t pte)
|
|
{
|
|
unsigned long pfn = pte_pfn(pte);
|
|
struct page *page;
|
|
|
|
/* We don't have pte special. As a result, we can be called with
|
|
an invalid pfn and we don't need to flush the kernel dcache page.
|
|
This occurs with FireGL card in C8000. */
|
|
if (!pfn_valid(pfn))
|
|
return;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (page_mapping_file(page) &&
|
|
test_bit(PG_dcache_dirty, &page->flags)) {
|
|
flush_kernel_dcache_page_addr(pfn_va(pfn));
|
|
clear_bit(PG_dcache_dirty, &page->flags);
|
|
} else if (parisc_requires_coherency())
|
|
flush_kernel_dcache_page_addr(pfn_va(pfn));
|
|
}
|
|
|
|
void
|
|
show_cache_info(struct seq_file *m)
|
|
{
|
|
char buf[32];
|
|
|
|
seq_printf(m, "I-cache\t\t: %ld KB\n",
|
|
cache_info.ic_size/1024 );
|
|
if (cache_info.dc_loop != 1)
|
|
snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
|
|
seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n",
|
|
cache_info.dc_size/1024,
|
|
(cache_info.dc_conf.cc_wt ? "WT":"WB"),
|
|
(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
|
|
((cache_info.dc_loop == 1) ? "direct mapped" : buf),
|
|
cache_info.dc_conf.cc_alias
|
|
);
|
|
seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
|
|
cache_info.it_size,
|
|
cache_info.dt_size,
|
|
cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
|
|
);
|
|
|
|
#ifndef CONFIG_PA20
|
|
/* BTLB - Block TLB */
|
|
if (btlb_info.max_size==0) {
|
|
seq_printf(m, "BTLB\t\t: not supported\n" );
|
|
} else {
|
|
seq_printf(m,
|
|
"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
|
|
"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
|
|
"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
|
|
btlb_info.max_size, (int)4096,
|
|
btlb_info.max_size>>8,
|
|
btlb_info.fixed_range_info.num_i,
|
|
btlb_info.fixed_range_info.num_d,
|
|
btlb_info.fixed_range_info.num_comb,
|
|
btlb_info.variable_range_info.num_i,
|
|
btlb_info.variable_range_info.num_d,
|
|
btlb_info.variable_range_info.num_comb
|
|
);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void __init
|
|
parisc_cache_init(void)
|
|
{
|
|
if (pdc_cache_info(&cache_info) < 0)
|
|
panic("parisc_cache_init: pdc_cache_info failed");
|
|
|
|
#if 0
|
|
printk("ic_size %lx dc_size %lx it_size %lx\n",
|
|
cache_info.ic_size,
|
|
cache_info.dc_size,
|
|
cache_info.it_size);
|
|
|
|
printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
|
|
cache_info.dc_base,
|
|
cache_info.dc_stride,
|
|
cache_info.dc_count,
|
|
cache_info.dc_loop);
|
|
|
|
printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n",
|
|
*(unsigned long *) (&cache_info.dc_conf),
|
|
cache_info.dc_conf.cc_alias,
|
|
cache_info.dc_conf.cc_block,
|
|
cache_info.dc_conf.cc_line,
|
|
cache_info.dc_conf.cc_shift);
|
|
printk(" wt %d sh %d cst %d hv %d\n",
|
|
cache_info.dc_conf.cc_wt,
|
|
cache_info.dc_conf.cc_sh,
|
|
cache_info.dc_conf.cc_cst,
|
|
cache_info.dc_conf.cc_hv);
|
|
|
|
printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
|
|
cache_info.ic_base,
|
|
cache_info.ic_stride,
|
|
cache_info.ic_count,
|
|
cache_info.ic_loop);
|
|
|
|
printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
|
|
cache_info.it_sp_base,
|
|
cache_info.it_sp_stride,
|
|
cache_info.it_sp_count,
|
|
cache_info.it_loop,
|
|
cache_info.it_off_base,
|
|
cache_info.it_off_stride,
|
|
cache_info.it_off_count);
|
|
|
|
printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
|
|
cache_info.dt_sp_base,
|
|
cache_info.dt_sp_stride,
|
|
cache_info.dt_sp_count,
|
