193125dbd8
This driver borrows heavily from IPvlan and teaming drivers. Routing domains (VRF-lite) are created by instantiating a VRF master device with an associated table and enslaving all routed interfaces that participate in the domain. As part of the enslavement, all connected routes for the enslaved devices are moved to the table associated with the VRF device. Outgoing sockets must bind to the VRF device to function. Standard FIB rules bind the VRF device to tables and regular fib rule processing is followed. Routed traffic through the box, is forwarded by using the VRF device as the IIF and following the IIF rule to a table that is mated with the VRF. Example: Create vrf 1: ip link add vrf1 type vrf table 5 ip rule add iif vrf1 table 5 ip rule add oif vrf1 table 5 ip route add table 5 prohibit default ip link set vrf1 up Add interface to vrf 1: ip link set eth1 master vrf1 Signed-off-by: Shrijeet Mukherjee <shm@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
420 lines
14 KiB
Plaintext
420 lines
14 KiB
Plaintext
#
|
|
# Network device configuration
|
|
#
|
|
|
|
menuconfig NETDEVICES
|
|
default y if UML
|
|
depends on NET
|
|
bool "Network device support"
|
|
---help---
|
|
You can say N here if you don't intend to connect your Linux box to
|
|
any other computer at all.
|
|
|
|
You'll have to say Y if your computer contains a network card that
|
|
you want to use under Linux. If you are going to run SLIP or PPP over
|
|
telephone line or null modem cable you need say Y here. Connecting
|
|
two machines with parallel ports using PLIP needs this, as well as
|
|
AX.25/KISS for sending Internet traffic over amateur radio links.
|
|
|
|
See also "The Linux Network Administrator's Guide" by Olaf Kirch and
|
|
Terry Dawson. Available at <http://www.tldp.org/guides.html>.
|
|
|
|
If unsure, say Y.
|
|
|
|
# All the following symbols are dependent on NETDEVICES - do not repeat
|
|
# that for each of the symbols.
|
|
if NETDEVICES
|
|
|
|
config MII
|
|
tristate
|
|
|
|
config NET_CORE
|
|
default y
|
|
bool "Network core driver support"
|
|
---help---
|
|
You can say N here if you do not intend to use any of the
|
|
networking core drivers (i.e. VLAN, bridging, bonding, etc.)
|
|
|
|
if NET_CORE
|
|
|
|
config BONDING
|
|
tristate "Bonding driver support"
|
|
depends on INET
|
|
depends on IPV6 || IPV6=n
|
|
---help---
|
|
Say 'Y' or 'M' if you wish to be able to 'bond' multiple Ethernet
|
|
Channels together. This is called 'Etherchannel' by Cisco,
|
|
'Trunking' by Sun, 802.3ad by the IEEE, and 'Bonding' in Linux.
|
|
|
|
The driver supports multiple bonding modes to allow for both high
|
|
performance and high availability operation.
|
|
|
|
Refer to <file:Documentation/networking/bonding.txt> for more
|
|
information.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called bonding.
|
|
|
|
config DUMMY
|
|
tristate "Dummy net driver support"
|
|
---help---
|
|
This is essentially a bit-bucket device (i.e. traffic you send to
|
|
this device is consigned into oblivion) with a configurable IP
|
|
address. It is most commonly used in order to make your currently
|
|
inactive SLIP address seem like a real address for local programs.
|
|
If you use SLIP or PPP, you might want to say Y here. Since this
|
|
thing often comes in handy, the default is Y. It won't enlarge your
|
|
kernel either. What a deal. Read about it in the Network
|
|
Administrator's Guide, available from
|
|
<http://www.tldp.org/docs.html#guide>.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called dummy.
|
|
|
|
config EQUALIZER
|
|
tristate "EQL (serial line load balancing) support"
|
|
---help---
|
|
If you have two serial connections to some other computer (this
|
|
usually requires two modems and two telephone lines) and you use
|
|
SLIP (the protocol for sending Internet traffic over telephone
|
|
lines) or PPP (a better SLIP) on them, you can make them behave like
|
|
one double speed connection using this driver. Naturally, this has
|
|
to be supported at the other end as well, either with a similar EQL
|
|
Linux driver or with a Livingston Portmaster 2e.
