Mark the relevant functions noinstr, use the plain non-instrumented MSR accessors. The only odd part is the instrumentation_begin()/end() pair around the indirect machine_check_vector() call as objtool can't figure that out. The possible invoked functions are annotated correctly. Also use notrace variant of nmi_enter/exit(). If MCEs happen then hardware latency tracing is the least of the worries. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/20200505135315.476734898@linutronix.de
		
			
				
	
	
		
			2406 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2406 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  Kernel timekeeping code and accessor functions. Based on code from
 | |
|  *  timer.c, moved in commit 8524070b7982.
 | |
|  */
 | |
| #include <linux/timekeeper_internal.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/loadavg.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/syscore_ops.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/pvclock_gtod.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/audit.h>
 | |
| 
 | |
| #include "tick-internal.h"
 | |
| #include "ntp_internal.h"
 | |
| #include "timekeeping_internal.h"
 | |
| 
 | |
| #define TK_CLEAR_NTP		(1 << 0)
 | |
| #define TK_MIRROR		(1 << 1)
 | |
| #define TK_CLOCK_WAS_SET	(1 << 2)
 | |
| 
 | |
| enum timekeeping_adv_mode {
 | |
| 	/* Update timekeeper when a tick has passed */
 | |
| 	TK_ADV_TICK,
 | |
| 
 | |
| 	/* Update timekeeper on a direct frequency change */
 | |
| 	TK_ADV_FREQ
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The most important data for readout fits into a single 64 byte
 | |
|  * cache line.
 | |
|  */
 | |
| static struct {
 | |
| 	seqcount_t		seq;
 | |
| 	struct timekeeper	timekeeper;
 | |
| } tk_core ____cacheline_aligned = {
 | |
| 	.seq = SEQCNT_ZERO(tk_core.seq),
 | |
| };
 | |
| 
 | |
| static DEFINE_RAW_SPINLOCK(timekeeper_lock);
 | |
| static struct timekeeper shadow_timekeeper;
 | |
| 
 | |
| /**
 | |
|  * struct tk_fast - NMI safe timekeeper
 | |
|  * @seq:	Sequence counter for protecting updates. The lowest bit
 | |
|  *		is the index for the tk_read_base array
 | |
|  * @base:	tk_read_base array. Access is indexed by the lowest bit of
 | |
|  *		@seq.
 | |
|  *
 | |
|  * See @update_fast_timekeeper() below.
 | |
|  */
 | |
| struct tk_fast {
 | |
| 	seqcount_t		seq;
 | |
| 	struct tk_read_base	base[2];
 | |
| };
 | |
| 
 | |
| /* Suspend-time cycles value for halted fast timekeeper. */
 | |
| static u64 cycles_at_suspend;
 | |
| 
 | |
| static u64 dummy_clock_read(struct clocksource *cs)
 | |
| {
 | |
| 	return cycles_at_suspend;
 | |
| }
 | |
| 
 | |
| static struct clocksource dummy_clock = {
 | |
| 	.read = dummy_clock_read,
 | |
| };
 | |
| 
 | |
| static struct tk_fast tk_fast_mono ____cacheline_aligned = {
 | |
| 	.base[0] = { .clock = &dummy_clock, },
 | |
| 	.base[1] = { .clock = &dummy_clock, },
 | |
| };
 | |
| 
 | |
| static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
 | |
| 	.base[0] = { .clock = &dummy_clock, },
 | |
| 	.base[1] = { .clock = &dummy_clock, },
 | |
| };
 | |
| 
 | |
| /* flag for if timekeeping is suspended */
 | |
| int __read_mostly timekeeping_suspended;
 | |
| 
 | |
| static inline void tk_normalize_xtime(struct timekeeper *tk)
 | |
| {
 | |
| 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
 | |
| 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 | |
| 		tk->xtime_sec++;
 | |
| 	}
 | |
| 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 | |
| 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 | |
| 		tk->raw_sec++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
 | |
| {
 | |
| 	struct timespec64 ts;
 | |
| 
 | |
| 	ts.tv_sec = tk->xtime_sec;
 | |
| 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 | |
| 	return ts;
 | |
| }
 | |
| 
 | |
| static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 | |
| {
 | |
| 	tk->xtime_sec = ts->tv_sec;
 | |
| 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 | |
| }
 | |
| 
 | |
| static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 | |
| {
 | |
| 	tk->xtime_sec += ts->tv_sec;
 | |
| 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 | |
| 	tk_normalize_xtime(tk);
 | |
| }
 | |
| 
 | |
| static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 | |
| {
 | |
| 	struct timespec64 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify consistency of: offset_real = -wall_to_monotonic
 | |
| 	 * before modifying anything
 | |
| 	 */
 | |
| 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 | |
| 					-tk->wall_to_monotonic.tv_nsec);
 | |
| 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 | |
| 	tk->wall_to_monotonic = wtm;
 | |
| 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 | |
| 	tk->offs_real = timespec64_to_ktime(tmp);
 | |
| 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 | |
| }
 | |
| 
 | |
| static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 | |
| {
 | |
| 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
 | |
| 	/*
 | |
| 	 * Timespec representation for VDSO update to avoid 64bit division
 | |
| 	 * on every update.
 | |
| 	 */
 | |
| 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * tk_clock_read - atomic clocksource read() helper
 | |
|  *
 | |
|  * This helper is necessary to use in the read paths because, while the
 | |
|  * seqlock ensures we don't return a bad value while structures are updated,
 | |
|  * it doesn't protect from potential crashes. There is the possibility that
 | |
|  * the tkr's clocksource may change between the read reference, and the
 | |
|  * clock reference passed to the read function.  This can cause crashes if
 | |
|  * the wrong clocksource is passed to the wrong read function.
 | |
|  * This isn't necessary to use when holding the timekeeper_lock or doing
 | |
|  * a read of the fast-timekeeper tkrs (which is protected by its own locking
 | |
|  * and update logic).
 | |
|  */
 | |
| static inline u64 tk_clock_read(const struct tk_read_base *tkr)
 | |
| {
 | |
| 	struct clocksource *clock = READ_ONCE(tkr->clock);
 | |
| 
 | |
| 	return clock->read(clock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_TIMEKEEPING
 | |
| #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 | |
| 
 | |
| static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 | |
| {
 | |
| 
 | |
| 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 | |
| 	const char *name = tk->tkr_mono.clock->name;
 | |
| 
 | |
| 	if (offset > max_cycles) {
 | |
| 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 | |
| 				offset, name, max_cycles);
 | |
| 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 | |
| 	} else {
 | |
| 		if (offset > (max_cycles >> 1)) {
 | |
| 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 | |
| 					offset, name, max_cycles >> 1);
 | |
| 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tk->underflow_seen) {
 | |
| 		if (jiffies - tk->last_warning > WARNING_FREQ) {
 | |
| 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 | |
| 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 | |
| 			printk_deferred("         Your kernel is probably still fine.\n");
 | |
| 			tk->last_warning = jiffies;
 | |
| 		}
 | |
| 		tk->underflow_seen = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (tk->overflow_seen) {
 | |
| 		if (jiffies - tk->last_warning > WARNING_FREQ) {
 | |
| 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 | |
| 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 | |
| 			printk_deferred("         Your kernel is probably still fine.\n");
 | |
| 			tk->last_warning = jiffies;
 | |
| 		}
 | |
| 		tk->overflow_seen = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	u64 now, last, mask, max, delta;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we're called holding a seqlock, the data may shift
 | |
| 	 * under us while we're doing the calculation. This can cause
 | |
| 	 * false positives, since we'd note a problem but throw the
 | |
| 	 * results away. So nest another seqlock here to atomically
 | |
| 	 * grab the points we are checking with.
 | |
| 	 */
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		now = tk_clock_read(tkr);
 | |
| 		last = tkr->cycle_last;
 | |
| 		mask = tkr->mask;
 | |
| 		max = tkr->clock->max_cycles;
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	delta = clocksource_delta(now, last, mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to catch underflows by checking if we are seeing small
 | |
| 	 * mask-relative negative values.
 | |
| 	 */
 | |
| 	if (unlikely((~delta & mask) < (mask >> 3))) {
 | |
| 		tk->underflow_seen = 1;
 | |
| 		delta = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Cap delta value to the max_cycles values to avoid mult overflows */
 | |
| 	if (unlikely(delta > max)) {
 | |
| 		tk->overflow_seen = 1;
 | |
| 		delta = tkr->clock->max_cycles;
 | |
| 	}
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| #else
 | |
| static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 | |
| {
 | |
| }
 | |
| static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 | |
| {
 | |
| 	u64 cycle_now, delta;
 | |
| 
 | |
| 	/* read clocksource */
 | |
| 	cycle_now = tk_clock_read(tkr);
 | |
| 
 | |
| 	/* calculate the delta since the last update_wall_time */
 | |
| 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * tk_setup_internals - Set up internals to use clocksource clock.
 | |
|  *
 | |
|  * @tk:		The target timekeeper to setup.
 | |
|  * @clock:		Pointer to clocksource.
 | |
|  *
 | |
|  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 | |
|  * pair and interval request.
 | |
|  *
 | |
|  * Unless you're the timekeeping code, you should not be using this!
