d3d10a4a1b
Some parameters of struct amdtp_stream is dependent on direction. This commit uses union for such parameters to distinguish from common parameters. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
403 lines
9.7 KiB
C
403 lines
9.7 KiB
C
/*
|
|
* amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family
|
|
*
|
|
* Copyright (c) 2014-2015 Takashi Sakamoto
|
|
* Copyright (C) 2012 Robin Gareus <robin@gareus.org>
|
|
* Copyright (C) 2012 Damien Zammit <damien@zamaudio.com>
|
|
*
|
|
* Licensed under the terms of the GNU General Public License, version 2.
|
|
*/
|
|
|
|
#include <sound/pcm.h>
|
|
#include "digi00x.h"
|
|
|
|
#define CIP_FMT_AM 0x10
|
|
|
|
/* 'Clock-based rate control mode' is just supported. */
|
|
#define AMDTP_FDF_AM824 0x00
|
|
|
|
/*
|
|
* Nominally 3125 bytes/second, but the MIDI port's clock might be
|
|
* 1% too slow, and the bus clock 100 ppm too fast.
|
|
*/
|
|
#define MIDI_BYTES_PER_SECOND 3093
|
|
|
|
/*
|
|
* Several devices look only at the first eight data blocks.
|
|
* In any case, this is more than enough for the MIDI data rate.
|
|
*/
|
|
#define MAX_MIDI_RX_BLOCKS 8
|
|
|
|
/* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */
|
|
#define MAX_MIDI_PORTS 3
|
|
|
|
/*
|
|
* The double-oh-three algorithm was discovered by Robin Gareus and Damien
|
|
* Zammit in 2012, with reverse-engineering for Digi 003 Rack.
|
|
*/
|
|
struct dot_state {
|
|
u8 carry;
|
|
u8 idx;
|
|
unsigned int off;
|
|
};
|
|
|
|
struct amdtp_dot {
|
|
unsigned int pcm_channels;
|
|
struct dot_state state;
|
|
|
|
struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS];
|
|
int midi_fifo_used[MAX_MIDI_PORTS];
|
|
int midi_fifo_limit;
|
|
};
|
|
|
|
/*
|
|
* double-oh-three look up table
|
|
*
|
|
* @param idx index byte (audio-sample data) 0x00..0xff
|
|
* @param off channel offset shift
|
|
* @return salt to XOR with given data
|
|
*/
|
|
#define BYTE_PER_SAMPLE (4)
|
|
#define MAGIC_DOT_BYTE (2)
|
|
#define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE)
|
|
static u8 dot_scrt(const u8 idx, const unsigned int off)
|
|
{
|
|
/*
|
|
* the length of the added pattern only depends on the lower nibble
|
|
* of the last non-zero data
|
|
*/
|
|
static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14,
|
|
12, 10, 8, 6, 4, 2, 0};
|
|
|
|
/*
|
|
* the lower nibble of the salt. Interleaved sequence.
|
|
* this is walked backwards according to len[]
|
|
*/
|
|
static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4,
|
|
0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf};
|
|
|
|
/* circular list for the salt's hi nibble. */
|
|
static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4,
|
|
0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa};
|
|
|
|
/*
|
|
* start offset for upper nibble mapping.
|
|
* note: 9 is /special/. In the case where the high nibble == 0x9,
|
|
* hir[] is not used and - coincidentally - the salt's hi nibble is
|
|
* 0x09 regardless of the offset.
|
|
*/
|
|
static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4,
|
|
3, 0x00, 14, 13, 8, 9, 10, 2};
|
|
|
|
const u8 ln = idx & 0xf;
|
|
const u8 hn = (idx >> 4) & 0xf;
|
|
const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15];
|
|
|
|
if (len[ln] < off)
|
|
return 0x00;
|
|
|
|
return ((nib[14 + off - len[ln]]) | (hr << 4));
|
|
}
|
|
|
|
static void dot_encode_step(struct dot_state *state, __be32 *const buffer)
|
|
{
|
|
u8 * const data = (u8 *) buffer;
|
|
|
|
if (data[MAGIC_DOT_BYTE] != 0x00) {
|
|
state->off = 0;
|
|
state->idx = data[MAGIC_DOT_BYTE] ^ state->carry;
|
|
}
|
|
data[MAGIC_DOT_BYTE] ^= state->carry;
|
|
state->carry = dot_scrt(state->idx, ++(state->off));
|
|
}
|
|
|
|
int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate,
|
|
unsigned int pcm_channels)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
int err;
|
|
|
|
if (amdtp_stream_running(s))
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* A first data channel is for MIDI messages, the rest is Multi Bit
|
|
* Linear Audio data channel.