|
|
|
|
Say Y if you want this and read
|
|
<file:Documentation/networking/eql.txt>. You may also want to read
|
|
section 6.2 of the NET-3-HOWTO, available from
|
|
<http://www.tldp.org/docs.html#howto>.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called eql. If unsure, say N.
|
|
|
|
config NET_FC
|
|
bool "Fibre Channel driver support"
|
|
depends on SCSI && PCI
|
|
help
|
|
Fibre Channel is a high speed serial protocol mainly used to connect
|
|
large storage devices to the computer; it is compatible with and
|
|
intended to replace SCSI.
|
|
|
|
If you intend to use Fibre Channel, you need to have a Fibre channel
|
|
adaptor card in your computer; say Y here and to the driver for your
|
|
adaptor below. You also should have said Y to "SCSI support" and
|
|
"SCSI generic support".
|
|
|
|
config IFB
|
|
tristate "Intermediate Functional Block support"
|
|
depends on NET_CLS_ACT
|
|
---help---
|
|
This is an intermediate driver that allows sharing of
|
|
resources.
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called ifb. If you want to use more than one ifb
|
|
device at a time, you need to compile this driver as a module.
|
|
Instead of 'ifb', the devices will then be called 'ifb0',
|
|
'ifb1' etc.
|
|
Look at the iproute2 documentation directory for usage etc
|
|
|
|
source "drivers/net/team/Kconfig"
|
|
|
|
config MACVLAN
|
|
tristate "MAC-VLAN support"
|
|
---help---
|
|
This allows one to create virtual interfaces that map packets to
|
|
or from specific MAC addresses to a particular interface.
|
|
|
|
Macvlan devices can be added using the "ip" command from the
|
|
iproute2 package starting with the iproute2-2.6.23 release:
|
|
|
|
"ip link add link <real dev> [ address MAC ] [ NAME ] type macvlan"
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called macvlan.
|
|
|
|
config MACVTAP
|
|
tristate "MAC-VLAN based tap driver"
|
|
depends on MACVLAN
|
|
depends on INET
|
|
help
|
|
This adds a specialized tap character device driver that is based
|
|
on the MAC-VLAN network interface, called macvtap. A macvtap device
|
|
can be added in the same way as a macvlan device, using 'type
|
|
macvtap', and then be accessed through the tap user space interface.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called macvtap.
|
|
|
|
|
|
config IPVLAN
|
|
tristate "IP-VLAN support"
|
|
depends on INET
|
|
depends on IPV6
|
|
---help---
|
|
This allows one to create virtual devices off of a main interface
|
|
and packets will be delivered based on the dest L3 (IPv6/IPv4 addr)
|
|
on packets. All interfaces (including the main interface) share L2
|
|
making it transparent to the connected L2 switch.
|
|
|
|
Ipvlan devices can be added using the "ip" command from the
|
|
iproute2 package starting with the iproute2-3.19 release:
|
|
|
|
"ip link add link <main-dev> [ NAME ] type ipvlan"
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called ipvlan.
|
|
|
|
|
|
config VXLAN
|
|
tristate "Virtual eXtensible Local Area Network (VXLAN)"
|
|
depends on INET
|
|
select NET_UDP_TUNNEL
|
|
---help---
|
|
This allows one to create vxlan virtual interfaces that provide
|
|
Layer 2 Networks over Layer 3 Networks. VXLAN is often used
|
|
to tunnel virtual network infrastructure in virtualized environments.
|
|
For more information see:
|
|
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-02
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called vxlan.
|
|
|
|
config GENEVE
|
|
tristate "Generic Network Virtualization Encapsulation netdev"
|
|
depends on INET && GENEVE_CORE
|
|
select NET_IP_TUNNEL
|
|
---help---
|
|
This allows one to create geneve virtual interfaces that provide
|
|
Layer 2 Networks over Layer 3 Networks. GENEVE is often used
|
|
to tunnel virtual network infrastructure in virtualized environments.
|
|
For more information see:
|
|
http://tools.ietf.org/html/draft-gross-geneve-02
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called geneve.
|
|
|
|
config NETCONSOLE
|
|
tristate "Network console logging support"
|
|
---help---
|
|
If you want to log kernel messages over the network, enable this.
|
|
See <file:Documentation/networking/netconsole.txt> for details.
