b3091f172f
Switch to the CPU hotplug core state tracking and synchronization mechanim. No functional change intended. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205256.690926018@linutronix.de
1097 lines
24 KiB
C
1097 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* SMP initialisation and IPI support
|
|
* Based on arch/arm/kernel/smp.c
|
|
*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/arm_sdei.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/of.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/cpu_ops.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/virt.h>
|
|
|
|
#include <trace/events/ipi.h>
|
|
|
|
DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_number);
|
|
|
|
/*
|
|
* as from 2.5, kernels no longer have an init_tasks structure
|
|
* so we need some other way of telling a new secondary core
|
|
* where to place its SVC stack
|
|
*/
|
|
struct secondary_data secondary_data;
|
|
/* Number of CPUs which aren't online, but looping in kernel text. */
|
|
static int cpus_stuck_in_kernel;
|
|
|
|
enum ipi_msg_type {
|
|
IPI_RESCHEDULE,
|
|
IPI_CALL_FUNC,
|
|
IPI_CPU_STOP,
|
|
IPI_CPU_CRASH_STOP,
|
|
IPI_TIMER,
|
|
IPI_IRQ_WORK,
|
|
IPI_WAKEUP,
|
|
NR_IPI
|
|
};
|
|
|
|
static int ipi_irq_base __read_mostly;
|
|
static int nr_ipi __read_mostly = NR_IPI;
|
|
static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
|
|
|
|
static void ipi_setup(int cpu);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void ipi_teardown(int cpu);
|
|
static int op_cpu_kill(unsigned int cpu);
|
|
#else
|
|
static inline int op_cpu_kill(unsigned int cpu)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Boot a secondary CPU, and assign it the specified idle task.
|
|
* This also gives us the initial stack to use for this CPU.
|
|
*/
|
|
static int boot_secondary(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
const struct cpu_operations *ops = get_cpu_ops(cpu);
|
|
|
|
if (ops->cpu_boot)
|
|
return ops->cpu_boot(cpu);
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static DECLARE_COMPLETION(cpu_running);
|
|
|
|
int __cpu_up(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
int ret;
|
|
long status;
|
|
|
|
/*
|
|
* We need to tell the secondary core where to find its stack and the
|
|
* page tables.
|
|
*/
|
|
secondary_data.task = idle;
|
|
update_cpu_boot_status(CPU_MMU_OFF);
|
|
|
|
/* Now bring the CPU into our world */
|
|
ret = boot_secondary(cpu, idle);
|
|
if (ret) {
|
|
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* CPU was successfully started, wait for it to come online or
|
|
* time out.
|
|
*/
|
|
wait_for_completion_timeout(&cpu_running,
|
|
msecs_to_jiffies(5000));
|
|
if (cpu_online(cpu))
|
|
return 0;
|
|
|
|
pr_crit("CPU%u: failed to come online\n", cpu);
|
|
secondary_data.task = NULL;
|
|
status = READ_ONCE(secondary_data.status);
|
|
if (status == CPU_MMU_OFF)
|
|
status = READ_ONCE(__early_cpu_boot_status);
|
|
|
|
switch (status & CPU_BOOT_STATUS_MASK) {
|
|
default:
|
|
pr_err("CPU%u: failed in unknown state : 0x%lx\n",
|
|
cpu, status);
|
|
cpus_stuck_in_kernel++;
|
|
break;
|
|
case CPU_KILL_ME:
|
|
if (!op_cpu_kill(cpu)) {
|
|
pr_crit("CPU%u: died during early boot\n", cpu);
|
|
break;
|
|
}
|
|
pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
|
|
fallthrough;
|
|
case CPU_STUCK_IN_KERNEL:
|
|
pr_crit("CPU%u: is stuck in kernel\n", cpu);
|
|
if (status & CPU_STUCK_REASON_52_BIT_VA)
|
|
pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
|
|
if (status & CPU_STUCK_REASON_NO_GRAN) {
|
|
pr_crit("CPU%u: does not support %luK granule\n",
|
|
cpu, PAGE_SIZE / SZ_1K);
|
|
}
|
|
cpus_stuck_in_kernel++;
|
|
break;
|
|
case CPU_PANIC_KERNEL:
|
|
panic("CPU%u detected unsupported configuration\n", cpu);
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static void init_gic_priority_masking(void)
|
|
{
|
|
u32 cpuflags;
|
|
|
|
if (WARN_ON(!gic_enable_sre()))
|
|
return;
|
|
|
|
cpuflags = read_sysreg(daif);
|
|
|
|
WARN_ON(!(cpuflags & PSR_I_BIT));
|
|
WARN_ON(!(cpuflags & PSR_F_BIT));
|
|
|
|
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
|
|
}
|
|
|
|
/*
|
|
* This is the secondary CPU boot entry. We're using this CPUs
|
|
* idle thread stack, but a set of temporary page tables.