|
|
*/
|
|
err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
s->ctx_data.rx.fdf = AMDTP_FDF_AM824 | s->sfc;
|
|
|
|
p->pcm_channels = pcm_channels;
|
|
|
|
/*
|
|
* We do not know the actual MIDI FIFO size of most devices. Just
|
|
* assume two bytes, i.e., one byte can be received over the bus while
|
|
* the previous one is transmitted over MIDI.
|
|
* (The value here is adjusted for midi_ratelimit_per_packet().)
|
|
*/
|
|
p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
|
|
__be32 *buffer, unsigned int frames)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
struct snd_pcm_runtime *runtime = pcm->runtime;
|
|
unsigned int channels, remaining_frames, i, c;
|
|
const u32 *src;
|
|
|
|
channels = p->pcm_channels;
|
|
src = (void *)runtime->dma_area +
|
|
frames_to_bytes(runtime, s->pcm_buffer_pointer);
|
|
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
|
|
|
|
buffer++;
|
|
for (i = 0; i < frames; ++i) {
|
|
for (c = 0; c < channels; ++c) {
|
|
buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000);
|
|
dot_encode_step(&p->state, &buffer[c]);
|
|
src++;
|
|
}
|
|
buffer += s->data_block_quadlets;
|
|
if (--remaining_frames == 0)
|
|
src = (void *)runtime->dma_area;
|
|
}
|
|
}
|
|
|
|
static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
|
|
__be32 *buffer, unsigned int frames)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
struct snd_pcm_runtime *runtime = pcm->runtime;
|
|
unsigned int channels, remaining_frames, i, c;
|
|
u32 *dst;
|
|
|
|
channels = p->pcm_channels;
|
|
dst = (void *)runtime->dma_area +
|
|
frames_to_bytes(runtime, s->pcm_buffer_pointer);
|
|
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
|
|
|
|
buffer++;
|
|
for (i = 0; i < frames; ++i) {
|
|
for (c = 0; c < channels; ++c) {
|
|
*dst = be32_to_cpu(buffer[c]) << 8;
|
|
dst++;
|
|
}
|
|
buffer += s->data_block_quadlets;
|
|
if (--remaining_frames == 0)
|
|
dst = (void *)runtime->dma_area;
|
|
}
|
|
}
|
|
|
|
static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer,
|
|
unsigned int data_blocks)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
unsigned int channels, i, c;
|
|
|
|
channels = p->pcm_channels;
|
|
|
|
buffer++;
|
|
for (i = 0; i < data_blocks; ++i) {
|
|
for (c = 0; c < channels; ++c)
|
|
buffer[c] = cpu_to_be32(0x40000000);
|
|
buffer += s->data_block_quadlets;
|
|
}
|
|
}
|
|
|
|
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
int used;
|
|
|
|
used = p->midi_fifo_used[port];
|
|
if (used == 0)
|
|
return true;
|
|
|
|
used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
|
|
used = max(used, 0);
|
|
p->midi_fifo_used[port] = used;
|
|
|
|
return used < p->midi_fifo_limit;
|
|
}
|
|
|
|
static inline void midi_use_bytes(struct amdtp_stream *s,
|
|
unsigned int port, unsigned int count)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
|
|
p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count;
|
|
}
|
|
|
|
static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer,
|
|
unsigned int data_blocks)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
unsigned int f, port;
|
|
int len;
|
|
u8 *b;
|
|
|
|
for (f = 0; f < data_blocks; f++) {
|
|
port = (s->data_block_counter + f) % 8;
|
|
b = (u8 *)&buffer[0];
|
|
|
|
len = 0;
|
|
if (port < MAX_MIDI_PORTS &&
|
|
midi_ratelimit_per_packet(s, port) &&
|
|
p->midi[port] != NULL)
|
|
len = snd_rawmidi_transmit(p->midi[port], b + 1, 2);
|
|
|
|
if (len > 0) {
|
|
/*
|
|
* Upper 4 bits of LSB represent port number.
|
|
* - 0000b: physical MIDI port 1.
|
|
* - 0010b: physical MIDI port 2.
|
|
* - 1110b: console MIDI port.