 | |
|  */
 | |
| static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 | |
| {
 | |
| 	u64 interval;
 | |
| 	u64 tmp, ntpinterval;
 | |
| 	struct clocksource *old_clock;
 | |
| 
 | |
| 	++tk->cs_was_changed_seq;
 | |
| 	old_clock = tk->tkr_mono.clock;
 | |
| 	tk->tkr_mono.clock = clock;
 | |
| 	tk->tkr_mono.mask = clock->mask;
 | |
| 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 | |
| 
 | |
| 	tk->tkr_raw.clock = clock;
 | |
| 	tk->tkr_raw.mask = clock->mask;
 | |
| 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 | |
| 
 | |
| 	/* Do the ns -> cycle conversion first, using original mult */
 | |
| 	tmp = NTP_INTERVAL_LENGTH;
 | |
| 	tmp <<= clock->shift;
 | |
| 	ntpinterval = tmp;
 | |
| 	tmp += clock->mult/2;
 | |
| 	do_div(tmp, clock->mult);
 | |
| 	if (tmp == 0)
 | |
| 		tmp = 1;
 | |
| 
 | |
| 	interval = (u64) tmp;
 | |
| 	tk->cycle_interval = interval;
 | |
| 
 | |
| 	/* Go back from cycles -> shifted ns */
 | |
| 	tk->xtime_interval = interval * clock->mult;
 | |
| 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 | |
| 	tk->raw_interval = interval * clock->mult;
 | |
| 
 | |
| 	 /* if changing clocks, convert xtime_nsec shift units */
 | |
| 	if (old_clock) {
 | |
| 		int shift_change = clock->shift - old_clock->shift;
 | |
| 		if (shift_change < 0) {
 | |
| 			tk->tkr_mono.xtime_nsec >>= -shift_change;
 | |
| 			tk->tkr_raw.xtime_nsec >>= -shift_change;
 | |
| 		} else {
 | |
| 			tk->tkr_mono.xtime_nsec <<= shift_change;
 | |
| 			tk->tkr_raw.xtime_nsec <<= shift_change;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tk->tkr_mono.shift = clock->shift;
 | |
| 	tk->tkr_raw.shift = clock->shift;
 | |
| 
 | |
| 	tk->ntp_error = 0;
 | |
| 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 | |
| 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 | |
| 
 | |
| 	/*
 | |
| 	 * The timekeeper keeps its own mult values for the currently
 | |
| 	 * active clocksource. These value will be adjusted via NTP
 | |
| 	 * to counteract clock drifting.
 | |
| 	 */
 | |
| 	tk->tkr_mono.mult = clock->mult;
 | |
| 	tk->tkr_raw.mult = clock->mult;
 | |
| 	tk->ntp_err_mult = 0;
 | |
| 	tk->skip_second_overflow = 0;
 | |
| }
 | |
| 
 | |
| /* Timekeeper helper functions. */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 | |
| static u32 default_arch_gettimeoffset(void) { return 0; }
 | |
| u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 | |
| #else
 | |
| static inline u32 arch_gettimeoffset(void) { return 0; }
 | |
| #endif
 | |
| 
 | |
| static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
 | |
| {
 | |
| 	u64 nsec;
 | |
| 
 | |
| 	nsec = delta * tkr->mult + tkr->xtime_nsec;
 | |
| 	nsec >>= tkr->shift;
 | |
| 
 | |
| 	/* If arch requires, add in get_arch_timeoffset() */
 | |
| 	return nsec + arch_gettimeoffset();
 | |
| }
 | |
| 
 | |
| static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
 | |
| {
 | |
| 	u64 delta;
 | |
| 
 | |
| 	delta = timekeeping_get_delta(tkr);
 | |
| 	return timekeeping_delta_to_ns(tkr, delta);
 | |
| }
 | |
| 
 | |
| static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
 | |
| {
 | |
| 	u64 delta;
 | |
| 
 | |
| 	/* calculate the delta since the last update_wall_time */
 | |
| 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 | |
| 	return timekeeping_delta_to_ns(tkr, delta);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 | |
|  * @tkr: Timekeeping readout base from which we take the update
 | |
|  *
 | |
|  * We want to use this from any context including NMI and tracing /
 | |
|  * instrumenting the timekeeping code itself.
 | |
|  *
 | |
|  * Employ the latch technique; see @raw_write_seqcount_latch.
 | |
|  *
 | |
|  * So if a NMI hits the update of base[0] then it will use base[1]
 | |
|  * which is still consistent. In the worst case this can result is a
 | |
|  * slightly wrong timestamp (a few nanoseconds). See
 | |
|  * @ktime_get_mono_fast_ns.
 | |
|  */
 | |
| static void update_fast_timekeeper(const struct tk_read_base *tkr,
 | |
| 				   struct tk_fast *tkf)
 | |
| {
 | |
| 	struct tk_read_base *base = tkf->base;
 | |
| 
 | |
| 	/* Force readers off to base[1] */
 | |
| 	raw_write_seqcount_latch(&tkf->seq);
 | |
| 
 | |
| 	/* Update base[0] */
 | |
| 	memcpy(base, tkr, sizeof(*base));
 | |
| 
 | |
| 	/* Force readers back to base[0] */
 | |
| 	raw_write_seqcount_latch(&tkf->seq);
 | |
| 
 | |
| 	/* Update base[1] */
 | |
| 	memcpy(base + 1, base, sizeof(*base));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 | |
|  *
 | |
|  * This timestamp is not guaranteed to be monotonic across an update.
 | |
|  * The timestamp is calculated by:
 | |
|  *
 | |
|  *	now = base_mono + clock_delta * slope
 | |
|  *
 | |
|  * So if the update lowers the slope, readers who are forced to the
 | |
|  * not yet updated second array are still using the old steeper slope.
 | |
|  *
 | |
|  * tmono
 | |
|  * ^
 | |
|  * |    o  n
 | |
|  * |   o n
 | |
|  * |  u
 | |
|  * | o
 | |
|  * |o
 | |
|  * |12345678---> reader order
 | |
|  *
 | |
|  * o = old slope
 | |
|  * u = update
 | |
|  * n = new slope
 | |
|  *
 | |
|  * So reader 6 will observe time going backwards versus reader 5.
 | |
|  *
 | |
|  * While other CPUs are likely to be able observe that, the only way
 | |
|  * for a CPU local observation is when an NMI hits in the middle of
 | |
|  * the update. Timestamps taken from that NMI context might be ahead
 | |
|  * of the following timestamps. Callers need to be aware of that and
 | |
|  * deal with it.
 | |
|  */
 | |
| static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 | |
| {
 | |
| 	struct tk_read_base *tkr;
 | |
| 	unsigned int seq;
 | |
| 	u64 now;
 | |
| 
 | |
| 	do {
 | |
| 		seq = raw_read_seqcount_latch(&tkf->seq);
 | |
| 		tkr = tkf->base + (seq & 0x01);
 | |
| 		now = ktime_to_ns(tkr->base);
 | |
| 
 | |
| 		now += timekeeping_delta_to_ns(tkr,
 | |
| 				clocksource_delta(
 | |
| 					tk_clock_read(tkr),
 | |
| 					tkr->cycle_last,
 | |
| 					tkr->mask));
 | |
| 	} while (read_seqcount_retry(&tkf->seq, seq));
 | |
| 
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| u64 ktime_get_mono_fast_ns(void)
 | |
| {
 | |
| 	return __ktime_get_fast_ns(&tk_fast_mono);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 | |
| 
 | |
| u64 ktime_get_raw_fast_ns(void)
 | |
| {
 | |
| 	return __ktime_get_fast_ns(&tk_fast_raw);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 | |
|  *
 | |
|  * To keep it NMI safe since we're accessing from tracing, we're not using a
 | |
|  * separate timekeeper with updates to monotonic clock and boot offset
 | |
|  * protected with seqlocks. This has the following minor side effects:
 | |
|  *
 | |
|  * (1) Its possible that a timestamp be taken after the boot offset is updated
 | |
|  * but before the timekeeper is updated. If this happens, the new boot offset
 | |
|  * is added to the old timekeeping making the clock appear to update slightly
 | |
|  * earlier:
 | |
|  *    CPU 0                                        CPU 1
 | |
|  *    timekeeping_inject_sleeptime64()
 | |
|  *    __timekeeping_inject_sleeptime(tk, delta);
 | |
|  *                                                 timestamp();
 | |
|  *    timekeeping_update(tk, TK_CLEAR_NTP...);
 | |
|  *
 | |
|  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 | |
|  * partially updated.  Since the tk->offs_boot update is a rare event, this
 | |
|  * should be a rare occurrence which postprocessing should be able to handle.
 | |
|  */
 | |
| u64 notrace ktime_get_boot_fast_ns(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 | |
|  */
 | |
| static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
 | |
| {
 | |
| 	struct tk_read_base *tkr;
 | |
| 	unsigned int seq;
 | |
| 	u64 now;
 | |
| 
 | |
| 	do {
 | |
| 		seq = raw_read_seqcount_latch(&tkf->seq);
 | |
| 		tkr = tkf->base + (seq & 0x01);
 | |
| 		now = ktime_to_ns(tkr->base_real);
 | |
| 
 | |
| 		now += timekeeping_delta_to_ns(tkr,
 | |
| 				clocksource_delta(
 | |
| 					tk_clock_read(tkr),
 | |
| 					tkr->cycle_last,
 | |
| 					tkr->mask));
 | |
| 	} while (read_seqcount_retry(&tkf->seq, seq));
 | |
| 
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 | |
|  */
 | |
| u64 ktime_get_real_fast_ns(void)
 | |
| {
 | |
| 	return __ktime_get_real_fast_ns(&tk_fast_mono);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 | |
| 
 | |
| /**
 | |
|  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 | |
|  * @tk: Timekeeper to snapshot.