|
|
|
|
config NETCONSOLE_DYNAMIC
|
|
bool "Dynamic reconfiguration of logging targets"
|
|
depends on NETCONSOLE && SYSFS && CONFIGFS_FS && \
|
|
!(NETCONSOLE=y && CONFIGFS_FS=m)
|
|
help
|
|
This option enables the ability to dynamically reconfigure target
|
|
parameters (interface, IP addresses, port numbers, MAC addresses)
|
|
at runtime through a userspace interface exported using configfs.
|
|
See <file:Documentation/networking/netconsole.txt> for details.
|
|
|
|
config NETPOLL
|
|
def_bool NETCONSOLE
|
|
select SRCU
|
|
|
|
config NET_POLL_CONTROLLER
|
|
def_bool NETPOLL
|
|
|
|
config NTB_NETDEV
|
|
tristate "Virtual Ethernet over NTB Transport"
|
|
depends on NTB_TRANSPORT
|
|
|
|
config RIONET
|
|
tristate "RapidIO Ethernet over messaging driver support"
|
|
depends on RAPIDIO
|
|
|
|
config RIONET_TX_SIZE
|
|
int "Number of outbound queue entries"
|
|
depends on RIONET
|
|
default "128"
|
|
|
|
config RIONET_RX_SIZE
|
|
int "Number of inbound queue entries"
|
|
depends on RIONET
|
|
default "128"
|
|
|
|
config TUN
|
|
tristate "Universal TUN/TAP device driver support"
|
|
depends on INET
|
|
select CRC32
|
|
---help---
|
|
TUN/TAP provides packet reception and transmission for user space
|
|
programs. It can be viewed as a simple Point-to-Point or Ethernet
|
|
device, which instead of receiving packets from a physical media,
|
|
receives them from user space program and instead of sending packets
|
|
via physical media writes them to the user space program.
|
|
|
|
When a program opens /dev/net/tun, driver creates and registers
|
|
corresponding net device tunX or tapX. After a program closed above
|
|
devices, driver will automatically delete tunXX or tapXX device and
|
|
all routes corresponding to it.
|
|
|
|
Please read <file:Documentation/networking/tuntap.txt> for more
|
|
information.
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
will be called tun.
|
|
|
|
If you don't know what to use this for, you don't need it.
|
|
|
|
config TUN_VNET_CROSS_LE
|
|
bool "Support for cross-endian vnet headers on little-endian kernels"
|
|
default n
|
|
---help---
|
|
This option allows TUN/TAP and MACVTAP device drivers in a
|
|
little-endian kernel to parse vnet headers that come from a
|
|
big-endian legacy virtio device.
|
|
|
|
Userspace programs can control the feature using the TUNSETVNETBE
|
|
and TUNGETVNETBE ioctls.
|
|
|
|
Unless you have a little-endian system hosting a big-endian virtual
|
|
machine with a legacy virtio NIC, you should say N.
|
|
|
|
config VETH
|
|
tristate "Virtual ethernet pair device"
|
|
---help---
|
|
This device is a local ethernet tunnel. Devices are created in pairs.
|
|
When one end receives the packet it appears on its pair and vice
|
|
versa.
|
|
|
|
config VIRTIO_NET
|
|
tristate "Virtio network driver"
|
|
depends on VIRTIO
|
|
select AVERAGE
|
|
---help---
|
|
This is the virtual network driver for virtio. It can be used with
|
|
lguest or QEMU based VMMs (like KVM or Xen). Say Y or M.
|
|
|
|
config NLMON
|
|
tristate "Virtual netlink monitoring device"
|
|
---help---
|
|
This option enables a monitoring net device for netlink skbs. The
|
|
purpose of this is to analyze netlink messages with packet sockets.
|
|
Thus applications like tcpdump will be able to see local netlink
|
|
messages if they tap into the netlink device, record pcaps for further
|
|
diagnostics, etc. This is mostly intended for developers or support
|
|
to debug netlink issues. If unsure, say N.
|
|
|
|
config NET_VRF
|
|
tristate "Virtual Routing and Forwarding (Lite)"
|
|
depends on IP_MULTIPLE_TABLES && IPV6_MULTIPLE_TABLES
|
|
---help---
|
|
This option enables the support for mapping interfaces into VRF's. The
|
|
support enables VRF devices.
