abd82e533d
Currently, kprobes decodes the opcode right after single-stepping in resume_execution(). But the opcode was already decoded while preparing arch_specific_insn in arch_copy_kprobe(). Decode the opcode in arch_copy_kprobe() instead of in resume_execution() and set some flags which classify the opcode for the resuming process. [ bp: Massage commit message. ] Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/160830072561.349576.3014979564448023213.stgit@devnote2
976 lines
28 KiB
C
976 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Kernel Probes (KProbes)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*
|
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
|
* Probes initial implementation ( includes contributions from
|
|
* Rusty Russell).
|
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
|
* interface to access function arguments.
|
|
* 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
|
|
* <prasanna@in.ibm.com> adapted for x86_64 from i386.
|
|
* 2005-Mar Roland McGrath <roland@redhat.com>
|
|
* Fixed to handle %rip-relative addressing mode correctly.
|
|
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
|
|
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
|
|
* <prasanna@in.ibm.com> added function-return probes.
|
|
* 2005-May Rusty Lynch <rusty.lynch@intel.com>
|
|
* Added function return probes functionality
|
|
* 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
|
|
* kprobe-booster and kretprobe-booster for i386.
|
|
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
|
|
* and kretprobe-booster for x86-64
|
|
* 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
|
|
* <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
|
|
* unified x86 kprobes code.
|
|
*/
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/objtool.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/text-patching.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/desc.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/set_memory.h>
|
|
|
|
#include "common.h"
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
#define stack_addr(regs) ((unsigned long *)regs->sp)
|
|
|
|
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
|
|
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
|
|
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
|
|
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
|
|
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
|
|
<< (row % 32))
|
|
/*
|
|
* Undefined/reserved opcodes, conditional jump, Opcode Extension
|
|
* Groups, and some special opcodes can not boost.
|
|
* This is non-const and volatile to keep gcc from statically
|
|
* optimizing it out, as variable_test_bit makes gcc think only
|
|
* *(unsigned long*) is used.
|
|
*/
|
|
static volatile u32 twobyte_is_boostable[256 / 32] = {
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
|
/* ---------------------------------------------- */
|
|
W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
|
|
W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
|
|
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
|
|
W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
|
|
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
|
|
W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
|
|
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
|
|
W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
|
|
W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
|
|
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
|
|
W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
|
|
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
|
|
W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
|
|
W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
|
|
W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
|
|
W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
|
|
/* ----------------------------------------------- */
|
|
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
|
};
|
|
#undef W
|
|
|
|
struct kretprobe_blackpoint kretprobe_blacklist[] = {
|
|
{"__switch_to", }, /* This function switches only current task, but
|
|
doesn't switch kernel stack.*/
|
|
{NULL, NULL} /* Terminator */
|
|
};
|
|
|
|
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
|
|
|
|
static nokprobe_inline void
|
|
__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
|
|
{
|
|
struct __arch_relative_insn {
|
|
u8 op;
|
|
s32 raddr;
|
|
} __packed *insn;
|
|
|
|
insn = (struct __arch_relative_insn *)dest;
|
|
insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
|
|
insn->op = op;
|
|
}
|
|
|
|
/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
|
|
void synthesize_reljump(void *dest, void *from, void *to)
|
|
{
|
|
__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
|
|
}
|
|
NOKPROBE_SYMBOL(synthesize_reljump);
|
|
|
|
/* Insert a call instruction at address 'from', which calls address 'to'.*/
|
|
void synthesize_relcall(void *dest, void *from, void *to)
|
|
{
|
|
__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
|
|
}
|
|
NOKPROBE_SYMBOL(synthesize_relcall);
|
|
|
|
/*
|
|
* Returns non-zero if INSN is boostable.
