linux/fs/xfs/scrub/scrub.h
Linus Torvalds 53ea7f624f New code for 6.6:
* Chandan Babu will be taking over as the XFS release manager.  He has
    reviewed all the patches that are in this branch, though I'm signing
    the branch one last time since I'm still technically maintainer. :P
  * Create a maintainer entry profile for XFS in which we lay out the
    various roles that I have played for many years.  Aside from release
    manager, the remaining roles are as yet unfilled.
  * Start merging online repair -- we now have in-memory pageable memory
    for staging btrees, a bunch of pending fixes, and we've started the
    process of refactoring the scrub support code to support more of
    repair.  In particular, reaping of old blocks from damaged structures.
  * Scrub the realtime summary file.
  * Fix a bug where scrub's quota iteration only ever returned the root
    dquot.  Oooops.
  * Fix some typos.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZOQE2AAKCRBKO3ySh0YR
 pvmZAQDe+KceaVx6Dv2f9ihckeS2dILSpDTo1bh9BeXnt005VwD/ceHTaJxEl8lp
 u/dixFDkRgp9RYtoTAK2WNiUxYetsAc=
 =oZN6
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Chandan Babu:

 - Chandan Babu will be taking over as the XFS release manager. He has
   reviewed all the patches that are in this branch, though I'm signing
   the branch one last time since I'm still technically maintainer. :P

 - Create a maintainer entry profile for XFS in which we lay out the
   various roles that I have played for many years.  Aside from release
   manager, the remaining roles are as yet unfilled.

 - Start merging online repair -- we now have in-memory pageable memory
   for staging btrees, a bunch of pending fixes, and we've started the
   process of refactoring the scrub support code to support more of
   repair.  In particular, reaping of old blocks from damaged structures.

 - Scrub the realtime summary file.

 - Fix a bug where scrub's quota iteration only ever returned the root
   dquot.  Oooops.

 - Fix some typos.

[ Pull request from Chandan Babu, but signed tag and description from
  Darrick Wong, thus the first person singular above is Darrick, not
  Chandan ]

* tag 'xfs-6.6-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (37 commits)
  fs/xfs: Fix typos in comments
  xfs: fix dqiterate thinko
  xfs: don't check reflink iflag state when checking cow fork
  xfs: simplify returns in xchk_bmap
  xfs: rewrite xchk_inode_is_allocated to work properly
  xfs: hide xfs_inode_is_allocated in scrub common code
  xfs: fix agf_fllast when repairing an empty AGFL
  xfs: allow userspace to rebuild metadata structures
  xfs: clear pagf_agflreset when repairing the AGFL
  xfs: allow the user to cancel repairs before we start writing
  xfs: don't complain about unfixed metadata when repairs were injected
  xfs: implement online scrubbing of rtsummary info
  xfs: always rescan allegedly healthy per-ag metadata after repair
  xfs: move the realtime summary file scrubber to a separate source file
  xfs: wrap ilock/iunlock operations on sc->ip
  xfs: get our own reference to inodes that we want to scrub
  xfs: track usage statistics of online fsck
  xfs: improve xfarray quicksort pivot
  xfs: create scaffolding for creating debugfs entries
  xfs: cache pages used for xfarray quicksort convergence
  ...
2023-08-30 12:34:12 -07:00