 | |
|  *
 | |
|  * It generally is unsafe to access the clocksource after timekeeping has been
 | |
|  * suspended, so take a snapshot of the readout base of @tk and use it as the
 | |
|  * fast timekeeper's readout base while suspended.  It will return the same
 | |
|  * number of cycles every time until timekeeping is resumed at which time the
 | |
|  * proper readout base for the fast timekeeper will be restored automatically.
 | |
|  */
 | |
| static void halt_fast_timekeeper(const struct timekeeper *tk)
 | |
| {
 | |
| 	static struct tk_read_base tkr_dummy;
 | |
| 	const struct tk_read_base *tkr = &tk->tkr_mono;
 | |
| 
 | |
| 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 | |
| 	cycles_at_suspend = tk_clock_read(tkr);
 | |
| 	tkr_dummy.clock = &dummy_clock;
 | |
| 	tkr_dummy.base_real = tkr->base + tk->offs_real;
 | |
| 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 | |
| 
 | |
| 	tkr = &tk->tkr_raw;
 | |
| 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 | |
| 	tkr_dummy.clock = &dummy_clock;
 | |
| 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 | |
| }
 | |
| 
 | |
| static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 | |
| 
 | |
| static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 | |
| {
 | |
| 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 | |
|  */
 | |
| int pvclock_gtod_register_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 | |
| 	update_pvclock_gtod(tk, true);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 | |
| 
 | |
| /**
 | |
|  * pvclock_gtod_unregister_notifier - unregister a pvclock
 | |
|  * timedata update listener
 | |
|  */
 | |
| int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 | |
| 
 | |
| /*
 | |
|  * tk_update_leap_state - helper to update the next_leap_ktime
 | |
|  */
 | |
| static inline void tk_update_leap_state(struct timekeeper *tk)
 | |
| {
 | |
| 	tk->next_leap_ktime = ntp_get_next_leap();
 | |
| 	if (tk->next_leap_ktime != KTIME_MAX)
 | |
| 		/* Convert to monotonic time */
 | |
| 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the ktime_t based scalar nsec members of the timekeeper
 | |
|  */
 | |
| static inline void tk_update_ktime_data(struct timekeeper *tk)
 | |
| {
 | |
| 	u64 seconds;
 | |
| 	u32 nsec;
 | |
| 
 | |
| 	/*
 | |
| 	 * The xtime based monotonic readout is:
 | |
| 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 | |
| 	 * The ktime based monotonic readout is:
 | |
| 	 *	nsec = base_mono + now();
 | |
| 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 | |
| 	 */
 | |
| 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 | |
| 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 | |
| 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 | |
| 
 | |
| 	/*
 | |
| 	 * The sum of the nanoseconds portions of xtime and
 | |
| 	 * wall_to_monotonic can be greater/equal one second. Take
 | |
| 	 * this into account before updating tk->ktime_sec.
 | |
| 	 */
 | |
| 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 | |
| 	if (nsec >= NSEC_PER_SEC)
 | |
| 		seconds++;
 | |
| 	tk->ktime_sec = seconds;
 | |
| 
 | |
| 	/* Update the monotonic raw base */
 | |
| 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 | |
| }
 | |
| 
 | |
| /* must hold timekeeper_lock */
 | |
| static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 | |
| {
 | |
| 	if (action & TK_CLEAR_NTP) {
 | |
| 		tk->ntp_error = 0;
 | |
| 		ntp_clear();
 | |
| 	}
 | |
| 
 | |
| 	tk_update_leap_state(tk);
 | |
| 	tk_update_ktime_data(tk);
 | |
| 
 | |
| 	update_vsyscall(tk);
 | |
| 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 | |
| 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 | |
| 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 | |
| 
 | |
| 	if (action & TK_CLOCK_WAS_SET)
 | |
| 		tk->clock_was_set_seq++;
 | |
| 	/*
 | |
| 	 * The mirroring of the data to the shadow-timekeeper needs
 | |
| 	 * to happen last here to ensure we don't over-write the
 | |
| 	 * timekeeper structure on the next update with stale data
 | |
| 	 */
 | |
| 	if (action & TK_MIRROR)
 | |
| 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 | |
| 		       sizeof(tk_core.timekeeper));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_forward_now - update clock to the current time
 | |
|  *
 | |
|  * Forward the current clock to update its state since the last call to
 | |
|  * update_wall_time(). This is useful before significant clock changes,
 | |
|  * as it avoids having to deal with this time offset explicitly.
 | |
|  */
 | |
| static void timekeeping_forward_now(struct timekeeper *tk)
 | |
| {
 | |
| 	u64 cycle_now, delta;
 | |
| 
 | |
| 	cycle_now = tk_clock_read(&tk->tkr_mono);
 | |
| 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 | |
| 	tk->tkr_mono.cycle_last = cycle_now;
 | |
| 	tk->tkr_raw.cycle_last  = cycle_now;
 | |
| 
 | |
| 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 | |
| 
 | |
| 	/* If arch requires, add in get_arch_timeoffset() */
 | |
| 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 | |
| 
 | |
| 
 | |
| 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 | |
| 
 | |
| 	/* If arch requires, add in get_arch_timeoffset() */
 | |
| 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
 | |
| 
 | |
| 	tk_normalize_xtime(tk);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 | |
|  * @ts:		pointer to the timespec to be set
 | |
|  *
 | |
|  * Returns the time of day in a timespec64 (WARN if suspended).
 | |
|  */
 | |
| void ktime_get_real_ts64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		ts->tv_sec = tk->xtime_sec;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	ts->tv_nsec = 0;
 | |
| 	timespec64_add_ns(ts, nsecs);
 | |
| }
 | |
| EXPORT_SYMBOL(ktime_get_real_ts64);
 | |
| 
 | |
| ktime_t ktime_get(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base;
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		base = tk->tkr_mono.base;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ktime_add_ns(base, nsecs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get);
 | |
| 
 | |
| u32 ktime_get_resolution_ns(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	u32 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return nsecs;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 | |
| 
 | |
| static ktime_t *offsets[TK_OFFS_MAX] = {
 | |
| 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
 | |
| 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
 | |
| 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
 | |
| };
 | |
| 
 | |
| ktime_t ktime_get_with_offset(enum tk_offsets offs)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base, *offset = offsets[offs];
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		base = ktime_add(tk->tkr_mono.base, *offset);
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ktime_add_ns(base, nsecs);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 | |
| 
 | |
| ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base, *offset = offsets[offs];
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		base = ktime_add(tk->tkr_mono.base, *offset);
 | |
| 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ktime_add_ns(base, nsecs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
 | |
| 
 | |
| /**
 | |
|  * ktime_mono_to_any() - convert mononotic time to any other time
 | |
|  * @tmono:	time to convert.
 | |
|  * @offs:	which offset to use
 | |
|  */
 | |
| ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 | |
| {
 | |
| 	ktime_t *offset = offsets[offs];
 | |
| 	unsigned int seq;
 | |
| 	ktime_t tconv;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		tconv = ktime_add(tmono, *offset);
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return tconv;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 | |
|  */
 | |
| ktime_t ktime_get_raw(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base;
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		base = tk->tkr_raw.base;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ktime_add_ns(base, nsecs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_raw);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_ts64 - get the monotonic clock in timespec64 format
 | |
|  * @ts:		pointer to timespec variable
 | |
|  *
 | |
|  * The function calculates the monotonic clock from the realtime
 | |
|  * clock and the wall_to_monotonic offset and stores the result
 | |
|  * in normalized timespec64 format in the variable pointed to by @ts.
 | |
|  */
 | |
| void ktime_get_ts64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 tomono;
 | |
| 	unsigned int seq;
 | |
| 	u64 nsec;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		ts->tv_sec = tk->xtime_sec;
 | |
| 		nsec = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 		tomono = tk->wall_to_monotonic;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	ts->tv_sec += tomono.tv_sec;
 | |
| 	ts->tv_nsec = 0;
 | |
| 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_ts64);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 | |
|  *
 | |
|  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 | |
|  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 | |
|  * works on both 32 and 64 bit systems. On 32 bit systems the readout
 | |
|  * covers ~136 years of uptime which should be enough to prevent
 | |
|  * premature wrap arounds.
 | |
|  */
 | |
| time64_t ktime_get_seconds(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	WARN_ON(timekeeping_suspended);
 | |
| 	return tk->ktime_sec;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_seconds);
 | |
| 
 | |
| /**
 | |
|  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 | |
|  *
 | |
|  * Returns the wall clock seconds since 1970. This replaces the
 | |
|  * get_seconds() interface which is not y2038 safe on 32bit systems.
 | |
|  *
 | |
|  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 | |
|  * 32bit systems the access must be protected with the sequence
 | |
|  * counter to provide "atomic" access to the 64bit tk->xtime_sec
 | |
|  * value.