|
|
* RIP relative instructions are adjusted at copying time in 64 bits mode
|
|
*/
|
|
int can_boost(struct insn *insn, void *addr)
|
|
{
|
|
kprobe_opcode_t opcode;
|
|
|
|
if (search_exception_tables((unsigned long)addr))
|
|
return 0; /* Page fault may occur on this address. */
|
|
|
|
/* 2nd-byte opcode */
|
|
if (insn->opcode.nbytes == 2)
|
|
return test_bit(insn->opcode.bytes[1],
|
|
(unsigned long *)twobyte_is_boostable);
|
|
|
|
if (insn->opcode.nbytes != 1)
|
|
return 0;
|
|
|
|
/* Can't boost Address-size override prefix */
|
|
if (unlikely(inat_is_address_size_prefix(insn->attr)))
|
|
return 0;
|
|
|
|
opcode = insn->opcode.bytes[0];
|
|
|
|
switch (opcode & 0xf0) {
|
|
case 0x60:
|
|
/* can't boost "bound" */
|
|
return (opcode != 0x62);
|
|
case 0x70:
|
|
return 0; /* can't boost conditional jump */
|
|
case 0x90:
|
|
return opcode != 0x9a; /* can't boost call far */
|
|
case 0xc0:
|
|
/* can't boost software-interruptions */
|
|
return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
|
|
case 0xd0:
|
|
/* can boost AA* and XLAT */
|
|
return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
|
|
case 0xe0:
|
|
/* can boost in/out and absolute jmps */
|
|
return ((opcode & 0x04) || opcode == 0xea);
|
|
case 0xf0:
|
|
/* clear and set flags are boostable */
|
|
return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
|
|
default:
|
|
/* CS override prefix and call are not boostable */
|
|
return (opcode != 0x2e && opcode != 0x9a);
|
|
}
|
|
}
|
|
|
|
static unsigned long
|
|
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
|
|
{
|
|
struct kprobe *kp;
|
|
unsigned long faddr;
|
|
|
|
kp = get_kprobe((void *)addr);
|
|
faddr = ftrace_location(addr);
|
|
/*
|
|
* Addresses inside the ftrace location are refused by
|
|
* arch_check_ftrace_location(). Something went terribly wrong
|
|
* if such an address is checked here.
|
|
*/
|
|
if (WARN_ON(faddr && faddr != addr))
|
|
return 0UL;
|
|
/*
|
|
* Use the current code if it is not modified by Kprobe
|
|
* and it cannot be modified by ftrace.
|
|
*/
|
|
if (!kp && !faddr)
|
|
return addr;
|
|
|
|
/*
|
|
* Basically, kp->ainsn.insn has an original instruction.
|
|
* However, RIP-relative instruction can not do single-stepping
|
|
* at different place, __copy_instruction() tweaks the displacement of
|
|
* that instruction. In that case, we can't recover the instruction
|
|
* from the kp->ainsn.insn.
|
|
*
|
|
* On the other hand, in case on normal Kprobe, kp->opcode has a copy
|
|
* of the first byte of the probed instruction, which is overwritten
|
|
* by int3. And the instruction at kp->addr is not modified by kprobes
|
|
* except for the first byte, we can recover the original instruction
|
|
* from it and kp->opcode.
|
|
*
|
|
* In case of Kprobes using ftrace, we do not have a copy of
|
|
* the original instruction. In fact, the ftrace location might
|
|
* be modified at anytime and even could be in an inconsistent state.
|
|
* Fortunately, we know that the original code is the ideal 5-byte
|
|
* long NOP.
|
|
*/
|
|
if (copy_from_kernel_nofault(buf, (void *)addr,
|
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
|
|
return 0UL;
|
|
|
|
if (faddr)
|
|
memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
|
|
else
|
|
buf[0] = kp->opcode;
|
|
return (unsigned long)buf;
|
|
}
|
|
|
|
/*
|
|
* Recover the probed instruction at addr for further analysis.
|
|
* Caller must lock kprobes by kprobe_mutex, or disable preemption
|
|
* for preventing to release referencing kprobes.
|
|
* Returns zero if the instruction can not get recovered (or access failed).
|
|
*/
|
|
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
|
|
{
|
|
unsigned long __addr;
|
|
|
|
__addr = __recover_optprobed_insn(buf, addr);
|
|
if (__addr != addr)
|
|
return __addr;
|
|
|
|
return __recover_probed_insn(buf, addr);
|
|
}
|
|
|
|
/* Check if paddr is at an instruction boundary */
|
|
static int can_probe(unsigned long paddr)
|
|
{
|
|
unsigned long addr, __addr, offset = 0;
|
|
struct insn insn;
|
|
kprobe_opcode_t buf[MAX_INSN_SIZE];
|
|
|
|
if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
|
|
return 0;
|
|
|
|
/* Decode instructions */
|
|
addr = paddr - offset;
|
|
while (addr < paddr) {
|
|
/*
|
|
* Check if the instruction has been modified by another
|
|
* kprobe, in which case we replace the breakpoint by the
|
|
* original instruction in our buffer.