|
|
*/
|
|
asmlinkage notrace void secondary_start_kernel(void)
|
|
{
|
|
u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
|
|
struct mm_struct *mm = &init_mm;
|
|
const struct cpu_operations *ops;
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
/*
|
|
* All kernel threads share the same mm context; grab a
|
|
* reference and switch to it.
|
|
*/
|
|
mmgrab(mm);
|
|
current->active_mm = mm;
|
|
|
|
/*
|
|
* TTBR0 is only used for the identity mapping at this stage. Make it
|
|
* point to zero page to avoid speculatively fetching new entries.
|
|
*/
|
|
cpu_uninstall_idmap();
|
|
|
|
if (system_uses_irq_prio_masking())
|
|
init_gic_priority_masking();
|
|
|
|
rcu_cpu_starting(cpu);
|
|
trace_hardirqs_off();
|
|
|
|
/*
|
|
* If the system has established the capabilities, make sure
|
|
* this CPU ticks all of those. If it doesn't, the CPU will
|
|
* fail to come online.
|
|
*/
|
|
check_local_cpu_capabilities();
|
|
|
|
ops = get_cpu_ops(cpu);
|
|
if (ops->cpu_postboot)
|
|
ops->cpu_postboot();
|
|
|
|
/*
|
|
* Log the CPU info before it is marked online and might get read.
|
|
*/
|
|
cpuinfo_store_cpu();
|
|
store_cpu_topology(cpu);
|
|
|
|
/*
|
|
* Enable GIC and timers.
|
|
*/
|
|
notify_cpu_starting(cpu);
|
|
|
|
ipi_setup(cpu);
|
|
|
|
numa_add_cpu(cpu);
|
|
|
|
/*
|
|
* OK, now it's safe to let the boot CPU continue. Wait for
|
|
* the CPU migration code to notice that the CPU is online
|
|
* before we continue.
|
|
*/
|
|
pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
|
|
cpu, (unsigned long)mpidr,
|
|
read_cpuid_id());
|
|
update_cpu_boot_status(CPU_BOOT_SUCCESS);
|
|
set_cpu_online(cpu, true);
|
|
complete(&cpu_running);
|
|
|
|
local_daif_restore(DAIF_PROCCTX);
|
|
|
|
/*
|
|
* OK, it's off to the idle thread for us
|
|
*/
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static int op_cpu_disable(unsigned int cpu)
|
|
{
|
|
const struct cpu_operations *ops = get_cpu_ops(cpu);
|
|
|
|
/*
|
|
* If we don't have a cpu_die method, abort before we reach the point
|
|
* of no return. CPU0 may not have an cpu_ops, so test for it.
|
|
*/
|
|
if (!ops || !ops->cpu_die)
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* We may need to abort a hot unplug for some other mechanism-specific
|
|
* reason.
|
|
*/
|
|
if (ops->cpu_disable)
|
|
return ops->cpu_disable(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* __cpu_disable runs on the processor to be shutdown.
|
|
*/
|
|
int __cpu_disable(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
int ret;
|
|
|
|
ret = op_cpu_disable(cpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
remove_cpu_topology(cpu);
|
|
numa_remove_cpu(cpu);
|
|
|
|
/*
|
|
* Take this CPU offline. Once we clear this, we can't return,
|
|
* and we must not schedule until we're ready to give up the cpu.
|
|
*/
|
|
set_cpu_online(cpu, false);
|
|
ipi_teardown(cpu);
|
|
|
|
/*
|
|
* OK - migrate IRQs away from this CPU
|
|
*/
|
|
irq_migrate_all_off_this_cpu();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int op_cpu_kill(unsigned int cpu)
|
|
{
|
|
const struct cpu_operations *ops = get_cpu_ops(cpu);
|
|
|
|
/*
|
|
* If we have no means of synchronising with the dying CPU, then assume
|
|
* that it is really dead. We can only wait for an arbitrary length of
|
|
* time and hope that it's dead, so let's skip the wait and just hope.