199 lines
6.1 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2017-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#ifndef __XFS_SCRUB_SCRUB_H__
#define __XFS_SCRUB_SCRUB_H__
struct xfs_scrub;
/*
* Standard flags for allocating memory within scrub. NOFS context is
* configured by the process allocation scope. Scrub and repair must be able
* to back out gracefully if there isn't enough memory. Force-cast to avoid
* complaints from static checkers.
*/
#define XCHK_GFP_FLAGS ((__force gfp_t)(GFP_KERNEL | __GFP_NOWARN | \
__GFP_RETRY_MAYFAIL))
/* Type info and names for the scrub types. */
enum xchk_type {
ST_NONE = 1, /* disabled */
ST_PERAG, /* per-AG metadata */
ST_FS, /* per-FS metadata */
ST_INODE, /* per-inode metadata */
};
struct xchk_meta_ops {
/* Acquire whatever resources are needed for the operation. */
int (*setup)(struct xfs_scrub *sc);
/* Examine metadata for errors. */
int (*scrub)(struct xfs_scrub *);
/* Repair or optimize the metadata. */
int (*repair)(struct xfs_scrub *);
/* Decide if we even have this piece of metadata. */
bool (*has)(struct xfs_mount *);
/* type describing required/allowed inputs */
enum xchk_type type;
};
/* Buffer pointers and btree cursors for an entire AG. */
struct xchk_ag {
struct xfs_perag *pag;
/* AG btree roots */
struct xfs_buf *agf_bp;
struct xfs_buf *agi_bp;
/* AG btrees */
struct xfs_btree_cur *bno_cur;
struct xfs_btree_cur *cnt_cur;
struct xfs_btree_cur *ino_cur;
struct xfs_btree_cur *fino_cur;
struct xfs_btree_cur *rmap_cur;
struct xfs_btree_cur *refc_cur;
};
struct xfs_scrub {
/* General scrub state. */
struct xfs_mount *mp;
struct xfs_scrub_metadata *sm;
const struct xchk_meta_ops *ops;
struct xfs_trans *tp;
/* File that scrub was called with. */
struct file *file;
/*
* File that is undergoing the scrub operation. This can differ from
* the file that scrub was called with if we're checking file-based fs
* metadata (e.g. rt bitmaps) or if we're doing a scrub-by-handle for
* something that can't be opened directly (e.g. symlinks).
*/
struct xfs_inode *ip;
/* Kernel memory buffer used by scrubbers; freed at teardown. */
void *buf;
/*
* Clean up resources owned by whatever is in the buffer. Cleanup can
* be deferred with this hook as a means for scrub functions to pass
* data to repair functions. This function must not free the buffer
* itself.
*/
void (*buf_cleanup)(void *buf);
/* xfile used by the scrubbers; freed at teardown. */
struct xfile *xfile;
/* Lock flags for @ip. */
uint ilock_flags;
/* See the XCHK/XREP state flags below. */
unsigned int flags;
/*
* The XFS_SICK_* flags that correspond to the metadata being scrubbed
* or repaired. We will use this mask to update the in-core fs health
* status with whatever we find.
*/
unsigned int sick_mask;
/* State tracking for single-AG operations. */
struct xchk_ag sa;
};
/* XCHK state flags grow up from zero, XREP state flags grown down from 2^31 */
#define XCHK_TRY_HARDER (1U << 0) /* can't get resources, try again */
#define XCHK_HAVE_FREEZE_PROT (1U << 1) /* do we have freeze protection? */
#define XCHK_FSGATES_DRAIN (1U << 2) /* defer ops draining enabled */
#define XCHK_NEED_DRAIN (1U << 3) /* scrub needs to drain defer ops */
#define XREP_ALREADY_FIXED (1U << 31) /* checking our repair work */
/*
* The XCHK_FSGATES* flags reflect functionality in the main filesystem that
* are only enabled for this particular online fsck. When not in use, the
* features are gated off via dynamic code patching, which is why the state
* must be enabled during scrub setup and can only be torn down afterwards.
*/
#define XCHK_FSGATES_ALL (XCHK_FSGATES_DRAIN)
/* Metadata scrubbers */
int xchk_tester(struct xfs_scrub *sc);
int xchk_superblock(struct xfs_scrub *sc);
int xchk_agf(struct xfs_scrub *sc);
int xchk_agfl(struct xfs_scrub *sc);
int xchk_agi(struct xfs_scrub *sc);
int xchk_bnobt(struct xfs_scrub *sc);
int xchk_cntbt(struct xfs_scrub *sc);
int xchk_inobt(struct xfs_scrub *sc);
int xchk_finobt(struct xfs_scrub *sc);
int xchk_rmapbt(struct xfs_scrub *sc);
int xchk_refcountbt(struct xfs_scrub *sc);
int xchk_inode(struct xfs_scrub *sc);
int xchk_bmap_data(struct xfs_scrub *sc);
int xchk_bmap_attr(struct xfs_scrub *sc);
int xchk_bmap_cow(struct xfs_scrub *sc);
int xchk_directory(struct xfs_scrub *sc);
int xchk_xattr(struct xfs_scrub *sc);
int xchk_symlink(struct xfs_scrub *sc);
int xchk_parent(struct xfs_scrub *sc);
#ifdef CONFIG_XFS_RT
int xchk_rtbitmap(struct xfs_scrub *sc);
int xchk_rtsummary(struct xfs_scrub *sc);
#else
static inline int
xchk_rtbitmap(struct xfs_scrub *sc)
{
return -ENOENT;
}
static inline int
xchk_rtsummary(struct xfs_scrub *sc)
{
return -ENOENT;
}
#endif
#ifdef CONFIG_XFS_QUOTA
int xchk_quota(struct xfs_scrub *sc);
#else
static inline int
xchk_quota(struct xfs_scrub *sc)
{
return -ENOENT;
}
#endif
int xchk_fscounters(struct xfs_scrub *sc);
/* cross-referencing helpers */
void xchk_xref_is_used_space(struct xfs_scrub *sc, xfs_agblock_t agbno,
xfs_extlen_t len);
void xchk_xref_is_not_inode_chunk(struct xfs_scrub *sc, xfs_agblock_t agbno,
xfs_extlen_t len);
void xchk_xref_is_inode_chunk(struct xfs_scrub *sc, xfs_agblock_t agbno,
xfs_extlen_t len);
void xchk_xref_is_only_owned_by(struct xfs_scrub *sc, xfs_agblock_t agbno,
xfs_extlen_t len, const struct xfs_owner_info *oinfo);
void xchk_xref_is_not_owned_by(struct xfs_scrub *sc, xfs_agblock_t agbno,
xfs_extlen_t len, const struct xfs_owner_info *oinfo);
void xchk_xref_has_no_owner(struct xfs_scrub *sc, xfs_agblock_t agbno,
xfs_extlen_t len);
void xchk_xref_is_cow_staging(struct xfs_scrub *sc, xfs_agblock_t bno,
xfs_extlen_t len);
void xchk_xref_is_not_shared(struct xfs_scrub *sc, xfs_agblock_t bno,
xfs_extlen_t len);
void xchk_xref_is_not_cow_staging(struct xfs_scrub *sc, xfs_agblock_t bno,
xfs_extlen_t len);
#ifdef CONFIG_XFS_RT
void xchk_xref_is_used_rt_space(struct xfs_scrub *sc, xfs_rtblock_t rtbno,
xfs_extlen_t len);
#else
# define xchk_xref_is_used_rt_space(sc, rtbno, len) do { } while (0)
#endif
#endif /* __XFS_SCRUB_SCRUB_H__ */