|
|
* Also, jump optimization will change the breakpoint to
|
|
* relative-jump. Since the relative-jump itself is
|
|
* normally used, we just go through if there is no kprobe.
|
|
*/
|
|
__addr = recover_probed_instruction(buf, addr);
|
|
if (!__addr)
|
|
return 0;
|
|
kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
|
|
insn_get_length(&insn);
|
|
|
|
/*
|
|
* Another debugging subsystem might insert this breakpoint.
|
|
* In that case, we can't recover it.
|
|
*/
|
|
if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
|
|
return 0;
|
|
addr += insn.length;
|
|
}
|
|
|
|
return (addr == paddr);
|
|
}
|
|
|
|
/*
|
|
* Copy an instruction with recovering modified instruction by kprobes
|
|
* and adjust the displacement if the instruction uses the %rip-relative
|
|
* addressing mode. Note that since @real will be the final place of copied
|
|
* instruction, displacement must be adjust by @real, not @dest.
|
|
* This returns the length of copied instruction, or 0 if it has an error.
|
|
*/
|
|
int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
|
|
{
|
|
kprobe_opcode_t buf[MAX_INSN_SIZE];
|
|
unsigned long recovered_insn =
|
|
recover_probed_instruction(buf, (unsigned long)src);
|
|
|
|
if (!recovered_insn || !insn)
|
|
return 0;
|
|
|
|
/* This can access kernel text if given address is not recovered */
|
|
if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
|
|
MAX_INSN_SIZE))
|
|
return 0;
|
|
|
|
kernel_insn_init(insn, dest, MAX_INSN_SIZE);
|
|
insn_get_length(insn);
|
|
|
|
/* We can not probe force emulate prefixed instruction */
|
|
if (insn_has_emulate_prefix(insn))
|
|
return 0;
|
|
|
|
/* Another subsystem puts a breakpoint, failed to recover */
|
|
if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
|
|
return 0;
|
|
|
|
/* We should not singlestep on the exception masking instructions */
|
|
if (insn_masking_exception(insn))
|
|
return 0;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Only x86_64 has RIP relative instructions */
|
|
if (insn_rip_relative(insn)) {
|
|
s64 newdisp;
|
|
u8 *disp;
|
|
/*
|
|
* The copied instruction uses the %rip-relative addressing
|
|
* mode. Adjust the displacement for the difference between
|
|
* the original location of this instruction and the location
|
|
* of the copy that will actually be run. The tricky bit here
|
|
* is making sure that the sign extension happens correctly in
|
|
* this calculation, since we need a signed 32-bit result to
|
|
* be sign-extended to 64 bits when it's added to the %rip
|
|
* value and yield the same 64-bit result that the sign-
|
|
* extension of the original signed 32-bit displacement would
|
|
* have given.
|
|
*/
|
|
newdisp = (u8 *) src + (s64) insn->displacement.value
|
|
- (u8 *) real;
|
|
if ((s64) (s32) newdisp != newdisp) {
|
|
pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
|
|
return 0;
|
|
}
|
|
disp = (u8 *) dest + insn_offset_displacement(insn);
|
|
*(s32 *) disp = (s32) newdisp;
|
|
}
|
|
#endif
|
|
return insn->length;
|
|
}
|
|
|
|
/* Prepare reljump right after instruction to boost */
|
|
static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
|
|
struct insn *insn)
|
|
{
|
|
int len = insn->length;
|
|
|
|
if (can_boost(insn, p->addr) &&
|
|
MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
|
|
/*
|
|
* These instructions can be executed directly if it
|
|
* jumps back to correct address.