 | |
|  */
 | |
| time64_t ktime_get_real_seconds(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	time64_t seconds;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_64BIT))
 | |
| 		return tk->xtime_sec;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		seconds = tk->xtime_sec;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return seconds;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 | |
| 
 | |
| /**
 | |
|  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 | |
|  * but without the sequence counter protect. This internal function
 | |
|  * is called just when timekeeping lock is already held.
 | |
|  */
 | |
| noinstr time64_t __ktime_get_real_seconds(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	return tk->xtime_sec;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 | |
|  * @systime_snapshot:	pointer to struct receiving the system time snapshot
 | |
|  */
 | |
| void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base_raw;
 | |
| 	ktime_t base_real;
 | |
| 	u64 nsec_raw;
 | |
| 	u64 nsec_real;
 | |
| 	u64 now;
 | |
| 
 | |
| 	WARN_ON_ONCE(timekeeping_suspended);
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		now = tk_clock_read(&tk->tkr_mono);
 | |
| 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 | |
| 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 | |
| 		base_real = ktime_add(tk->tkr_mono.base,
 | |
| 				      tk_core.timekeeper.offs_real);
 | |
| 		base_raw = tk->tkr_raw.base;
 | |
| 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 | |
| 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	systime_snapshot->cycles = now;
 | |
| 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 | |
| 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 | |
| 
 | |
| /* Scale base by mult/div checking for overflow */
 | |
| static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 | |
| {
 | |
| 	u64 tmp, rem;
 | |
| 
 | |
| 	tmp = div64_u64_rem(*base, div, &rem);
 | |
| 
 | |
| 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
 | |
| 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
 | |
| 		return -EOVERFLOW;
 | |
| 	tmp *= mult;
 | |
| 
 | |
| 	rem = div64_u64(rem * mult, div);
 | |
| 	*base = tmp + rem;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 | |
|  * @history:			Snapshot representing start of history
 | |
|  * @partial_history_cycles:	Cycle offset into history (fractional part)
 | |
|  * @total_history_cycles:	Total history length in cycles
 | |
|  * @discontinuity:		True indicates clock was set on history period
 | |
|  * @ts:				Cross timestamp that should be adjusted using
 | |
|  *	partial/total ratio
 | |
|  *
 | |
|  * Helper function used by get_device_system_crosststamp() to correct the
 | |
|  * crosstimestamp corresponding to the start of the current interval to the
 | |
|  * system counter value (timestamp point) provided by the driver. The
 | |
|  * total_history_* quantities are the total history starting at the provided
 | |
|  * reference point and ending at the start of the current interval. The cycle
 | |
|  * count between the driver timestamp point and the start of the current
 | |
|  * interval is partial_history_cycles.
 | |
|  */
 | |
| static int adjust_historical_crosststamp(struct system_time_snapshot *history,
 | |
| 					 u64 partial_history_cycles,
 | |
| 					 u64 total_history_cycles,
 | |
| 					 bool discontinuity,
 | |
| 					 struct system_device_crosststamp *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	u64 corr_raw, corr_real;
 | |
| 	bool interp_forward;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (total_history_cycles == 0 || partial_history_cycles == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Interpolate shortest distance from beginning or end of history */
 | |
| 	interp_forward = partial_history_cycles > total_history_cycles / 2;
 | |
| 	partial_history_cycles = interp_forward ?
 | |
| 		total_history_cycles - partial_history_cycles :
 | |
| 		partial_history_cycles;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scale the monotonic raw time delta by:
 | |
| 	 *	partial_history_cycles / total_history_cycles
 | |
| 	 */
 | |
| 	corr_raw = (u64)ktime_to_ns(
 | |
| 		ktime_sub(ts->sys_monoraw, history->raw));
 | |
| 	ret = scale64_check_overflow(partial_history_cycles,
 | |
| 				     total_history_cycles, &corr_raw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a discontinuity in the history, scale monotonic raw
 | |
| 	 *	correction by:
 | |
| 	 *	mult(real)/mult(raw) yielding the realtime correction
 | |
| 	 * Otherwise, calculate the realtime correction similar to monotonic
 | |
| 	 *	raw calculation
 | |
| 	 */
 | |
| 	if (discontinuity) {
 | |
| 		corr_real = mul_u64_u32_div
 | |
| 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
 | |
| 	} else {
 | |
| 		corr_real = (u64)ktime_to_ns(
 | |
| 			ktime_sub(ts->sys_realtime, history->real));
 | |
| 		ret = scale64_check_overflow(partial_history_cycles,
 | |
| 					     total_history_cycles, &corr_real);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Fixup monotonic raw and real time time values */
 | |
| 	if (interp_forward) {
 | |
| 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
 | |
| 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
 | |
| 	} else {
 | |
| 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
 | |
| 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cycle_between - true if test occurs chronologically between before and after
 | |
|  */
 | |
| static bool cycle_between(u64 before, u64 test, u64 after)
 | |
| {
 | |
| 	if (test > before && test < after)
 | |
| 		return true;
 | |
| 	if (test < before && before > after)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_device_system_crosststamp - Synchronously capture system/device timestamp
 | |
|  * @get_time_fn:	Callback to get simultaneous device time and
 | |
|  *	system counter from the device driver
 | |
|  * @ctx:		Context passed to get_time_fn()
 | |
|  * @history_begin:	Historical reference point used to interpolate system
 | |
|  *	time when counter provided by the driver is before the current interval
 | |
|  * @xtstamp:		Receives simultaneously captured system and device time
 | |
|  *
 | |
|  * Reads a timestamp from a device and correlates it to system time
 | |
|  */
 | |
| int get_device_system_crosststamp(int (*get_time_fn)
 | |
| 				  (ktime_t *device_time,
 | |
| 				   struct system_counterval_t *sys_counterval,
 | |
| 				   void *ctx),
 | |
| 				  void *ctx,
 | |
| 				  struct system_time_snapshot *history_begin,
 | |
| 				  struct system_device_crosststamp *xtstamp)
 | |
| {
 | |
| 	struct system_counterval_t system_counterval;
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	u64 cycles, now, interval_start;
 | |
| 	unsigned int clock_was_set_seq = 0;
 | |
| 	ktime_t base_real, base_raw;
 | |
| 	u64 nsec_real, nsec_raw;
 | |
| 	u8 cs_was_changed_seq;
 | |
| 	unsigned int seq;
 | |
| 	bool do_interp;
 | |
| 	int ret;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		/*
 | |
| 		 * Try to synchronously capture device time and a system
 | |
| 		 * counter value calling back into the device driver
 | |
| 		 */
 | |
| 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify that the clocksource associated with the captured
 | |
| 		 * system counter value is the same as the currently installed
 | |
| 		 * timekeeper clocksource
 | |
| 		 */
 | |
| 		if (tk->tkr_mono.clock != system_counterval.cs)
 | |
| 			return -ENODEV;
 | |
| 		cycles = system_counterval.cycles;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check whether the system counter value provided by the
 | |
| 		 * device driver is on the current timekeeping interval.
 | |
| 		 */
 | |
| 		now = tk_clock_read(&tk->tkr_mono);
 | |
| 		interval_start = tk->tkr_mono.cycle_last;
 | |
| 		if (!cycle_between(interval_start, cycles, now)) {
 | |
| 			clock_was_set_seq = tk->clock_was_set_seq;
 | |
| 			cs_was_changed_seq = tk->cs_was_changed_seq;
 | |
| 			cycles = interval_start;
 | |
| 			do_interp = true;
 | |
| 		} else {
 | |
| 			do_interp = false;
 | |
| 		}
 | |
| 
 | |
| 		base_real = ktime_add(tk->tkr_mono.base,
 | |
| 				      tk_core.timekeeper.offs_real);
 | |
| 		base_raw = tk->tkr_raw.base;
 | |
| 
 | |
| 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
 | |
| 						     system_counterval.cycles);
 | |
| 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
 | |
| 						    system_counterval.cycles);
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
 | |
| 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
 | |
| 
 | |
| 	/*
 | |
| 	 * Interpolate if necessary, adjusting back from the start of the
 | |
| 	 * current interval
 | |
| 	 */
 | |
| 	if (do_interp) {
 | |
| 		u64 partial_history_cycles, total_history_cycles;
 | |
| 		bool discontinuity;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check that the counter value occurs after the provided
 | |
| 		 * history reference and that the history doesn't cross a
 | |
| 		 * clocksource change
 | |
| 		 */
 | |
| 		if (!history_begin ||
 | |
| 		    !cycle_between(history_begin->cycles,
 | |
| 				   system_counterval.cycles, cycles) ||
 | |
| 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
 | |
| 			return -EINVAL;
 | |
| 		partial_history_cycles = cycles - system_counterval.cycles;
 | |
| 		total_history_cycles = cycles - history_begin->cycles;
 | |
| 		discontinuity =
 | |
| 			history_begin->clock_was_set_seq != clock_was_set_seq;
 | |
| 
 | |
| 		ret = adjust_historical_crosststamp(history_begin,
 | |
| 						    partial_history_cycles,
 | |
| 						    total_history_cycles,
 | |
| 						    discontinuity, xtstamp);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
 | |
| 
 | |
| /**
 | |
|  * do_settimeofday64 - Sets the time of day.