|
|
*/
|
|
if (port == 2)
|
|
b[3] = 0xe0;
|
|
else if (port == 1)
|
|
b[3] = 0x20;
|
|
else
|
|
b[3] = 0x00;
|
|
b[3] |= len;
|
|
midi_use_bytes(s, port, len);
|
|
} else {
|
|
b[1] = 0;
|
|
b[2] = 0;
|
|
b[3] = 0;
|
|
}
|
|
b[0] = 0x80;
|
|
|
|
buffer += s->data_block_quadlets;
|
|
}
|
|
}
|
|
|
|
static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer,
|
|
unsigned int data_blocks)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
unsigned int f, port, len;
|
|
u8 *b;
|
|
|
|
for (f = 0; f < data_blocks; f++) {
|
|
b = (u8 *)&buffer[0];
|
|
|
|
len = b[3] & 0x0f;
|
|
if (len > 0) {
|
|
/*
|
|
* Upper 4 bits of LSB represent port number.
|
|
* - 0000b: physical MIDI port 1. Use port 0.
|
|
* - 1110b: console MIDI port. Use port 2.
|
|
*/
|
|
if (b[3] >> 4 > 0)
|
|
port = 2;
|
|
else
|
|
port = 0;
|
|
|
|
if (port < MAX_MIDI_PORTS && p->midi[port])
|
|
snd_rawmidi_receive(p->midi[port], b + 1, len);
|
|
}
|
|
|
|
buffer += s->data_block_quadlets;
|
|
}
|
|
}
|
|
|
|
int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s,
|
|
struct snd_pcm_runtime *runtime)
|
|
{
|
|
int err;
|
|
|
|
/* This protocol delivers 24 bit data in 32bit data channel. */
|
|
err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
return amdtp_stream_add_pcm_hw_constraints(s, runtime);
|
|
}
|
|
|
|
void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port,
|
|
struct snd_rawmidi_substream *midi)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
|
|
if (port < MAX_MIDI_PORTS)
|
|
WRITE_ONCE(p->midi[port], midi);
|
|
}
|
|
|
|
static unsigned int process_tx_data_blocks(struct amdtp_stream *s,
|
|
__be32 *buffer,
|
|
unsigned int data_blocks,
|
|
unsigned int *syt)
|
|
{
|
|
struct snd_pcm_substream *pcm;
|
|
unsigned int pcm_frames;
|
|
|
|
pcm = READ_ONCE(s->pcm);
|
|
if (pcm) {
|
|
read_pcm_s32(s, pcm, buffer, data_blocks);
|
|
pcm_frames = data_blocks;
|
|
} else {
|
|
pcm_frames = 0;
|
|
}
|
|
|
|
read_midi_messages(s, buffer, data_blocks);
|
|
|
|
return pcm_frames;
|
|
}
|
|
|
|
static unsigned int process_rx_data_blocks(struct amdtp_stream *s,
|
|
__be32 *buffer,
|
|
unsigned int data_blocks,
|
|
unsigned int *syt)
|
|
{
|
|
struct snd_pcm_substream *pcm;
|
|
unsigned int pcm_frames;
|
|
|
|
pcm = READ_ONCE(s->pcm);
|
|
if (pcm) {
|
|
write_pcm_s32(s, pcm, buffer, data_blocks);
|
|
pcm_frames = data_blocks;
|
|
} else {
|
|
write_pcm_silence(s, buffer, data_blocks);
|
|
pcm_frames = 0;
|
|
}
|
|
|
|
write_midi_messages(s, buffer, data_blocks);
|
|
|
|
return pcm_frames;
|
|
}
|
|
|
|
int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit,
|
|
enum amdtp_stream_direction dir)
|
|
{
|
|
amdtp_stream_process_data_blocks_t process_data_blocks;
|
|
enum cip_flags flags;
|
|
|
|
/* Use different mode between incoming/outgoing. */
|
|
if (dir == AMDTP_IN_STREAM) {
|
|
flags = CIP_NONBLOCKING;
|
|
process_data_blocks = process_tx_data_blocks;
|
|
} else {
|
|
flags = CIP_BLOCKING;
|
|
process_data_blocks = process_rx_data_blocks;
|
|
}
|
|
|
|
return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM,
|
|
process_data_blocks, sizeof(struct amdtp_dot));
|
|
}
|
|
|
|
void amdtp_dot_reset(struct amdtp_stream *s)
|
|
{
|
|
struct amdtp_dot *p = s->protocol;
|
|
|
|
p->state.carry = 0x00;
|
|
p->state.idx = 0x00;
|
|
p->state.off = 0;
|
|
}
|