|
|
*/
|
|
synthesize_reljump(buf + len, p->ainsn.insn + len,
|
|
p->addr + insn->length);
|
|
len += JMP32_INSN_SIZE;
|
|
p->ainsn.boostable = 1;
|
|
} else {
|
|
p->ainsn.boostable = 0;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Make page to RO mode when allocate it */
|
|
void *alloc_insn_page(void)
|
|
{
|
|
void *page;
|
|
|
|
page = module_alloc(PAGE_SIZE);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
set_vm_flush_reset_perms(page);
|
|
/*
|
|
* First make the page read-only, and only then make it executable to
|
|
* prevent it from being W+X in between.
|
|
*/
|
|
set_memory_ro((unsigned long)page, 1);
|
|
|
|
/*
|
|
* TODO: Once additional kernel code protection mechanisms are set, ensure
|
|
* that the page was not maliciously altered and it is still zeroed.
|
|
*/
|
|
set_memory_x((unsigned long)page, 1);
|
|
|
|
return page;
|
|
}
|
|
|
|
/* Recover page to RW mode before releasing it */
|
|
void free_insn_page(void *page)
|
|
{
|
|
module_memfree(page);
|
|
}
|
|
|
|
static void set_resume_flags(struct kprobe *p, struct insn *insn)
|
|
{
|
|
insn_byte_t opcode = insn->opcode.bytes[0];
|
|
|
|
switch (opcode) {
|
|
case 0xfa: /* cli */
|
|
case 0xfb: /* sti */
|
|
case 0x9d: /* popf/popfd */
|
|
/* Check whether the instruction modifies Interrupt Flag or not */
|
|
p->ainsn.if_modifier = 1;
|
|
break;
|
|
case 0x9c: /* pushfl */
|
|
p->ainsn.is_pushf = 1;
|
|
break;
|
|
case 0xcf: /* iret */
|
|
p->ainsn.if_modifier = 1;
|
|
fallthrough;
|
|
case 0xc2: /* ret/lret */
|
|
case 0xc3:
|
|
case 0xca:
|
|
case 0xcb:
|
|
case 0xea: /* jmp absolute -- ip is correct */
|
|
/* ip is already adjusted, no more changes required */
|
|
p->ainsn.is_abs_ip = 1;
|
|
/* Without resume jump, this is boostable */
|
|
p->ainsn.boostable = 1;
|
|
break;
|
|
case 0xe8: /* call relative - Fix return addr */
|
|
p->ainsn.is_call = 1;
|
|
break;
|
|
#ifdef CONFIG_X86_32
|
|
case 0x9a: /* call absolute -- same as call absolute, indirect */
|
|
p->ainsn.is_call = 1;
|
|
p->ainsn.is_abs_ip = 1;
|
|
break;
|
|
#endif
|
|
case 0xff:
|
|
opcode = insn->opcode.bytes[1];
|
|
if ((opcode & 0x30) == 0x10) {
|
|
/*
|
|
* call absolute, indirect
|
|
* Fix return addr; ip is correct.
|
|
* But this is not boostable
|
|
*/
|
|
p->ainsn.is_call = 1;
|
|
p->ainsn.is_abs_ip = 1;
|
|
break;
|
|
} else if (((opcode & 0x31) == 0x20) ||
|
|
((opcode & 0x31) == 0x21)) {
|
|
/*
|
|
* jmp near and far, absolute indirect
|
|
* ip is correct.
|
|
*/
|
|
p->ainsn.is_abs_ip = 1;
|
|
/* Without resume jump, this is boostable */
|
|
p->ainsn.boostable = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int arch_copy_kprobe(struct kprobe *p)
|
|
{
|
|
struct insn insn;
|
|
kprobe_opcode_t buf[MAX_INSN_SIZE];
|
|
int len;
|
|
|
|
/* Copy an instruction with recovering if other optprobe modifies it.*/
|
|
len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
|
|
if (!len)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* __copy_instruction can modify the displacement of the instruction,
|
|
* but it doesn't affect boostable check.