 | |
|  * @ts:     pointer to the timespec64 variable containing the new time
 | |
|  *
 | |
|  * Sets the time of day to the new time and update NTP and notify hrtimers
 | |
|  */
 | |
| int do_settimeofday64(const struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 ts_delta, xt;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!timespec64_valid_settod(ts))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 
 | |
| 	xt = tk_xtime(tk);
 | |
| 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
 | |
| 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
 | |
| 
 | |
| 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
 | |
| 
 | |
| 	tk_set_xtime(tk, ts);
 | |
| out:
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* signal hrtimers about time change */
 | |
| 	clock_was_set();
 | |
| 
 | |
| 	if (!ret)
 | |
| 		audit_tk_injoffset(ts_delta);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(do_settimeofday64);
 | |
| 
 | |
| /**
 | |
|  * timekeeping_inject_offset - Adds or subtracts from the current time.
 | |
|  * @tv:		pointer to the timespec variable containing the offset
 | |
|  *
 | |
|  * Adds or subtracts an offset value from the current time.
 | |
|  */
 | |
| static int timekeeping_inject_offset(const struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64 tmp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 
 | |
| 	/* Make sure the proposed value is valid */
 | |
| 	tmp = timespec64_add(tk_xtime(tk), *ts);
 | |
| 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
 | |
| 	    !timespec64_valid_settod(&tmp)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	tk_xtime_add(tk, ts);
 | |
| 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
 | |
| 
 | |
| error: /* even if we error out, we forwarded the time, so call update */
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* signal hrtimers about time change */
 | |
| 	clock_was_set();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicates if there is an offset between the system clock and the hardware
 | |
|  * clock/persistent clock/rtc.
 | |
|  */
 | |
| int persistent_clock_is_local;
 | |
| 
 | |
| /*
 | |
|  * Adjust the time obtained from the CMOS to be UTC time instead of
 | |
|  * local time.
 | |
|  *
 | |
|  * This is ugly, but preferable to the alternatives.  Otherwise we
 | |
|  * would either need to write a program to do it in /etc/rc (and risk
 | |
|  * confusion if the program gets run more than once; it would also be
 | |
|  * hard to make the program warp the clock precisely n hours)  or
 | |
|  * compile in the timezone information into the kernel.  Bad, bad....
 | |
|  *
 | |
|  *						- TYT, 1992-01-01
 | |
|  *
 | |
|  * The best thing to do is to keep the CMOS clock in universal time (UTC)
 | |
|  * as real UNIX machines always do it. This avoids all headaches about
 | |
|  * daylight saving times and warping kernel clocks.
 | |
|  */
 | |
| void timekeeping_warp_clock(void)
 | |
| {
 | |
| 	if (sys_tz.tz_minuteswest != 0) {
 | |
| 		struct timespec64 adjust;
 | |
| 
 | |
| 		persistent_clock_is_local = 1;
 | |
| 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
 | |
| 		adjust.tv_nsec = 0;
 | |
| 		timekeeping_inject_offset(&adjust);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
 | |
|  *
 | |
|  */
 | |
| static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
 | |
| {
 | |
| 	tk->tai_offset = tai_offset;
 | |
| 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * change_clocksource - Swaps clocksources if a new one is available
 | |
|  *
 | |
|  * Accumulates current time interval and initializes new clocksource
 | |
|  */
 | |
| static int change_clocksource(void *data)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct clocksource *new, *old;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	new = (struct clocksource *) data;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 	/*
 | |
| 	 * If the cs is in module, get a module reference. Succeeds
 | |
| 	 * for built-in code (owner == NULL) as well.
 | |
| 	 */
 | |
| 	if (try_module_get(new->owner)) {
 | |
| 		if (!new->enable || new->enable(new) == 0) {
 | |
| 			old = tk->tkr_mono.clock;
 | |
| 			tk_setup_internals(tk, new);
 | |
| 			if (old->disable)
 | |
| 				old->disable(old);
 | |
| 			module_put(old->owner);
 | |
| 		} else {
 | |
| 			module_put(new->owner);
 | |
| 		}
 | |
| 	}
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_notify - Install a new clock source
 | |
|  * @clock:		pointer to the clock source
 | |
|  *
 | |
|  * This function is called from clocksource.c after a new, better clock
 | |
|  * source has been registered. The caller holds the clocksource_mutex.
 | |
|  */
 | |
| int timekeeping_notify(struct clocksource *clock)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 
 | |
| 	if (tk->tkr_mono.clock == clock)
 | |
| 		return 0;
 | |
| 	stop_machine(change_clocksource, clock, NULL);
 | |
| 	tick_clock_notify();
 | |
| 	return tk->tkr_mono.clock == clock ? 0 : -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
 | |
|  * @ts:		pointer to the timespec64 to be set
 | |
|  *
 | |
|  * Returns the raw monotonic time (completely un-modified by ntp)
 | |
|  */
 | |
| void ktime_get_raw_ts64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 		ts->tv_sec = tk->raw_sec;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	ts->tv_nsec = 0;
 | |
| 	timespec64_add_ns(ts, nsecs);
 | |
| }
 | |
| EXPORT_SYMBOL(ktime_get_raw_ts64);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
 | |
|  */
 | |
| int timekeeping_valid_for_hres(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	int ret;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 | |
|  */
 | |
| u64 timekeeping_max_deferment(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	u64 ret;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		ret = tk->tkr_mono.clock->max_idle_ns;
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_persistent_clock64 -  Return time from the persistent clock.
 | |
|  *
 | |
|  * Weak dummy function for arches that do not yet support it.
 | |
|  * Reads the time from the battery backed persistent clock.
 | |
|  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 | |
|  *
 | |
|  *  XXX - Do be sure to remove it once all arches implement it.
 | |
|  */
 | |
| void __weak read_persistent_clock64(struct timespec64 *ts)
 | |
| {
 | |
| 	ts->tv_sec = 0;
 | |
| 	ts->tv_nsec = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
 | |
|  *                                        from the boot.
 | |
|  *
 | |
|  * Weak dummy function for arches that do not yet support it.
 | |
|  * wall_time	- current time as returned by persistent clock
 | |
|  * boot_offset	- offset that is defined as wall_time - boot_time
 | |
|  * The default function calculates offset based on the current value of
 | |
|  * local_clock(). This way architectures that support sched_clock() but don't
 | |
|  * support dedicated boot time clock will provide the best estimate of the
 | |
|  * boot time.
 | |
|  */
 | |
| void __weak __init
 | |
| read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
 | |
| 				     struct timespec64 *boot_offset)
 | |
| {
 | |
| 	read_persistent_clock64(wall_time);
 | |
| 	*boot_offset = ns_to_timespec64(local_clock());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
 | |
|  *
 | |
|  * The flag starts of false and is only set when a suspend reaches
 | |
|  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
 | |
|  * timekeeper clocksource is not stopping across suspend and has been
 | |
|  * used to update sleep time. If the timekeeper clocksource has stopped
 | |
|  * then the flag stays true and is used by the RTC resume code to decide
 | |
|  * whether sleeptime must be injected and if so the flag gets false then.
 | |
|  *
 | |
|  * If a suspend fails before reaching timekeeping_resume() then the flag
 | |
|  * stays false and prevents erroneous sleeptime injection.
 | |
|  */
 | |
| static bool suspend_timing_needed;
 | |
| 
 | |
| /* Flag for if there is a persistent clock on this platform */
 | |
| static bool persistent_clock_exists;
 | |
| 
 | |
| /*
 | |
|  * timekeeping_init - Initializes the clocksource and common timekeeping values
 | |
|  */
 | |
| void __init timekeeping_init(void)
 | |
| {
 | |
| 	struct timespec64 wall_time, boot_offset, wall_to_mono;
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct clocksource *clock;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
 | |
| 	if (timespec64_valid_settod(&wall_time) &&
 | |
| 	    timespec64_to_ns(&wall_time) > 0) {
 | |
| 		persistent_clock_exists = true;
 | |
| 	} else if (timespec64_to_ns(&wall_time) != 0) {
 | |
| 		pr_warn("Persistent clock returned invalid value");
 | |
| 		wall_time = (struct timespec64){0};
 | |
| 	}
 | |
| 
 | |
| 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
 | |
| 		boot_offset = (struct timespec64){0};
 | |
| 
 | |
| 	/*
 | |
| 	 * We want set wall_to_mono, so the following is true:
 | |
| 	 * wall time + wall_to_mono = boot time
 | |
| 	 */
 | |
| 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 	ntp_init();
 | |
| 
 | |
| 	clock = clocksource_default_clock();
 | |
| 	if (clock->enable)
 | |
| 		clock->enable(clock);
 | |
| 	tk_setup_internals(tk, clock);
 | |
| 
 | |
| 	tk_set_xtime(tk, &wall_time);
 | |
| 	tk->raw_sec = 0;
 | |
| 
 | |
| 	tk_set_wall_to_mono(tk, wall_to_mono);
 | |
| 
 | |
| 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| }
 | |
| 
 | |
| /* time in seconds when suspend began for persistent clock */
 | |
| static struct timespec64 timekeeping_suspend_time;
 | |
| 
 | |
| /**
 | |
|  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 | |
|  * @delta: pointer to a timespec delta value
 | |
|  *
 | |
|  * Takes a timespec offset measuring a suspend interval and properly
 | |
|  * adds the sleep offset to the timekeeping variables.