|
|
*/
|
|
if (!ops->cpu_kill)
|
|
return 0;
|
|
|
|
return ops->cpu_kill(cpu);
|
|
}
|
|
|
|
/*
|
|
* Called on the thread which is asking for a CPU to be shutdown after the
|
|
* shutdown completed.
|
|
*/
|
|
void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
|
|
{
|
|
int err;
|
|
|
|
pr_debug("CPU%u: shutdown\n", cpu);
|
|
|
|
/*
|
|
* Now that the dying CPU is beyond the point of no return w.r.t.
|
|
* in-kernel synchronisation, try to get the firwmare to help us to
|
|
* verify that it has really left the kernel before we consider
|
|
* clobbering anything it might still be using.
|
|
*/
|
|
err = op_cpu_kill(cpu);
|
|
if (err)
|
|
pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
|
|
}
|
|
|
|
/*
|
|
* Called from the idle thread for the CPU which has been shutdown.
|
|
*
|
|
*/
|
|
void __noreturn cpu_die(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
const struct cpu_operations *ops = get_cpu_ops(cpu);
|
|
|
|
idle_task_exit();
|
|
|
|
local_daif_mask();
|
|
|
|
/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
|
|
cpuhp_ap_report_dead();
|
|
|
|
/*
|
|
* Actually shutdown the CPU. This must never fail. The specific hotplug
|
|
* mechanism must perform all required cache maintenance to ensure that
|
|
* no dirty lines are lost in the process of shutting down the CPU.
|
|
*/
|
|
ops->cpu_die(cpu);
|
|
|
|
BUG();
|
|
}
|
|
#endif
|
|
|
|
static void __cpu_try_die(int cpu)
|
|
{
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
const struct cpu_operations *ops = get_cpu_ops(cpu);
|
|
|
|
if (ops && ops->cpu_die)
|
|
ops->cpu_die(cpu);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Kill the calling secondary CPU, early in bringup before it is turned
|
|
* online.
|
|
*/
|
|
void __noreturn cpu_die_early(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
pr_crit("CPU%d: will not boot\n", cpu);
|
|
|
|
/* Mark this CPU absent */
|
|
set_cpu_present(cpu, 0);
|
|
rcu_report_dead(cpu);
|
|
|
|
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
|
|
update_cpu_boot_status(CPU_KILL_ME);
|
|
__cpu_try_die(cpu);
|
|
}
|
|
|
|
update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
|
|
|
|
cpu_park_loop();
|
|
}
|
|
|
|
static void __init hyp_mode_check(void)
|
|
{
|
|
if (is_hyp_mode_available())
|
|
pr_info("CPU: All CPU(s) started at EL2\n");
|
|
else if (is_hyp_mode_mismatched())
|
|
WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
|
|
"CPU: CPUs started in inconsistent modes");
|
|
else
|
|
pr_info("CPU: All CPU(s) started at EL1\n");
|
|
if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
|
|
kvm_compute_layout();
|
|
kvm_apply_hyp_relocations();
|
|
}
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
|
|
setup_cpu_features();
|
|
hyp_mode_check();
|
|
apply_alternatives_all();
|
|
mark_linear_text_alias_ro();
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
/*
|
|
* The runtime per-cpu areas have been allocated by
|
|
* setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
|
|
* freed shortly, so we must move over to the runtime per-cpu area.
|
|
*/
|
|
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
|
|
cpuinfo_store_boot_cpu();
|
|
|
|
/*
|
|
* We now know enough about the boot CPU to apply the
|
|
* alternatives that cannot wait until interrupt handling
|
|
* and/or scheduling is enabled.
|
|
*/
|
|
apply_boot_alternatives();
|
|
|
|
/* Conditionally switch to GIC PMR for interrupt masking */
|
|
if (system_uses_irq_prio_masking())
|
|
init_gic_priority_masking();
|
|
|
|
kasan_init_hw_tags();
|
|
}
|
|
|
|
/*
|
|
* Duplicate MPIDRs are a recipe for disaster. Scan all initialized
|
|
* entries and check for duplicates. If any is found just ignore the
|
|
* cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
|
|
* matching valid MPIDR values.