|
|
*/
|
|
len = prepare_boost(buf, p, &insn);
|
|
|
|
/* Analyze the opcode and set resume flags */
|
|
set_resume_flags(p, &insn);
|
|
|
|
/* Also, displacement change doesn't affect the first byte */
|
|
p->opcode = buf[0];
|
|
|
|
p->ainsn.tp_len = len;
|
|
perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
|
|
|
|
/* OK, write back the instruction(s) into ROX insn buffer */
|
|
text_poke(p->ainsn.insn, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
int ret;
|
|
|
|
if (alternatives_text_reserved(p->addr, p->addr))
|
|
return -EINVAL;
|
|
|
|
if (!can_probe((unsigned long)p->addr))
|
|
return -EILSEQ;
|
|
|
|
memset(&p->ainsn, 0, sizeof(p->ainsn));
|
|
|
|
/* insn: must be on special executable page on x86. */
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn)
|
|
return -ENOMEM;
|
|
|
|
ret = arch_copy_kprobe(p);
|
|
if (ret) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
u8 int3 = INT3_INSN_OPCODE;
|
|
|
|
text_poke(p->addr, &int3, 1);
|
|
text_poke_sync();
|
|
perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
|
|
}
|
|
|
|
void arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
u8 int3 = INT3_INSN_OPCODE;
|
|
|
|
perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
|
|
text_poke(p->addr, &p->opcode, 1);
|
|
text_poke_sync();
|
|
}
|
|
|
|
void arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
/* Record the perf event before freeing the slot */
|
|
perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
|
|
p->ainsn.tp_len, NULL, 0);
|
|
free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static nokprobe_inline void
|
|
save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
|
|
kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
|
|
}
|
|
|
|
static nokprobe_inline void
|
|
restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
|
|
kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
|
|
}
|
|
|
|
static nokprobe_inline void
|
|
set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
kcb->kprobe_saved_flags = kcb->kprobe_old_flags
|
|
= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
|
|
if (p->ainsn.if_modifier)
|
|
kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
|
|
}
|
|
|
|
static nokprobe_inline void clear_btf(void)
|
|
{
|
|
if (test_thread_flag(TIF_BLOCKSTEP)) {
|
|
unsigned long debugctl = get_debugctlmsr();
|
|
|
|
debugctl &= ~DEBUGCTLMSR_BTF;
|
|
update_debugctlmsr(debugctl);
|
|
}
|
|
}
|
|
|
|
static nokprobe_inline void restore_btf(void)
|
|
{
|
|
if (test_thread_flag(TIF_BLOCKSTEP)) {
|
|
unsigned long debugctl = get_debugctlmsr();
|
|
|
|
debugctl |= DEBUGCTLMSR_BTF;
|
|
update_debugctlmsr(debugctl);
|
|
}
|
|
}
|
|
|
|
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
|
|
{
|
|
unsigned long *sara = stack_addr(regs);
|
|
|
|
ri->ret_addr = (kprobe_opcode_t *) *sara;
|
|
ri->fp = sara;
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
*sara = (unsigned long) &kretprobe_trampoline;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
|
|
|
|
static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb, int reenter)
|
|
{
|
|
if (setup_detour_execution(p, regs, reenter))
|
|
return;
|
|
|
|
#if !defined(CONFIG_PREEMPTION)
|
|
if (p->ainsn.boostable && !p->post_handler) {
|
|
/* Boost up -- we can execute copied instructions directly */
|
|
if (!reenter)
|
|
reset_current_kprobe();
|
|
/*
|
|
* Reentering boosted probe doesn't reset current_kprobe,
|
|
* nor set current_kprobe, because it doesn't use single
|
|
* stepping.
|
|
*/
|
|
regs->ip = (unsigned long)p->ainsn.insn;
|
|
return;
|
|
}
|
|
#endif
|
|
if (reenter) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
/* Prepare real single stepping */
|
|
clear_btf();
|
|
regs->flags |= X86_EFLAGS_TF;
|
|
regs->flags &= ~X86_EFLAGS_IF;
|
|
/* single step inline if the instruction is an int3 */
|
|
if (p->opcode == INT3_INSN_OPCODE)
|
|
regs->ip = (unsigned long)p->addr;
|
|
else
|
|
regs->ip = (unsigned long)p->ainsn.insn;
|
|
}
|
|
NOKPROBE_SYMBOL(setup_singlestep);
|
|
|
|
/*
|
|
* We have reentered the kprobe_handler(), since another probe was hit while
|
|
* within the handler. We save the original kprobes variables and just single
|
|
* step on the instruction of the new probe without calling any user handlers.