 | |
|  */
 | |
| static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
 | |
| 					   const struct timespec64 *delta)
 | |
| {
 | |
| 	if (!timespec64_valid_strict(delta)) {
 | |
| 		printk_deferred(KERN_WARNING
 | |
| 				"__timekeeping_inject_sleeptime: Invalid "
 | |
| 				"sleep delta value!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	tk_xtime_add(tk, delta);
 | |
| 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
 | |
| 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
 | |
| 	tk_debug_account_sleep_time(delta);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 | |
| /**
 | |
|  * We have three kinds of time sources to use for sleep time
 | |
|  * injection, the preference order is:
 | |
|  * 1) non-stop clocksource
 | |
|  * 2) persistent clock (ie: RTC accessible when irqs are off)
 | |
|  * 3) RTC
 | |
|  *
 | |
|  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 | |
|  * If system has neither 1) nor 2), 3) will be used finally.
 | |
|  *
 | |
|  *
 | |
|  * If timekeeping has injected sleeptime via either 1) or 2),
 | |
|  * 3) becomes needless, so in this case we don't need to call
 | |
|  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 | |
|  * means.
 | |
|  */
 | |
| bool timekeeping_rtc_skipresume(void)
 | |
| {
 | |
| 	return !suspend_timing_needed;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 1) can be determined whether to use or not only when doing
 | |
|  * timekeeping_resume() which is invoked after rtc_suspend(),
 | |
|  * so we can't skip rtc_suspend() surely if system has 1).
 | |
|  *
 | |
|  * But if system has 2), 2) will definitely be used, so in this
 | |
|  * case we don't need to call rtc_suspend(), and this is what
 | |
|  * timekeeping_rtc_skipsuspend() means.
 | |
|  */
 | |
| bool timekeeping_rtc_skipsuspend(void)
 | |
| {
 | |
| 	return persistent_clock_exists;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 | |
|  * @delta: pointer to a timespec64 delta value
 | |
|  *
 | |
|  * This hook is for architectures that cannot support read_persistent_clock64
 | |
|  * because their RTC/persistent clock is only accessible when irqs are enabled.
 | |
|  * and also don't have an effective nonstop clocksource.
 | |
|  *
 | |
|  * This function should only be called by rtc_resume(), and allows
 | |
|  * a suspend offset to be injected into the timekeeping values.
 | |
|  */
 | |
| void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	suspend_timing_needed = false;
 | |
| 
 | |
| 	timekeeping_forward_now(tk);
 | |
| 
 | |
| 	__timekeeping_inject_sleeptime(tk, delta);
 | |
| 
 | |
| 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* signal hrtimers about time change */
 | |
| 	clock_was_set();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * timekeeping_resume - Resumes the generic timekeeping subsystem.
 | |
|  */
 | |
| void timekeeping_resume(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct clocksource *clock = tk->tkr_mono.clock;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64 ts_new, ts_delta;
 | |
| 	u64 cycle_now, nsec;
 | |
| 	bool inject_sleeptime = false;
 | |
| 
 | |
| 	read_persistent_clock64(&ts_new);
 | |
| 
 | |
| 	clockevents_resume();
 | |
| 	clocksource_resume();
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	/*
 | |
| 	 * After system resumes, we need to calculate the suspended time and
 | |
| 	 * compensate it for the OS time. There are 3 sources that could be
 | |
| 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
 | |
| 	 * device.
 | |
| 	 *
 | |
| 	 * One specific platform may have 1 or 2 or all of them, and the
 | |
| 	 * preference will be:
 | |
| 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
 | |
| 	 * The less preferred source will only be tried if there is no better
 | |
| 	 * usable source. The rtc part is handled separately in rtc core code.
 | |
| 	 */
 | |
| 	cycle_now = tk_clock_read(&tk->tkr_mono);
 | |
| 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
 | |
| 	if (nsec > 0) {
 | |
| 		ts_delta = ns_to_timespec64(nsec);
 | |
| 		inject_sleeptime = true;
 | |
| 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
 | |
| 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
 | |
| 		inject_sleeptime = true;
 | |
| 	}
 | |
| 
 | |
| 	if (inject_sleeptime) {
 | |
| 		suspend_timing_needed = false;
 | |
| 		__timekeeping_inject_sleeptime(tk, &ts_delta);
 | |
| 	}
 | |
| 
 | |
| 	/* Re-base the last cycle value */
 | |
| 	tk->tkr_mono.cycle_last = cycle_now;
 | |
| 	tk->tkr_raw.cycle_last  = cycle_now;
 | |
| 
 | |
| 	tk->ntp_error = 0;
 | |
| 	timekeeping_suspended = 0;
 | |
| 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	touch_softlockup_watchdog();
 | |
| 
 | |
| 	tick_resume();
 | |
| 	hrtimers_resume();
 | |
| }
 | |
| 
 | |
| int timekeeping_suspend(void)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64		delta, delta_delta;
 | |
| 	static struct timespec64	old_delta;
 | |
| 	struct clocksource *curr_clock;
 | |
| 	u64 cycle_now;
 | |
| 
 | |
| 	read_persistent_clock64(&timekeeping_suspend_time);
 | |
| 
 | |
| 	/*
 | |
| 	 * On some systems the persistent_clock can not be detected at
 | |
| 	 * timekeeping_init by its return value, so if we see a valid
 | |
| 	 * value returned, update the persistent_clock_exists flag.
 | |
| 	 */
 | |
| 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
 | |
| 		persistent_clock_exists = true;
 | |
| 
 | |
| 	suspend_timing_needed = true;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 	timekeeping_forward_now(tk);
 | |
| 	timekeeping_suspended = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we've called forward_now, cycle_last stores the value
 | |
| 	 * just read from the current clocksource. Save this to potentially
 | |
| 	 * use in suspend timing.
 | |
| 	 */
 | |
| 	curr_clock = tk->tkr_mono.clock;
 | |
| 	cycle_now = tk->tkr_mono.cycle_last;
 | |
| 	clocksource_start_suspend_timing(curr_clock, cycle_now);
 | |
| 
 | |
| 	if (persistent_clock_exists) {
 | |
| 		/*
 | |
| 		 * To avoid drift caused by repeated suspend/resumes,
 | |
| 		 * which each can add ~1 second drift error,
 | |
| 		 * try to compensate so the difference in system time
 | |
| 		 * and persistent_clock time stays close to constant.
 | |
| 		 */
 | |
| 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
 | |
| 		delta_delta = timespec64_sub(delta, old_delta);
 | |
| 		if (abs(delta_delta.tv_sec) >= 2) {
 | |
| 			/*
 | |
| 			 * if delta_delta is too large, assume time correction
 | |
| 			 * has occurred and set old_delta to the current delta.
 | |
| 			 */
 | |
| 			old_delta = delta;
 | |
| 		} else {
 | |
| 			/* Otherwise try to adjust old_system to compensate */
 | |
| 			timekeeping_suspend_time =
 | |
| 				timespec64_add(timekeeping_suspend_time, delta_delta);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	timekeeping_update(tk, TK_MIRROR);
 | |
| 	halt_fast_timekeeper(tk);
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	tick_suspend();
 | |
| 	clocksource_suspend();
 | |
| 	clockevents_suspend();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* sysfs resume/suspend bits for timekeeping */
 | |
| static struct syscore_ops timekeeping_syscore_ops = {
 | |
| 	.resume		= timekeeping_resume,
 | |
| 	.suspend	= timekeeping_suspend,
 | |
| };
 | |
| 
 | |
| static int __init timekeeping_init_ops(void)
 | |
| {
 | |
| 	register_syscore_ops(&timekeeping_syscore_ops);
 | |
| 	return 0;
 | |
| }
 | |
| device_initcall(timekeeping_init_ops);
 | |
| 
 | |
| /*
 | |
|  * Apply a multiplier adjustment to the timekeeper
 | |
|  */
 | |
| static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
 | |
| 							 s64 offset,
 | |
| 							 s32 mult_adj)
 | |
| {
 | |
| 	s64 interval = tk->cycle_interval;
 | |
| 
 | |
| 	if (mult_adj == 0) {
 | |
| 		return;
 | |
| 	} else if (mult_adj == -1) {
 | |
| 		interval = -interval;
 | |
| 		offset = -offset;
 | |
| 	} else if (mult_adj != 1) {
 | |
| 		interval *= mult_adj;
 | |
| 		offset *= mult_adj;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * So the following can be confusing.
 | |
| 	 *
 | |
| 	 * To keep things simple, lets assume mult_adj == 1 for now.
 | |
| 	 *
 | |
| 	 * When mult_adj != 1, remember that the interval and offset values
 | |
| 	 * have been appropriately scaled so the math is the same.
 | |
| 	 *
 | |
| 	 * The basic idea here is that we're increasing the multiplier
 | |
| 	 * by one, this causes the xtime_interval to be incremented by
 | |
| 	 * one cycle_interval. This is because:
 | |
| 	 *	xtime_interval = cycle_interval * mult
 | |
| 	 * So if mult is being incremented by one:
 | |
| 	 *	xtime_interval = cycle_interval * (mult + 1)
 | |
| 	 * Its the same as:
 | |
| 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
 | |
| 	 * Which can be shortened to:
 | |
| 	 *	xtime_interval += cycle_interval
 | |
| 	 *
 | |
| 	 * So offset stores the non-accumulated cycles. Thus the current
 | |
| 	 * time (in shifted nanoseconds) is:
 | |
| 	 *	now = (offset * adj) + xtime_nsec
 | |
| 	 * Now, even though we're adjusting the clock frequency, we have
 | |
| 	 * to keep time consistent. In other words, we can't jump back
 | |
| 	 * in time, and we also want to avoid jumping forward in time.