|
|
*/
|
|
static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
|
|
if (cpu_logical_map(i) == hwid)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Initialize cpu operations for a logical cpu and
|
|
* set it in the possible mask on success
|
|
*/
|
|
static int __init smp_cpu_setup(int cpu)
|
|
{
|
|
const struct cpu_operations *ops;
|
|
|
|
if (init_cpu_ops(cpu))
|
|
return -ENODEV;
|
|
|
|
ops = get_cpu_ops(cpu);
|
|
if (ops->cpu_init(cpu))
|
|
return -ENODEV;
|
|
|
|
set_cpu_possible(cpu, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool bootcpu_valid __initdata;
|
|
static unsigned int cpu_count = 1;
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
|
|
|
|
struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
|
|
{
|
|
return &cpu_madt_gicc[cpu];
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
|
|
|
|
/*
|
|
* acpi_map_gic_cpu_interface - parse processor MADT entry
|
|
*
|
|
* Carry out sanity checks on MADT processor entry and initialize
|
|
* cpu_logical_map on success
|
|
*/
|
|
static void __init
|
|
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
|
|
{
|
|
u64 hwid = processor->arm_mpidr;
|
|
|
|
if (!(processor->flags & ACPI_MADT_ENABLED)) {
|
|
pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
|
|
return;
|
|
}
|
|
|
|
if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
|
|
pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
|
|
return;
|
|
}
|
|
|
|
if (is_mpidr_duplicate(cpu_count, hwid)) {
|
|
pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
|
|
return;
|
|
}
|
|
|
|
/* Check if GICC structure of boot CPU is available in the MADT */
|
|
if (cpu_logical_map(0) == hwid) {
|
|
if (bootcpu_valid) {
|
|
pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
|
|
hwid);
|
|
return;
|
|
}
|
|
bootcpu_valid = true;
|
|
cpu_madt_gicc[0] = *processor;
|
|
return;
|
|
}
|
|
|
|
if (cpu_count >= NR_CPUS)
|
|
return;
|
|
|
|
/* map the logical cpu id to cpu MPIDR */
|
|
set_cpu_logical_map(cpu_count, hwid);
|
|
|
|
cpu_madt_gicc[cpu_count] = *processor;
|
|
|
|
/*
|
|
* Set-up the ACPI parking protocol cpu entries
|
|
* while initializing the cpu_logical_map to
|
|
* avoid parsing MADT entries multiple times for
|
|
* nothing (ie a valid cpu_logical_map entry should
|
|
* contain a valid parking protocol data set to
|
|
* initialize the cpu if the parking protocol is
|
|
* the only available enable method).
|
|
*/
|
|
acpi_set_mailbox_entry(cpu_count, processor);
|
|
|
|
cpu_count++;
|
|
}
|
|
|
|
static int __init
|
|
acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_madt_generic_interrupt *processor;
|
|
|
|
processor = (struct acpi_madt_generic_interrupt *)header;
|
|
if (BAD_MADT_GICC_ENTRY(processor, end))
|
|
return -EINVAL;
|
|
|
|
acpi_table_print_madt_entry(&header->common);
|
|
|
|
acpi_map_gic_cpu_interface(processor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init acpi_parse_and_init_cpus(void)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* do a walk of MADT to determine how many CPUs
|
|
* we have including disabled CPUs, and get information
|
|
* we need for SMP init.
|
|
*/
|
|
acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
|
|
acpi_parse_gic_cpu_interface, 0);
|
|
|
|
/*
|
|
* In ACPI, SMP and CPU NUMA information is provided in separate
|
|
* static tables, namely the MADT and the SRAT.
|
|
*
|
|
* Thus, it is simpler to first create the cpu logical map through
|
|
* an MADT walk and then map the logical cpus to their node ids
|
|
* as separate steps.
|
|
*/
|
|
acpi_map_cpus_to_nodes();
|
|
|
|
for (i = 0; i < nr_cpu_ids; i++)
|
|
early_map_cpu_to_node(i, acpi_numa_get_nid(i));
|
|
}
|
|
#else
|
|
#define acpi_parse_and_init_cpus(...) do { } while (0)
|
|
#endif
|
|
|
|
/*
|
|
* Enumerate the possible CPU set from the device tree and build the
|
|
* cpu logical map array containing MPIDR values related to logical
|
|
* cpus. Assumes that cpu_logical_map(0) has already been initialized.