|
cache_info.dt_loop,
|
|
cache_info.dt_off_base,
|
|
cache_info.dt_off_stride,
|
|
cache_info.dt_off_count);
|
|
|
|
printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n",
|
|
*(unsigned long *) (&cache_info.ic_conf),
|
|
cache_info.ic_conf.cc_alias,
|
|
cache_info.ic_conf.cc_block,
|
|
cache_info.ic_conf.cc_line,
|
|
cache_info.ic_conf.cc_shift);
|
|
printk(" wt %d sh %d cst %d hv %d\n",
|
|
cache_info.ic_conf.cc_wt,
|
|
cache_info.ic_conf.cc_sh,
|
|
cache_info.ic_conf.cc_cst,
|
|
cache_info.ic_conf.cc_hv);
|
|
|
|
printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
|
|
cache_info.dt_conf.tc_sh,
|
|
cache_info.dt_conf.tc_page,
|
|
cache_info.dt_conf.tc_cst,
|
|
cache_info.dt_conf.tc_aid,
|
|
cache_info.dt_conf.tc_sr);
|
|
|
|
printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
|
|
cache_info.it_conf.tc_sh,
|
|
cache_info.it_conf.tc_page,
|
|
cache_info.it_conf.tc_cst,
|
|
cache_info.it_conf.tc_aid,
|
|
cache_info.it_conf.tc_sr);
|
|
#endif
|
|
|
|
split_tlb = 0;
|
|
if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
|
|
if (cache_info.dt_conf.tc_sh == 2)
|
|
printk(KERN_WARNING "Unexpected TLB configuration. "
|
|
"Will flush I/D separately (could be optimized).\n");
|
|
|
|
split_tlb = 1;
|
|
}
|
|
|
|
/* "New and Improved" version from Jim Hull
|
|
* (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
|
|
* The following CAFL_STRIDE is an optimized version, see
|
|
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
|
|
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
|
|
*/
|
|
#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
|
|
dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
|
|
icache_stride = CAFL_STRIDE(cache_info.ic_conf);
|
|
#undef CAFL_STRIDE
|
|
|
|
#ifndef CONFIG_PA20
|
|
if (pdc_btlb_info(&btlb_info) < 0) {
|
|
memset(&btlb_info, 0, sizeof btlb_info);
|
|
}
|
|
#endif
|
|
|
|
if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
|
|
PDC_MODEL_NVA_UNSUPPORTED) {
|
|
printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
|
|
#if 0
|
|
panic("SMP kernel required to avoid non-equivalent aliasing");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void disable_sr_hashing(void)
|
|
{
|
|
int srhash_type, retval;
|
|
unsigned long space_bits;
|
|
|
|
switch (boot_cpu_data.cpu_type) {
|
|
case pcx: /* We shouldn't get this far. setup.c should prevent it. */
|
|
BUG();
|
|
return;
|
|
|
|
case pcxs:
|
|
case pcxt:
|
|
case pcxt_:
|
|
srhash_type = SRHASH_PCXST;
|
|
break;
|
|
|
|
case pcxl:
|
|
srhash_type = SRHASH_PCXL;
|
|
break;
|
|
|
|
case pcxl2: /* pcxl2 doesn't support space register hashing */
|
|
return;
|
|
|
|
default: /* Currently all PA2.0 machines use the same ins. sequence */
|
|
srhash_type = SRHASH_PA20;
|
|
break;
|
|
}
|
|
|
|
disable_sr_hashing_asm(srhash_type);
|
|
|
|
retval = pdc_spaceid_bits(&space_bits);
|
|
/* If this procedure isn't implemented, don't panic. */
|
|
if (retval < 0 && retval != PDC_BAD_OPTION)
|
|
panic("pdc_spaceid_bits call failed.\n");
|
|
if (space_bits != 0)
|
|
panic("SpaceID hashing is still on!\n");
|
|
}
|
|
|
|
static inline void
|
|
__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
|
|
unsigned long physaddr)
|
|
{
|
|
if (!static_branch_likely(&parisc_has_cache))
|
|
return;
|
|
preempt_disable();
|
|
flush_dcache_page_asm(physaddr, vmaddr);
|
|
if (vma->vm_flags & VM_EXEC)
|
|
flush_icache_page_asm(physaddr, vmaddr);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void flush_user_cache_page(struct vm_area_struct *vma, unsigned long vmaddr)