 | |
| 	 *
 | |
| 	 * So given the same offset value, we need the time to be the same
 | |
| 	 * both before and after the freq adjustment.
 | |
| 	 *	now = (offset * adj_1) + xtime_nsec_1
 | |
| 	 *	now = (offset * adj_2) + xtime_nsec_2
 | |
| 	 * So:
 | |
| 	 *	(offset * adj_1) + xtime_nsec_1 =
 | |
| 	 *		(offset * adj_2) + xtime_nsec_2
 | |
| 	 * And we know:
 | |
| 	 *	adj_2 = adj_1 + 1
 | |
| 	 * So:
 | |
| 	 *	(offset * adj_1) + xtime_nsec_1 =
 | |
| 	 *		(offset * (adj_1+1)) + xtime_nsec_2
 | |
| 	 *	(offset * adj_1) + xtime_nsec_1 =
 | |
| 	 *		(offset * adj_1) + offset + xtime_nsec_2
 | |
| 	 * Canceling the sides:
 | |
| 	 *	xtime_nsec_1 = offset + xtime_nsec_2
 | |
| 	 * Which gives us:
 | |
| 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
 | |
| 	 * Which simplfies to:
 | |
| 	 *	xtime_nsec -= offset
 | |
| 	 */
 | |
| 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
 | |
| 		/* NTP adjustment caused clocksource mult overflow */
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tk->tkr_mono.mult += mult_adj;
 | |
| 	tk->xtime_interval += interval;
 | |
| 	tk->tkr_mono.xtime_nsec -= offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the timekeeper's multiplier to the correct frequency
 | |
|  * and also to reduce the accumulated error value.
 | |
|  */
 | |
| static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
 | |
| {
 | |
| 	u32 mult;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the multiplier from the current NTP tick length.
 | |
| 	 * Avoid expensive division when the tick length doesn't change.
 | |
| 	 */
 | |
| 	if (likely(tk->ntp_tick == ntp_tick_length())) {
 | |
| 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
 | |
| 	} else {
 | |
| 		tk->ntp_tick = ntp_tick_length();
 | |
| 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
 | |
| 				 tk->xtime_remainder, tk->cycle_interval);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the clock is behind the NTP time, increase the multiplier by 1
 | |
| 	 * to catch up with it. If it's ahead and there was a remainder in the
 | |
| 	 * tick division, the clock will slow down. Otherwise it will stay
 | |
| 	 * ahead until the tick length changes to a non-divisible value.
 | |
| 	 */
 | |
| 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
 | |
| 	mult += tk->ntp_err_mult;
 | |
| 
 | |
| 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
 | |
| 
 | |
| 	if (unlikely(tk->tkr_mono.clock->maxadj &&
 | |
| 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
 | |
| 			> tk->tkr_mono.clock->maxadj))) {
 | |
| 		printk_once(KERN_WARNING
 | |
| 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
 | |
| 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
 | |
| 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It may be possible that when we entered this function, xtime_nsec
 | |
| 	 * was very small.  Further, if we're slightly speeding the clocksource
 | |
| 	 * in the code above, its possible the required corrective factor to
 | |
| 	 * xtime_nsec could cause it to underflow.
 | |
| 	 *
 | |
| 	 * Now, since we have already accumulated the second and the NTP
 | |
| 	 * subsystem has been notified via second_overflow(), we need to skip
 | |
| 	 * the next update.
 | |
| 	 */
 | |
| 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
 | |
| 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
 | |
| 							tk->tkr_mono.shift;
 | |
| 		tk->xtime_sec--;
 | |
| 		tk->skip_second_overflow = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 | |
|  *
 | |
|  * Helper function that accumulates the nsecs greater than a second
 | |
|  * from the xtime_nsec field to the xtime_secs field.
 | |
|  * It also calls into the NTP code to handle leapsecond processing.
 | |
|  *
 | |
|  */
 | |
| static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
 | |
| {
 | |
| 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 | |
| 	unsigned int clock_set = 0;
 | |
| 
 | |
| 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
 | |
| 		int leap;
 | |
| 
 | |
| 		tk->tkr_mono.xtime_nsec -= nsecps;
 | |
| 		tk->xtime_sec++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip NTP update if this second was accumulated before,
 | |
| 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
 | |
| 		 */
 | |
| 		if (unlikely(tk->skip_second_overflow)) {
 | |
| 			tk->skip_second_overflow = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Figure out if its a leap sec and apply if needed */
 | |
| 		leap = second_overflow(tk->xtime_sec);
 | |
| 		if (unlikely(leap)) {
 | |
| 			struct timespec64 ts;
 | |
| 
 | |
| 			tk->xtime_sec += leap;
 | |
| 
 | |
| 			ts.tv_sec = leap;
 | |
| 			ts.tv_nsec = 0;
 | |
| 			tk_set_wall_to_mono(tk,
 | |
| 				timespec64_sub(tk->wall_to_monotonic, ts));
 | |
| 
 | |
| 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
 | |
| 
 | |
| 			clock_set = TK_CLOCK_WAS_SET;
 | |
| 		}
 | |
| 	}
 | |
| 	return clock_set;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * logarithmic_accumulation - shifted accumulation of cycles
 | |
|  *
 | |
|  * This functions accumulates a shifted interval of cycles into
 | |
|  * into a shifted interval nanoseconds. Allows for O(log) accumulation
 | |
|  * loop.
 | |
|  *
 | |
|  * Returns the unconsumed cycles.
 | |
|  */
 | |
| static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
 | |
| 				    u32 shift, unsigned int *clock_set)
 | |
| {
 | |
| 	u64 interval = tk->cycle_interval << shift;
 | |
| 	u64 snsec_per_sec;
 | |
| 
 | |
| 	/* If the offset is smaller than a shifted interval, do nothing */
 | |
| 	if (offset < interval)
 | |
| 		return offset;
 | |
| 
 | |
| 	/* Accumulate one shifted interval */
 | |
| 	offset -= interval;
 | |
| 	tk->tkr_mono.cycle_last += interval;
 | |
| 	tk->tkr_raw.cycle_last  += interval;
 | |
| 
 | |
| 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
 | |
| 	*clock_set |= accumulate_nsecs_to_secs(tk);
 | |
| 
 | |
| 	/* Accumulate raw time */
 | |
| 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
 | |
| 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 | |
| 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
 | |
| 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
 | |
| 		tk->raw_sec++;
 | |
| 	}
 | |
| 
 | |
| 	/* Accumulate error between NTP and clock interval */
 | |
| 	tk->ntp_error += tk->ntp_tick << shift;
 | |
| 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
 | |
| 						(tk->ntp_error_shift + shift);
 | |
| 
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * timekeeping_advance - Updates the timekeeper to the current time and
 | |
|  * current NTP tick length
 | |
|  */
 | |
| static void timekeeping_advance(enum timekeeping_adv_mode mode)
 | |
| {
 | |
| 	struct timekeeper *real_tk = &tk_core.timekeeper;
 | |
| 	struct timekeeper *tk = &shadow_timekeeper;
 | |
| 	u64 offset;
 | |
| 	int shift = 0, maxshift;
 | |
| 	unsigned int clock_set = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 
 | |
| 	/* Make sure we're fully resumed: */
 | |
| 	if (unlikely(timekeeping_suspended))
 | |
| 		goto out;
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 | |
| 	offset = real_tk->cycle_interval;
 | |
| 
 | |
| 	if (mode != TK_ADV_TICK)
 | |
| 		goto out;
 | |
| #else
 | |
| 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
 | |
| 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 | |
| 
 | |
| 	/* Check if there's really nothing to do */
 | |
| 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
 | |
| 		goto out;
 | |
| #endif
 | |
| 
 | |
| 	/* Do some additional sanity checking */
 | |
| 	timekeeping_check_update(tk, offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * With NO_HZ we may have to accumulate many cycle_intervals
 | |
| 	 * (think "ticks") worth of time at once. To do this efficiently,
 | |
| 	 * we calculate the largest doubling multiple of cycle_intervals
 | |
| 	 * that is smaller than the offset.  We then accumulate that
 | |
| 	 * chunk in one go, and then try to consume the next smaller
 | |
| 	 * doubled multiple.
 | |
| 	 */
 | |
| 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
 | |
| 	shift = max(0, shift);
 | |
| 	/* Bound shift to one less than what overflows tick_length */
 | |
| 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
 | |
| 	shift = min(shift, maxshift);
 | |
| 	while (offset >= tk->cycle_interval) {
 | |
| 		offset = logarithmic_accumulation(tk, offset, shift,
 | |
| 							&clock_set);
 | |
| 		if (offset < tk->cycle_interval<<shift)
 | |
| 			shift--;
 | |
| 	}
 | |
| 
 | |
| 	/* Adjust the multiplier to correct NTP error */
 | |
| 	timekeeping_adjust(tk, offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, make sure that after the rounding
 | |
| 	 * xtime_nsec isn't larger than NSEC_PER_SEC
 | |
| 	 */
 | |
| 	clock_set |= accumulate_nsecs_to_secs(tk);
 | |
| 
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 	/*
 | |
| 	 * Update the real timekeeper.