|
|
*/
|
|
static void __init of_parse_and_init_cpus(void)
|
|
{
|
|
struct device_node *dn;
|
|
|
|
for_each_of_cpu_node(dn) {
|
|
u64 hwid = of_get_cpu_hwid(dn, 0);
|
|
|
|
if (hwid & ~MPIDR_HWID_BITMASK)
|
|
goto next;
|
|
|
|
if (is_mpidr_duplicate(cpu_count, hwid)) {
|
|
pr_err("%pOF: duplicate cpu reg properties in the DT\n",
|
|
dn);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* The numbering scheme requires that the boot CPU
|
|
* must be assigned logical id 0. Record it so that
|
|
* the logical map built from DT is validated and can
|
|
* be used.
|
|
*/
|
|
if (hwid == cpu_logical_map(0)) {
|
|
if (bootcpu_valid) {
|
|
pr_err("%pOF: duplicate boot cpu reg property in DT\n",
|
|
dn);
|
|
goto next;
|
|
}
|
|
|
|
bootcpu_valid = true;
|
|
early_map_cpu_to_node(0, of_node_to_nid(dn));
|
|
|
|
/*
|
|
* cpu_logical_map has already been
|
|
* initialized and the boot cpu doesn't need
|
|
* the enable-method so continue without
|
|
* incrementing cpu.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (cpu_count >= NR_CPUS)
|
|
goto next;
|
|
|
|
pr_debug("cpu logical map 0x%llx\n", hwid);
|
|
set_cpu_logical_map(cpu_count, hwid);
|
|
|
|
early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
|
|
next:
|
|
cpu_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enumerate the possible CPU set from the device tree or ACPI and build the
|
|
* cpu logical map array containing MPIDR values related to logical
|
|
* cpus. Assumes that cpu_logical_map(0) has already been initialized.
|
|
*/
|
|
void __init smp_init_cpus(void)
|
|
{
|
|
int i;
|
|
|
|
if (acpi_disabled)
|
|
of_parse_and_init_cpus();
|
|
else
|
|
acpi_parse_and_init_cpus();
|
|
|
|
if (cpu_count > nr_cpu_ids)
|
|
pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
|
|
cpu_count, nr_cpu_ids);
|
|
|
|
if (!bootcpu_valid) {
|
|
pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need to set the cpu_logical_map entries before enabling
|
|
* the cpus so that cpu processor description entries (DT cpu nodes
|
|
* and ACPI MADT entries) can be retrieved by matching the cpu hwid
|
|
* with entries in cpu_logical_map while initializing the cpus.
|
|
* If the cpu set-up fails, invalidate the cpu_logical_map entry.
|
|
*/
|
|
for (i = 1; i < nr_cpu_ids; i++) {
|
|
if (cpu_logical_map(i) != INVALID_HWID) {
|
|
if (smp_cpu_setup(i))
|
|
set_cpu_logical_map(i, INVALID_HWID);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
const struct cpu_operations *ops;
|
|
int err;
|
|
unsigned int cpu;
|
|
unsigned int this_cpu;
|
|
|
|
init_cpu_topology();
|
|
|
|
this_cpu = smp_processor_id();
|
|
store_cpu_topology(this_cpu);
|
|
numa_store_cpu_info(this_cpu);
|
|
numa_add_cpu(this_cpu);
|
|
|
|
/*
|
|
* If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
|
|
* secondary CPUs present.