|
|
{
|
|
unsigned long flags, space, pgd, prot;
|
|
#ifdef CONFIG_TLB_PTLOCK
|
|
unsigned long pgd_lock;
|
|
#endif
|
|
|
|
vmaddr &= PAGE_MASK;
|
|
|
|
preempt_disable();
|
|
|
|
/* Set context for flush */
|
|
local_irq_save(flags);
|
|
prot = mfctl(8);
|
|
space = mfsp(SR_USER);
|
|
pgd = mfctl(25);
|
|
#ifdef CONFIG_TLB_PTLOCK
|
|
pgd_lock = mfctl(28);
|
|
#endif
|
|
switch_mm_irqs_off(NULL, vma->vm_mm, NULL);
|
|
local_irq_restore(flags);
|
|
|
|
flush_user_dcache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
|
|
if (vma->vm_flags & VM_EXEC)
|
|
flush_user_icache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
|
|
flush_tlb_page(vma, vmaddr);
|
|
|
|
/* Restore previous context */
|
|
local_irq_save(flags);
|
|
#ifdef CONFIG_TLB_PTLOCK
|
|
mtctl(pgd_lock, 28);
|
|
#endif
|
|
mtctl(pgd, 25);
|
|
mtsp(space, SR_USER);
|
|
mtctl(prot, 8);
|
|
local_irq_restore(flags);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pte_t *ptep = NULL;
|
|
pgd_t *pgd = mm->pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
if (!pgd_none(*pgd)) {
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (!p4d_none(*p4d)) {
|
|
pud = pud_offset(p4d, addr);
|
|
if (!pud_none(*pud)) {
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_none(*pmd))
|
|
ptep = pte_offset_map(pmd, addr);
|
|
}
|
|
}
|
|
}
|
|
return ptep;
|
|
}
|
|
|
|
static inline bool pte_needs_flush(pte_t pte)
|
|
{
|
|
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE))
|
|
== (_PAGE_PRESENT | _PAGE_ACCESSED);
|
|
}
|
|
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
struct address_space *mapping = page_mapping_file(page);
|
|
struct vm_area_struct *mpnt;
|
|
unsigned long offset;
|
|
unsigned long addr, old_addr = 0;
|
|
unsigned long count = 0;
|
|
pgoff_t pgoff;
|
|
|
|
if (mapping && !mapping_mapped(mapping)) {
|
|
set_bit(PG_dcache_dirty, &page->flags);
|
|
return;
|
|
}
|
|
|
|
flush_kernel_dcache_page_addr(page_address(page));
|
|
|
|
if (!mapping)
|
|
return;
|
|
|
|
pgoff = page->index;
|
|
|
|
/*
|
|
* We have carefully arranged in arch_get_unmapped_area() that
|
|
* *any* mappings of a file are always congruently mapped (whether
|
|
* declared as MAP_PRIVATE or MAP_SHARED), so we only need
|
|
* to flush one address here for them all to become coherent
|
|
* on machines that support equivalent aliasing
|
|
*/
|
|
flush_dcache_mmap_lock(mapping);
|
|
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
|
|
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
|
|
addr = mpnt->vm_start + offset;
|
|
if (parisc_requires_coherency()) {
|
|
pte_t *ptep;
|
|
|
|
ptep = get_ptep(mpnt->vm_mm, addr);
|
|
if (ptep && pte_needs_flush(*ptep))
|
|
flush_user_cache_page(mpnt, addr);
|
|
} else {
|
|
/*
|
|
* The TLB is the engine of coherence on parisc:
|
|
* The CPU is entitled to speculate any page
|
|
* with a TLB mapping, so here we kill the
|
|
* mapping then flush the page along a special
|
|
* flush only alias mapping. This guarantees that
|
|
* the page is no-longer in the cache for any
|
|
* process and nor may it be speculatively read
|
|
* in (until the user or kernel specifically
|
|
* accesses it, of course)
|
|
*/
|
|
flush_tlb_page(mpnt, addr);
|
|
if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
|
|
!= (addr & (SHM_COLOUR - 1))) {
|
|
__flush_cache_page(mpnt, addr, page_to_phys(page));
|
|
/*
|
|
* Software is allowed to have any number
|
|
* of private mappings to a page.