 | |
| 	 *
 | |
| 	 * We could avoid this memcpy by switching pointers, but that
 | |
| 	 * requires changes to all other timekeeper usage sites as
 | |
| 	 * well, i.e. move the timekeeper pointer getter into the
 | |
| 	 * spinlocked/seqcount protected sections. And we trade this
 | |
| 	 * memcpy under the tk_core.seq against one before we start
 | |
| 	 * updating.
 | |
| 	 */
 | |
| 	timekeeping_update(tk, clock_set);
 | |
| 	memcpy(real_tk, tk, sizeof(*tk));
 | |
| 	/* The memcpy must come last. Do not put anything here! */
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| out:
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 	if (clock_set)
 | |
| 		/* Have to call _delayed version, since in irq context*/
 | |
| 		clock_was_set_delayed();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_wall_time - Uses the current clocksource to increment the wall time
 | |
|  *
 | |
|  */
 | |
| void update_wall_time(void)
 | |
| {
 | |
| 	timekeeping_advance(TK_ADV_TICK);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * getboottime64 - Return the real time of system boot.
 | |
|  * @ts:		pointer to the timespec64 to be set
 | |
|  *
 | |
|  * Returns the wall-time of boot in a timespec64.
 | |
|  *
 | |
|  * This is based on the wall_to_monotonic offset and the total suspend
 | |
|  * time. Calls to settimeofday will affect the value returned (which
 | |
|  * basically means that however wrong your real time clock is at boot time,
 | |
|  * you get the right time here).
 | |
|  */
 | |
| void getboottime64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
 | |
| 
 | |
| 	*ts = ktime_to_timespec64(t);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(getboottime64);
 | |
| 
 | |
| void ktime_get_coarse_real_ts64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		*ts = tk_xtime(tk);
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| }
 | |
| EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
 | |
| 
 | |
| void ktime_get_coarse_ts64(struct timespec64 *ts)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct timespec64 now, mono;
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		now = tk_xtime(tk);
 | |
| 		mono = tk->wall_to_monotonic;
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
 | |
| 				now.tv_nsec + mono.tv_nsec);
 | |
| }
 | |
| EXPORT_SYMBOL(ktime_get_coarse_ts64);
 | |
| 
 | |
| /*
 | |
|  * Must hold jiffies_lock
 | |
|  */
 | |
| void do_timer(unsigned long ticks)
 | |
| {
 | |
| 	jiffies_64 += ticks;
 | |
| 	calc_global_load(ticks);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_update_offsets_now - hrtimer helper
 | |
|  * @cwsseq:	pointer to check and store the clock was set sequence number
 | |
|  * @offs_real:	pointer to storage for monotonic -> realtime offset
 | |
|  * @offs_boot:	pointer to storage for monotonic -> boottime offset
 | |
|  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 | |
|  *
 | |
|  * Returns current monotonic time and updates the offsets if the
 | |
|  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 | |
|  * different.
 | |
|  *
 | |
|  * Called from hrtimer_interrupt() or retrigger_next_event()
 | |
|  */
 | |
| ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
 | |
| 				     ktime_t *offs_boot, ktime_t *offs_tai)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	unsigned int seq;
 | |
| 	ktime_t base;
 | |
| 	u64 nsecs;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 		base = tk->tkr_mono.base;
 | |
| 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | |
| 		base = ktime_add_ns(base, nsecs);
 | |
| 
 | |
| 		if (*cwsseq != tk->clock_was_set_seq) {
 | |
| 			*cwsseq = tk->clock_was_set_seq;
 | |
| 			*offs_real = tk->offs_real;
 | |
| 			*offs_boot = tk->offs_boot;
 | |
| 			*offs_tai = tk->offs_tai;
 | |
| 		}
 | |
| 
 | |
| 		/* Handle leapsecond insertion adjustments */
 | |
| 		if (unlikely(base >= tk->next_leap_ktime))
 | |
| 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
 | |
| 
 | |
| 	} while (read_seqcount_retry(&tk_core.seq, seq));
 | |
| 
 | |
| 	return base;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
 | |
|  */
 | |
| static int timekeeping_validate_timex(const struct __kernel_timex *txc)
 | |
| {
 | |
| 	if (txc->modes & ADJ_ADJTIME) {
 | |
| 		/* singleshot must not be used with any other mode bits */
 | |
| 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
 | |
| 			return -EINVAL;
 | |
| 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
 | |
| 		    !capable(CAP_SYS_TIME))
 | |
| 			return -EPERM;
 | |
| 	} else {
 | |
| 		/* In order to modify anything, you gotta be super-user! */
 | |
| 		if (txc->modes && !capable(CAP_SYS_TIME))
 | |
| 			return -EPERM;
 | |
| 		/*
 | |
| 		 * if the quartz is off by more than 10% then
 | |
| 		 * something is VERY wrong!
 | |
| 		 */
 | |
| 		if (txc->modes & ADJ_TICK &&
 | |
| 		    (txc->tick <  900000/USER_HZ ||
 | |
| 		     txc->tick > 1100000/USER_HZ))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (txc->modes & ADJ_SETOFFSET) {
 | |
| 		/* In order to inject time, you gotta be super-user! */
 | |
| 		if (!capable(CAP_SYS_TIME))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		/*
 | |
| 		 * Validate if a timespec/timeval used to inject a time
 | |
| 		 * offset is valid.  Offsets can be postive or negative, so
 | |
| 		 * we don't check tv_sec. The value of the timeval/timespec
 | |
| 		 * is the sum of its fields,but *NOTE*:
 | |
| 		 * The field tv_usec/tv_nsec must always be non-negative and
 | |
| 		 * we can't have more nanoseconds/microseconds than a second.
 | |
| 		 */
 | |
| 		if (txc->time.tv_usec < 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (txc->modes & ADJ_NANO) {
 | |
| 			if (txc->time.tv_usec >= NSEC_PER_SEC)
 | |
| 				return -EINVAL;
 | |
| 		} else {
 | |
| 			if (txc->time.tv_usec >= USEC_PER_SEC)
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for potential multiplication overflows that can
 | |
| 	 * only happen on 64-bit systems:
 | |
| 	 */
 | |
| 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
 | |
| 		if (LLONG_MIN / PPM_SCALE > txc->freq)
 | |
| 			return -EINVAL;
 | |
| 		if (LLONG_MAX / PPM_SCALE < txc->freq)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 | |
|  */
 | |
| int do_adjtimex(struct __kernel_timex *txc)
 | |
| {
 | |
| 	struct timekeeper *tk = &tk_core.timekeeper;
 | |
| 	struct audit_ntp_data ad;
 | |
| 	unsigned long flags;
 | |
| 	struct timespec64 ts;
 | |
| 	s32 orig_tai, tai;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Validate the data before disabling interrupts */
 | |
| 	ret = timekeeping_validate_timex(txc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (txc->modes & ADJ_SETOFFSET) {
 | |
| 		struct timespec64 delta;
 | |
| 		delta.tv_sec  = txc->time.tv_sec;
 | |
| 		delta.tv_nsec = txc->time.tv_usec;
 | |
| 		if (!(txc->modes & ADJ_NANO))
 | |
| 			delta.tv_nsec *= 1000;
 | |
| 		ret = timekeeping_inject_offset(&delta);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		audit_tk_injoffset(delta);
 | |
| 	}
 | |
| 
 | |
| 	audit_ntp_init(&ad);
 | |
| 
 | |
| 	ktime_get_real_ts64(&ts);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	orig_tai = tai = tk->tai_offset;
 | |
| 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
 | |
| 
 | |
| 	if (tai != orig_tai) {
 | |
| 		__timekeeping_set_tai_offset(tk, tai);
 | |
| 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | |
| 	}
 | |
| 	tk_update_leap_state(tk);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| 
 | |
| 	audit_ntp_log(&ad);
 | |
| 
 | |
| 	/* Update the multiplier immediately if frequency was set directly */
 | |
| 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
 | |
| 		timekeeping_advance(TK_ADV_FREQ);
 | |
| 
 | |
| 	if (tai != orig_tai)
 | |
| 		clock_was_set();
 | |
| 
 | |
| 	ntp_notify_cmos_timer();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NTP_PPS
 | |
| /**
 | |
|  * hardpps() - Accessor function to NTP __hardpps function
 | |
|  */
 | |
| void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | |
| 	write_seqcount_begin(&tk_core.seq);
 | |
| 
 | |
| 	__hardpps(phase_ts, raw_ts);
 | |
| 
 | |
| 	write_seqcount_end(&tk_core.seq);
 | |
| 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(hardpps);
 | |
| #endif /* CONFIG_NTP_PPS */
 | |
| 
 | |
| /**
 | |
|  * xtime_update() - advances the timekeeping infrastructure
 | |
|  * @ticks:	number of ticks, that have elapsed since the last call.
 | |
|  *
 | |
|  * Must be called with interrupts disabled.
 | |
|  */
 | |
| void xtime_update(unsigned long ticks)
 | |
| {
 | |
| 	raw_spin_lock(&jiffies_lock);
 | |
| 	write_seqcount_begin(&jiffies_seq);
 | |
| 	do_timer(ticks);
 | |
| 	write_seqcount_end(&jiffies_seq);
 | |
| 	raw_spin_unlock(&jiffies_lock);
 | |
| 	update_wall_time();
 | |
| }
 |