|
|
*/
|
|
if (max_cpus == 0)
|
|
return;
|
|
|
|
/*
|
|
* Initialise the present map (which describes the set of CPUs
|
|
* actually populated at the present time) and release the
|
|
* secondaries from the bootloader.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
per_cpu(cpu_number, cpu) = cpu;
|
|
|
|
if (cpu == smp_processor_id())
|
|
continue;
|
|
|
|
ops = get_cpu_ops(cpu);
|
|
if (!ops)
|
|
continue;
|
|
|
|
err = ops->cpu_prepare(cpu);
|
|
if (err)
|
|
continue;
|
|
|
|
set_cpu_present(cpu, true);
|
|
numa_store_cpu_info(cpu);
|
|
}
|
|
}
|
|
|
|
static const char *ipi_types[NR_IPI] __tracepoint_string = {
|
|
[IPI_RESCHEDULE] = "Rescheduling interrupts",
|
|
[IPI_CALL_FUNC] = "Function call interrupts",
|
|
[IPI_CPU_STOP] = "CPU stop interrupts",
|
|
[IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts",
|
|
[IPI_TIMER] = "Timer broadcast interrupts",
|
|
[IPI_IRQ_WORK] = "IRQ work interrupts",
|
|
[IPI_WAKEUP] = "CPU wake-up interrupts",
|
|
};
|
|
|
|
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
|
|
|
|
unsigned long irq_err_count;
|
|
|
|
int arch_show_interrupts(struct seq_file *p, int prec)
|
|
{
|
|
unsigned int cpu, i;
|
|
|
|
for (i = 0; i < NR_IPI; i++) {
|
|
seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
|
|
prec >= 4 ? " " : "");
|
|
for_each_online_cpu(cpu)
|
|
seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
|
|
seq_printf(p, " %s\n", ipi_types[i]);
|
|
}
|
|
|
|
seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
|
|
return 0;
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_CALL_FUNC);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
|
|
void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_WAKEUP);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
void arch_irq_work_raise(void)
|
|
{
|
|
smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
|
|
}
|
|
#endif
|
|
|
|
static void __noreturn local_cpu_stop(void)
|
|
{
|
|
set_cpu_online(smp_processor_id(), false);
|
|
|
|
local_daif_mask();
|
|
sdei_mask_local_cpu();
|
|
cpu_park_loop();
|
|
}
|
|
|
|
/*
|
|
* We need to implement panic_smp_self_stop() for parallel panic() calls, so
|
|
* that cpu_online_mask gets correctly updated and smp_send_stop() can skip
|
|
* CPUs that have already stopped themselves.
|
|
*/
|
|
void __noreturn panic_smp_self_stop(void)
|
|
{
|
|
local_cpu_stop();
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
|
|
#endif
|
|
|
|
static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
crash_save_cpu(regs, cpu);
|
|
|
|
atomic_dec(&waiting_for_crash_ipi);
|
|
|
|
local_irq_disable();
|
|
sdei_mask_local_cpu();
|
|
|
|
if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
|
|
__cpu_try_die(cpu);
|
|
|
|
/* just in case */
|
|
cpu_park_loop();
|
|
#else
|
|
BUG();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Main handler for inter-processor interrupts
|
|
*/
|
|
static void do_handle_IPI(int ipinr)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
if ((unsigned)ipinr < NR_IPI)
|
|
trace_ipi_entry(ipi_types[ipinr]);
|
|
|
|
switch (ipinr) {
|
|
case IPI_RESCHEDULE:
|
|
scheduler_ipi();
|
|
break;
|
|
|
|
case IPI_CALL_FUNC:
|
|
generic_smp_call_function_interrupt();
|
|
break;
|
|
|
|
case IPI_CPU_STOP:
|
|
local_cpu_stop();
|
|
break;
|
|
|
|
case IPI_CPU_CRASH_STOP:
|
|
if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
|
|
ipi_cpu_crash_stop(cpu, get_irq_regs());
|
|
|
|
unreachable();
|
|
}
|
|
break;
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
case IPI_TIMER:
|
|
tick_receive_broadcast();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
case IPI_IRQ_WORK:
|
|
irq_work_run();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
|
|
case IPI_WAKEUP:
|
|
WARN_ONCE(!acpi_parking_protocol_valid(cpu),
|
|
"CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
|
|
cpu);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
|
|
break;
|
|
}
|
|
|
|
if ((unsigned)ipinr < NR_IPI)
|
|
trace_ipi_exit(ipi_types[ipinr]);
|
|
}
|
|
|
|
static irqreturn_t ipi_handler(int irq, void *data)
|
|
{
|
|
do_handle_IPI(irq - ipi_irq_base);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
|
|
{
|
|
trace_ipi_raise(target, ipi_types[ipinr]);
|
|
__ipi_send_mask(ipi_desc[ipinr], target);
|
|
}
|
|
|
|
static void ipi_setup(int cpu)
|
|
{
|
|
int i;
|
|
|
|
if (WARN_ON_ONCE(!ipi_irq_base))
|
|
return;
|
|
|
|
for (i = 0; i < nr_ipi; i++)
|
|
enable_percpu_irq(ipi_irq_base + i, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void ipi_teardown(int cpu)
|
|
{
|
|
int i;
|
|
|
|
if (WARN_ON_ONCE(!ipi_irq_base))
|
|
return;
|
|
|
|
for (i = 0; i < nr_ipi; i++)
|
|
disable_percpu_irq(ipi_irq_base + i);
|
|
}
|
|
#endif
|
|
|
|
void __init set_smp_ipi_range(int ipi_base, int n)
|
|
{
|
|
int i;
|
|
|
|
WARN_ON(n < NR_IPI);
|
|
nr_ipi = min(n, NR_IPI);
|
|
|
|
for (i = 0; i < nr_ipi; i++) {
|
|
int err;
|
|
|
|
err = request_percpu_irq(ipi_base + i, ipi_handler,
|
|
"IPI", &cpu_number);
|
|
WARN_ON(err);
|
|
|
|
ipi_desc[i] = irq_to_desc(ipi_base + i);
|
|
irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
|
|
}
|
|
|
|
ipi_irq_base = ipi_base;
|
|
|
|
/* Setup the boot CPU immediately */
|
|
ipi_setup(smp_processor_id());
|
|
}
|
|
|
|
void arch_smp_send_reschedule(int cpu)
|
|
{
|
|
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
void tick_broadcast(const struct cpumask *mask)
|
|
{
|
|
smp_cross_call(mask, IPI_TIMER);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The number of CPUs online, not counting this CPU (which may not be
|
|
* fully online and so not counted in num_online_cpus()).