|
|
*/
|
|
if (!(mpnt->vm_flags & VM_SHARED))
|
|
continue;
|
|
if (old_addr)
|
|
pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n",
|
|
old_addr, addr, mpnt->vm_file);
|
|
old_addr = addr;
|
|
}
|
|
}
|
|
WARN_ON(++count == 4096);
|
|
}
|
|
flush_dcache_mmap_unlock(mapping);
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
/* Defined in arch/parisc/kernel/pacache.S */
|
|
EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
|
|
EXPORT_SYMBOL(flush_kernel_icache_range_asm);
|
|
|
|
#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
|
|
static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD;
|
|
|
|
#define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */
|
|
static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL;
|
|
|
|
void __init parisc_setup_cache_timing(void)
|
|
{
|
|
unsigned long rangetime, alltime;
|
|
unsigned long size;
|
|
unsigned long threshold, threshold2;
|
|
|
|
alltime = mfctl(16);
|
|
flush_data_cache();
|
|
alltime = mfctl(16) - alltime;
|
|
|
|
size = (unsigned long)(_end - _text);
|
|
rangetime = mfctl(16);
|
|
flush_kernel_dcache_range((unsigned long)_text, size);
|
|
rangetime = mfctl(16) - rangetime;
|
|
|
|
printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
|
|
alltime, size, rangetime);
|
|
|
|
threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime));
|
|
pr_info("Calculated flush threshold is %lu KiB\n",
|
|
threshold/1024);
|
|
|
|
/*
|
|
* The threshold computed above isn't very reliable. The following
|
|
* heuristic works reasonably well on c8000/rp3440.
|
|
*/
|
|
threshold2 = cache_info.dc_size * num_online_cpus();
|
|
parisc_cache_flush_threshold = threshold2;
|
|
printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
|
|
parisc_cache_flush_threshold/1024);
|
|
|
|
/* calculate TLB flush threshold */
|
|
|
|
/* On SMP machines, skip the TLB measure of kernel text which
|
|
* has been mapped as huge pages. */
|
|
if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
|
|
threshold = max(cache_info.it_size, cache_info.dt_size);
|
|
threshold *= PAGE_SIZE;
|
|
threshold /= num_online_cpus();
|
|
goto set_tlb_threshold;
|
|
}
|
|
|
|
size = (unsigned long)_end - (unsigned long)_text;
|
|
rangetime = mfctl(16);
|
|
flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end);
|
|
rangetime = mfctl(16) - rangetime;
|
|
|
|
alltime = mfctl(16);
|
|
flush_tlb_all();
|
|
alltime = mfctl(16) - alltime;
|
|
|
|
printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n",
|
|
alltime, size, rangetime);
|
|
|
|
threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime);
|
|
printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n",
|
|
threshold/1024);
|
|
|
|
set_tlb_threshold:
|
|
if (threshold > FLUSH_TLB_THRESHOLD)
|
|
parisc_tlb_flush_threshold = threshold;
|
|
else
|
|
parisc_tlb_flush_threshold = FLUSH_TLB_THRESHOLD;