|
|
*/
|
|
static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SS:
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs, kcb, 1);
|
|
break;
|
|
case KPROBE_REENTER:
|
|
/* A probe has been hit in the codepath leading up to, or just
|
|
* after, single-stepping of a probed instruction. This entire
|
|
* codepath should strictly reside in .kprobes.text section.
|
|
* Raise a BUG or we'll continue in an endless reentering loop
|
|
* and eventually a stack overflow.
|
|
*/
|
|
pr_err("Unrecoverable kprobe detected.\n");
|
|
dump_kprobe(p);
|
|
BUG();
|
|
default:
|
|
/* impossible cases */
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(reenter_kprobe);
|
|
|
|
/*
|
|
* Interrupts are disabled on entry as trap3 is an interrupt gate and they
|
|
* remain disabled throughout this function.
|
|
*/
|
|
int kprobe_int3_handler(struct pt_regs *regs)
|
|
{
|
|
kprobe_opcode_t *addr;
|
|
struct kprobe *p;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
if (user_mode(regs))
|
|
return 0;
|
|
|
|
addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
|
|
/*
|
|
* We don't want to be preempted for the entire duration of kprobe
|
|
* processing. Since int3 and debug trap disables irqs and we clear
|
|
* IF while singlestepping, it must be no preemptible.
|
|
*/
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
p = get_kprobe(addr);
|
|
|
|
if (p) {
|
|
if (kprobe_running()) {
|
|
if (reenter_kprobe(p, regs, kcb))
|
|
return 1;
|
|
} else {
|
|
set_current_kprobe(p, regs, kcb);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, that means
|
|
* user handler setup registers to exit to another
|
|
* instruction, we must skip the single stepping.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs))
|
|
setup_singlestep(p, regs, kcb, 0);
|
|
else
|
|
reset_current_kprobe();
|
|
return 1;
|
|
}
|
|
} else if (*addr != INT3_INSN_OPCODE) {
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
* Back up over the (now missing) int3 and run
|
|
* the original instruction.
|
|
*/
|
|
regs->ip = (unsigned long)addr;
|
|
return 1;
|
|
} /* else: not a kprobe fault; let the kernel handle it */
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_int3_handler);
|
|
|
|
/*
|
|
* When a retprobed function returns, this code saves registers and
|
|
* calls trampoline_handler() runs, which calls the kretprobe's handler.
|
|
*/
|
|
asm(
|
|
".text\n"
|
|
".global kretprobe_trampoline\n"
|
|
".type kretprobe_trampoline, @function\n"
|
|
"kretprobe_trampoline:\n"
|
|
/* We don't bother saving the ss register */
|
|
#ifdef CONFIG_X86_64
|
|
" pushq %rsp\n"
|
|
" pushfq\n"
|
|
SAVE_REGS_STRING
|
|
" movq %rsp, %rdi\n"
|
|
" call trampoline_handler\n"
|
|
/* Replace saved sp with true return address. */
|
|
" movq %rax, 19*8(%rsp)\n"
|
|
RESTORE_REGS_STRING
|
|
" popfq\n"
|
|
#else
|
|
" pushl %esp\n"
|
|
" pushfl\n"
|
|
SAVE_REGS_STRING
|
|
" movl %esp, %eax\n"
|
|
" call trampoline_handler\n"
|
|
/* Replace saved sp with true return address. */
|
|
" movl %eax, 15*4(%esp)\n"
|
|
RESTORE_REGS_STRING
|
|
" popfl\n"
|
|
#endif
|
|
" ret\n"
|
|
".size kretprobe_trampoline, .-kretprobe_trampoline\n"
|
|
);
|
|
NOKPROBE_SYMBOL(kretprobe_trampoline);
|
|
STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
|
|
|
|
|
|
/*
|
|
* Called from kretprobe_trampoline
|
|
*/
|
|
__used __visible void *trampoline_handler(struct pt_regs *regs)
|
|
{
|
|
/* fixup registers */
|
|
regs->cs = __KERNEL_CS;
|
|
#ifdef CONFIG_X86_32
|
|
regs->gs = 0;
|
|
#endif
|
|
regs->ip = (unsigned long)&kretprobe_trampoline;
|
|
regs->orig_ax = ~0UL;
|
|
|
|
return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, ®s->sp);
|
|
}
|
|
NOKPROBE_SYMBOL(trampoline_handler);
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "int 3"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn.