|
|
*/
|
|
static inline unsigned int num_other_online_cpus(void)
|
|
{
|
|
unsigned int this_cpu_online = cpu_online(smp_processor_id());
|
|
|
|
return num_online_cpus() - this_cpu_online;
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
if (num_other_online_cpus()) {
|
|
cpumask_t mask;
|
|
|
|
cpumask_copy(&mask, cpu_online_mask);
|
|
cpumask_clear_cpu(smp_processor_id(), &mask);
|
|
|
|
if (system_state <= SYSTEM_RUNNING)
|
|
pr_crit("SMP: stopping secondary CPUs\n");
|
|
smp_cross_call(&mask, IPI_CPU_STOP);
|
|
}
|
|
|
|
/* Wait up to one second for other CPUs to stop */
|
|
timeout = USEC_PER_SEC;
|
|
while (num_other_online_cpus() && timeout--)
|
|
udelay(1);
|
|
|
|
if (num_other_online_cpus())
|
|
pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
|
|
cpumask_pr_args(cpu_online_mask));
|
|
|
|
sdei_mask_local_cpu();
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
void crash_smp_send_stop(void)
|
|
{
|
|
static int cpus_stopped;
|
|
cpumask_t mask;
|
|
unsigned long timeout;
|
|
|
|
/*
|
|
* This function can be called twice in panic path, but obviously
|
|
* we execute this only once.
|
|
*/
|
|
if (cpus_stopped)
|
|
return;
|
|
|
|
cpus_stopped = 1;
|
|
|
|
/*
|
|
* If this cpu is the only one alive at this point in time, online or
|
|
* not, there are no stop messages to be sent around, so just back out.
|
|
*/
|
|
if (num_other_online_cpus() == 0) {
|
|
sdei_mask_local_cpu();
|
|
return;
|
|
}
|
|
|
|
cpumask_copy(&mask, cpu_online_mask);
|
|
cpumask_clear_cpu(smp_processor_id(), &mask);
|
|
|
|
atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
|
|
|
|
pr_crit("SMP: stopping secondary CPUs\n");
|
|
smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
|
|
|
|
/* Wait up to one second for other CPUs to stop */
|
|
timeout = USEC_PER_SEC;
|
|
while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
|
|
udelay(1);
|
|
|
|
if (atomic_read(&waiting_for_crash_ipi) > 0)
|
|
pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
|
|
cpumask_pr_args(&mask));
|
|
|
|
sdei_mask_local_cpu();
|
|
}
|
|
|
|
bool smp_crash_stop_failed(void)
|
|
{
|
|
return (atomic_read(&waiting_for_crash_ipi) > 0);
|
|
}
|
|
#endif
|
|
|
|
static bool have_cpu_die(void)
|
|
{
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
int any_cpu = raw_smp_processor_id();
|
|
const struct cpu_operations *ops = get_cpu_ops(any_cpu);
|
|
|
|
if (ops && ops->cpu_die)
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
bool cpus_are_stuck_in_kernel(void)
|
|
{
|
|
bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
|
|
|
|
return !!cpus_stuck_in_kernel || smp_spin_tables ||
|
|
is_protected_kvm_enabled();
|
|
}
|