|
|
|
|
printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
|
|
parisc_tlb_flush_threshold/1024);
|
|
}
|
|
|
|
extern void purge_kernel_dcache_page_asm(unsigned long);
|
|
extern void clear_user_page_asm(void *, unsigned long);
|
|
extern void copy_user_page_asm(void *, void *, unsigned long);
|
|
|
|
void flush_kernel_dcache_page_addr(void *addr)
|
|
{
|
|
unsigned long flags;
|
|
|
|
flush_kernel_dcache_page_asm(addr);
|
|
purge_tlb_start(flags);
|
|
pdtlb(SR_KERNEL, addr);
|
|
purge_tlb_end(flags);
|
|
}
|
|
EXPORT_SYMBOL(flush_kernel_dcache_page_addr);
|
|
|
|
static void flush_cache_page_if_present(struct vm_area_struct *vma,
|
|
unsigned long vmaddr, unsigned long pfn)
|
|
{
|
|
pte_t *ptep = get_ptep(vma->vm_mm, vmaddr);
|
|
|
|
/*
|
|
* The pte check is racy and sometimes the flush will trigger
|
|
* a non-access TLB miss. Hopefully, the page has already been
|
|
* flushed.
|
|
*/
|
|
if (ptep && pte_needs_flush(*ptep))
|
|
flush_cache_page(vma, vmaddr, pfn);
|
|
}
|
|
|
|
void copy_user_highpage(struct page *to, struct page *from,
|
|
unsigned long vaddr, struct vm_area_struct *vma)
|
|
{
|
|
void *kto, *kfrom;
|
|
|
|
kfrom = kmap_local_page(from);
|
|
kto = kmap_local_page(to);
|
|
flush_cache_page_if_present(vma, vaddr, page_to_pfn(from));
|
|
copy_page_asm(kto, kfrom);
|
|
kunmap_local(kto);
|
|
kunmap_local(kfrom);
|
|
}
|
|
|
|
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long user_vaddr, void *dst, void *src, int len)
|
|
{
|
|
flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
|
|
memcpy(dst, src, len);
|
|
flush_kernel_dcache_range_asm((unsigned long)dst, (unsigned long)dst + len);
|
|
}
|
|
|
|
void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long user_vaddr, void *dst, void *src, int len)
|
|
{
|
|
flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
|
|
memcpy(dst, src, len);
|
|
}
|
|
|
|
/* __flush_tlb_range()
|
|
*
|
|
* returns 1 if all TLBs were flushed.
|
|
*/
|
|
int __flush_tlb_range(unsigned long sid, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
|
|
end - start >= parisc_tlb_flush_threshold) {
|
|
flush_tlb_all();
|
|
return 1;
|
|
}
|
|
|
|
/* Purge TLB entries for small ranges using the pdtlb and
|
|
pitlb instructions. These instructions execute locally
|
|
but cause a purge request to be broadcast to other TLBs. */
|
|
while (start < end) {
|
|
purge_tlb_start(flags);
|
|
mtsp(sid, SR_TEMP1);
|
|
pdtlb(SR_TEMP1, start);
|
|
pitlb(SR_TEMP1, start);
|
|
purge_tlb_end(flags);
|
|
start += PAGE_SIZE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr, pfn;
|
|
pte_t *ptep;
|
|
|
|
for (addr = start; addr < end; addr += PAGE_SIZE) {
|
|
/*
|
|
* The vma can contain pages that aren't present. Although
|
|
* the pte search is expensive, we need the pte to find the
|
|
* page pfn and to check whether the page should be flushed.