|
|
|
|
endif # NET_CORE
|
|
|
|
config SUNGEM_PHY
|
|
tristate
|
|
|
|
source "drivers/net/arcnet/Kconfig"
|
|
|
|
source "drivers/atm/Kconfig"
|
|
|
|
source "drivers/net/caif/Kconfig"
|
|
|
|
source "drivers/net/dsa/Kconfig"
|
|
|
|
source "drivers/net/ethernet/Kconfig"
|
|
|
|
source "drivers/net/fddi/Kconfig"
|
|
|
|
source "drivers/net/hippi/Kconfig"
|
|
|
|
config NET_SB1000
|
|
tristate "General Instruments Surfboard 1000"
|
|
depends on PNP
|
|
---help---
|
|
This is a driver for the General Instrument (also known as
|
|
NextLevel) SURFboard 1000 internal
|
|
cable modem. This is an ISA card which is used by a number of cable
|
|
TV companies to provide cable modem access. It's a one-way
|
|
downstream-only cable modem, meaning that your upstream net link is
|
|
provided by your regular phone modem.
|
|
|
|
At present this driver only compiles as a module, so say M here if
|
|
you have this card. The module will be called sb1000. Then read
|
|
<file:Documentation/networking/README.sb1000> for information on how
|
|
to use this module, as it needs special ppp scripts for establishing
|
|
a connection. Further documentation and the necessary scripts can be
|
|
found at:
|
|
|
|
<http://www.jacksonville.net/~fventuri/>
|
|
<http://home.adelphia.net/~siglercm/sb1000.html>
|
|
<http://linuxpower.cx/~cable/>
|
|
|
|
If you don't have this card, of course say N.
|
|
|
|
source "drivers/net/phy/Kconfig"
|
|
|
|
source "drivers/net/plip/Kconfig"
|
|
|
|
source "drivers/net/ppp/Kconfig"
|
|
|
|
source "drivers/net/slip/Kconfig"
|
|
|
|
source "drivers/s390/net/Kconfig"
|
|
|
|
source "drivers/net/usb/Kconfig"
|
|
|
|
source "drivers/net/wireless/Kconfig"
|
|
|
|
source "drivers/net/wimax/Kconfig"
|
|
|
|
source "drivers/net/wan/Kconfig"
|
|
|
|
source "drivers/net/ieee802154/Kconfig"
|
|
|
|
config XEN_NETDEV_FRONTEND
|
|
tristate "Xen network device frontend driver"
|
|
depends on XEN
|
|
select XEN_XENBUS_FRONTEND
|
|
default y
|
|
help
|
|
This driver provides support for Xen paravirtual network
|
|
devices exported by a Xen network driver domain (often
|
|
domain 0).
|
|
|
|
The corresponding Linux backend driver is enabled by the
|
|
CONFIG_XEN_NETDEV_BACKEND option.
|
|
|
|
If you are compiling a kernel for use as Xen guest, you
|
|
should say Y here. To compile this driver as a module, chose
|
|
M here: the module will be called xen-netfront.
|
|
|
|
config XEN_NETDEV_BACKEND
|
|
tristate "Xen backend network device"
|
|
depends on XEN_BACKEND
|
|
help
|
|
This driver allows the kernel to act as a Xen network driver
|
|
domain which exports paravirtual network devices to other
|
|
Xen domains. These devices can be accessed by any operating
|
|
system that implements a compatible front end.
|
|
|
|
The corresponding Linux frontend driver is enabled by the
|
|
CONFIG_XEN_NETDEV_FRONTEND configuration option.
|
|
|
|
The backend driver presents a standard network device
|
|
endpoint for each paravirtual network device to the driver
|
|
domain network stack. These can then be bridged or routed
|
|
etc in order to provide full network connectivity.
|
|
|
|
If you are compiling a kernel to run in a Xen network driver
|
|
domain (often this is domain 0) you should say Y here. To
|
|
compile this driver as a module, chose M here: the module
|
|
will be called xen-netback.
|
|
|
|
config VMXNET3
|
|
tristate "VMware VMXNET3 ethernet driver"
|
|
depends on PCI && INET
|
|
help
|
|
This driver supports VMware's vmxnet3 virtual ethernet NIC.
|
|
To compile this driver as a module, choose M here: the
|
|
module will be called vmxnet3.
|
|
|
|
source "drivers/net/hyperv/Kconfig"
|
|
|
|
endif # NETDEVICES
|