|
|
*
|
|
* This function prepares to return from the post-single-step
|
|
* interrupt. We have to fix up the stack as follows:
|
|
*
|
|
* 0) Except in the case of absolute or indirect jump or call instructions,
|
|
* the new ip is relative to the copied instruction. We need to make
|
|
* it relative to the original instruction.
|
|
*
|
|
* 1) If the single-stepped instruction was pushfl, then the TF and IF
|
|
* flags are set in the just-pushed flags, and may need to be cleared.
|
|
*
|
|
* 2) If the single-stepped instruction was a call, the return address
|
|
* that is atop the stack is the address following the copied instruction.
|
|
* We need to make it the address following the original instruction.
|
|
*/
|
|
static void resume_execution(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
unsigned long *tos = stack_addr(regs);
|
|
unsigned long copy_ip = (unsigned long)p->ainsn.insn;
|
|
unsigned long orig_ip = (unsigned long)p->addr;
|
|
|
|
regs->flags &= ~X86_EFLAGS_TF;
|
|
|
|
/* Fixup the contents of top of stack */
|
|
if (p->ainsn.is_pushf) {
|
|
*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
|
|
*tos |= kcb->kprobe_old_flags;
|
|
} else if (p->ainsn.is_call) {
|
|
*tos = orig_ip + (*tos - copy_ip);
|
|
}
|
|
|
|
if (!p->ainsn.is_abs_ip)
|
|
regs->ip += orig_ip - copy_ip;
|
|
|
|
restore_btf();
|
|
}
|
|
NOKPROBE_SYMBOL(resume_execution);
|
|
|
|
/*
|
|
* Interrupts are disabled on entry as trap1 is an interrupt gate and they
|
|
* remain disabled throughout this function.
|
|
*/
|
|
int kprobe_debug_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (!cur)
|
|
return 0;
|
|
|
|
resume_execution(cur, regs, kcb);
|
|
regs->flags |= kcb->kprobe_saved_flags;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
/* Restore back the original saved kprobes variables and continue. */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
reset_current_kprobe();
|
|
out:
|
|
/*
|
|
* if somebody else is singlestepping across a probe point, flags
|
|
* will have TF set, in which case, continue the remaining processing
|
|
* of do_debug, as if this is not a probe hit.
|
|
*/
|
|
if (regs->flags & X86_EFLAGS_TF)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_debug_handler);
|
|
|
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
|
|
/* This must happen on single-stepping */
|
|
WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
|
|
kcb->kprobe_status != KPROBE_REENTER);
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the ip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->ip = (unsigned long)cur->addr;
|
|
/*
|
|
* Trap flag (TF) has been set here because this fault
|
|
* happened where the single stepping will be done.
|
|
* So clear it by resetting the current kprobe:
|
|
*/
|
|
regs->flags &= ~X86_EFLAGS_TF;
|
|
/*
|
|
* Since the single step (trap) has been cancelled,
|
|
* we need to restore BTF here.
|
|
*/
|
|
restore_btf();
|
|
|
|
/*
|
|
* If the TF flag was set before the kprobe hit,
|
|
* don't touch it:
|
|
*/
|
|
regs->flags |= kcb->kprobe_old_flags;
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
|
|
kcb->kprobe_status == KPROBE_HIT_SSDONE) {
|
|
/*
|
|
* We increment the nmissed count for accounting,
|
|
* we can also use npre/npostfault count for accounting
|
|
* these specific fault cases.
|
|
*/
|
|
kprobes_inc_nmissed_count(cur);
|
|
|
|
/*
|
|
* We come here because instructions in the pre/post
|
|
* handler caused the page_fault, this could happen
|
|
* if handler tries to access user space by
|
|
* copy_from_user(), get_user() etc. Let the
|
|
* user-specified handler try to fix it first.
|
|
*/
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
|
|
|
int __init arch_populate_kprobe_blacklist(void)
|
|
{
|
|
return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
|
|
(unsigned long)__entry_text_end);
|
|
}
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|