|
|
*/
|
|
ptep = get_ptep(vma->vm_mm, addr);
|
|
if (ptep && pte_needs_flush(*ptep)) {
|
|
if (parisc_requires_coherency()) {
|
|
flush_user_cache_page(vma, addr);
|
|
} else {
|
|
pfn = pte_pfn(*ptep);
|
|
if (WARN_ON(!pfn_valid(pfn)))
|
|
return;
|
|
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline unsigned long mm_total_size(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long usize = 0;
|
|
|
|
for (vma = mm->mmap; vma && usize < parisc_cache_flush_threshold; vma = vma->vm_next)
|
|
usize += vma->vm_end - vma->vm_start;
|
|
return usize;
|
|
}
|
|
|
|
void flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* Flushing the whole cache on each cpu takes forever on
|
|
* rp3440, etc. So, avoid it if the mm isn't too big.
|
|
*
|
|
* Note that we must flush the entire cache on machines
|
|
* with aliasing caches to prevent random segmentation
|
|
* faults.
|
|
*/
|
|
if (!parisc_requires_coherency()
|
|
|| mm_total_size(mm) >= parisc_cache_flush_threshold) {
|
|
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
|
|
return;
|
|
flush_tlb_all();
|
|
flush_cache_all();
|
|
return;
|
|
}
|
|
|
|
/* Flush mm */
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next)
|
|
flush_cache_pages(vma, vma->vm_start, vma->vm_end);
|
|
}
|
|
|
|
void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
if (!parisc_requires_coherency()
|
|
|| end - start >= parisc_cache_flush_threshold) {
|
|
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
|
|
return;
|
|
flush_tlb_range(vma, start, end);
|
|
flush_cache_all();
|
|
return;
|
|
}
|
|
|
|
flush_cache_pages(vma, start, end);
|
|
}
|
|
|
|
void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
|
|
{
|
|
if (WARN_ON(!pfn_valid(pfn)))
|
|
return;
|
|
if (parisc_requires_coherency())
|
|
flush_user_cache_page(vma, vmaddr);
|
|
else
|
|
__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
|
|
}
|
|
|
|
void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
|
|
{
|
|
if (!PageAnon(page))
|
|
return;
|
|
|
|
if (parisc_requires_coherency()) {
|
|
if (vma->vm_flags & VM_SHARED)
|
|
flush_data_cache();
|
|
else
|
|
flush_user_cache_page(vma, vmaddr);
|
|
return;
|
|
}
|
|
|
|
flush_tlb_page(vma, vmaddr);
|
|
preempt_disable();
|
|
flush_dcache_page_asm(page_to_phys(page), vmaddr);
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_kernel_vmap_range(void *vaddr, int size)
|
|
{
|
|
unsigned long start = (unsigned long)vaddr;
|
|
unsigned long end = start + size;
|
|
|
|
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
|
|
(unsigned long)size >= parisc_cache_flush_threshold) {
|
|
flush_tlb_kernel_range(start, end);
|
|
flush_data_cache();
|
|
return;
|
|
}
|
|
|
|
flush_kernel_dcache_range_asm(start, end);
|
|
flush_tlb_kernel_range(start, end);
|
|
}
|
|
EXPORT_SYMBOL(flush_kernel_vmap_range);
|
|
|
|
void invalidate_kernel_vmap_range(void *vaddr, int size)
|
|
{
|
|
unsigned long start = (unsigned long)vaddr;
|
|
unsigned long end = start + size;
|
|
|
|
/* Ensure DMA is complete */
|
|
asm_syncdma();
|
|
|
|
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
|
|
(unsigned long)size >= parisc_cache_flush_threshold) {
|
|
flush_tlb_kernel_range(start, end);
|
|
flush_data_cache();
|
|
return;
|
|
}
|
|
|
|
purge_kernel_dcache_range_asm(start, end);
|
|
flush_tlb_kernel_range(start, end);
|
|
}
|
|
EXPORT_SYMBOL(invalidate_kernel_vmap_range);
|