linux/net/sunrpc/svcsock.c
Chuck Lever b3cbf98e2f SUNRPC: Support TLS handshake in the server-side TCP socket code
This patch adds opportunitistic RPC-with-TLS to the Linux in-kernel
NFS server. If the client requests RPC-with-TLS and the user space
handshake agent is running, the server will set up a TLS session.

There are no policy settings yet. For example, the server cannot
yet require the use of RPC-with-TLS to access its data.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-04-27 18:49:24 -04:00

1685 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/net/sunrpc/svcsock.c
*
* These are the RPC server socket internals.
*
* The server scheduling algorithm does not always distribute the load
* evenly when servicing a single client. May need to modify the
* svc_xprt_enqueue procedure...
*
* TCP support is largely untested and may be a little slow. The problem
* is that we currently do two separate recvfrom's, one for the 4-byte
* record length, and the second for the actual record. This could possibly
* be improved by always reading a minimum size of around 100 bytes and
* tucking any superfluous bytes away in a temporary store. Still, that
* leaves write requests out in the rain. An alternative may be to peek at
* the first skb in the queue, and if it matches the next TCP sequence
* number, to extract the record marker. Yuck.
*
* Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/net.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/file.h>
#include <linux/freezer.h>
#include <net/sock.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/udp.h>
#include <net/tcp.h>
#include <net/tcp_states.h>
#include <net/tls.h>
#include <net/handshake.h>
#include <linux/uaccess.h>
#include <linux/highmem.h>
#include <asm/ioctls.h>
#include <linux/key.h>
#include <linux/sunrpc/types.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/xdr.h>
#include <linux/sunrpc/msg_prot.h>
#include <linux/sunrpc/svcsock.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/xprt.h>
#include <trace/events/sock.h>
#include <trace/events/sunrpc.h>
#include "socklib.h"
#include "sunrpc.h"
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
/* To-do: to avoid tying up an nfsd thread while waiting for a
* handshake request, the request could instead be deferred.
*/
enum {
SVC_HANDSHAKE_TO = 5U * HZ
};
static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
int flags);
static int svc_udp_recvfrom(struct svc_rqst *);
static int svc_udp_sendto(struct svc_rqst *);
static void svc_sock_detach(struct svc_xprt *);
static void svc_tcp_sock_detach(struct svc_xprt *);
static void svc_sock_free(struct svc_xprt *);
static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
struct net *, struct sockaddr *,
int, int);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key svc_key[2];
static struct lock_class_key svc_slock_key[2];
static void svc_reclassify_socket(struct socket *sock)
{
struct sock *sk = sock->sk;
if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
return;
switch (sk->sk_family) {
case AF_INET:
sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
&svc_slock_key[0],
"sk_xprt.xpt_lock-AF_INET-NFSD",
&svc_key[0]);
break;
case AF_INET6:
sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
&svc_slock_key[1],
"sk_xprt.xpt_lock-AF_INET6-NFSD",
&svc_key[1]);
break;
default:
BUG();
}
}
#else
static void svc_reclassify_socket(struct socket *sock)
{
}
#endif
/**
* svc_tcp_release_rqst - Release transport-related resources
* @rqstp: request structure with resources to be released
*
*/
static void svc_tcp_release_rqst(struct svc_rqst *rqstp)
{
}
/**
* svc_udp_release_rqst - Release transport-related resources
* @rqstp: request structure with resources to be released
*
*/
static void svc_udp_release_rqst(struct svc_rqst *rqstp)
{
struct sk_buff *skb = rqstp->rq_xprt_ctxt;
if (skb) {
rqstp->rq_xprt_ctxt = NULL;
consume_skb(skb);
}
}
union svc_pktinfo_u {
struct in_pktinfo pkti;
struct in6_pktinfo pkti6;
};
#define SVC_PKTINFO_SPACE \
CMSG_SPACE(sizeof(union svc_pktinfo_u))
static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
{
struct svc_sock *svsk =
container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
switch (svsk->sk_sk->sk_family) {
case AF_INET: {
struct in_pktinfo *pki = CMSG_DATA(cmh);
cmh->cmsg_level = SOL_IP;
cmh->cmsg_type = IP_PKTINFO;
pki->ipi_ifindex = 0;
pki->ipi_spec_dst.s_addr =
svc_daddr_in(rqstp)->sin_addr.s_addr;
cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
}
break;
case AF_INET6: {
struct in6_pktinfo *pki = CMSG_DATA(cmh);
struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
cmh->cmsg_level = SOL_IPV6;
cmh->cmsg_type = IPV6_PKTINFO;
pki->ipi6_ifindex = daddr->sin6_scope_id;
pki->ipi6_addr = daddr->sin6_addr;
cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
}
break;
}
}
static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset,
unsigned int length)
{
return 0;
}
/*
* Report socket names for nfsdfs
*/
static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
{
const struct sock *sk = svsk->sk_sk;
const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
"udp" : "tcp";
int len;
switch (sk->sk_family) {
case PF_INET:
len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
proto_name,
&inet_sk(sk)->inet_rcv_saddr,
inet_sk(sk)->inet_num);
break;
#if IS_ENABLED(CONFIG_IPV6)
case PF_INET6:
len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
proto_name,
&sk->sk_v6_rcv_saddr,
inet_sk(sk)->inet_num);
break;
#endif
default:
len = snprintf(buf, remaining, "*unknown-%d*\n",
sk->sk_family);
}
if (len >= remaining) {
*buf = '\0';
return -ENAMETOOLONG;
}
return len;
}
static int
svc_tcp_sock_process_cmsg(struct svc_sock *svsk, struct msghdr *msg,
struct cmsghdr *cmsg, int ret)
{
if (cmsg->cmsg_level == SOL_TLS &&
cmsg->cmsg_type == TLS_GET_RECORD_TYPE) {
u8 content_type = *((u8 *)CMSG_DATA(cmsg));
switch (content_type) {
case TLS_RECORD_TYPE_DATA:
/* TLS sets EOR at the end of each application data
* record, even though there might be more frames
* waiting to be decrypted.
*/
msg->msg_flags &= ~MSG_EOR;
break;
case TLS_RECORD_TYPE_ALERT:
ret = -ENOTCONN;
break;
default:
ret = -EAGAIN;
}
}
return ret;
}
static int
svc_tcp_sock_recv_cmsg(struct svc_sock *svsk, struct msghdr *msg)
{
union {
struct cmsghdr cmsg;
u8 buf[CMSG_SPACE(sizeof(u8))];
} u;
int ret;
msg->msg_control = &u;
msg->msg_controllen = sizeof(u);
ret = sock_recvmsg(svsk->sk_sock, msg, MSG_DONTWAIT);
if (unlikely(msg->msg_controllen != sizeof(u)))
ret = svc_tcp_sock_process_cmsg(svsk, msg, &u.cmsg, ret);
return ret;
}
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek)
{
struct bvec_iter bi = {
.bi_size = size + seek,
};
struct bio_vec bv;
bvec_iter_advance(bvec, &bi, seek & PAGE_MASK);
for_each_bvec(bv, bvec, bi, bi)
flush_dcache_page(bv.bv_page);
}
#else
static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size,
size_t seek)
{
}
#endif
/*
* Read from @rqstp's transport socket. The incoming message fills whole
* pages in @rqstp's rq_pages array until the last page of the message
* has been received into a partial page.
*/
static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen,
size_t seek)
{
struct svc_sock *svsk =
container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
struct bio_vec *bvec = rqstp->rq_bvec;
struct msghdr msg = { NULL };
unsigned int i;
ssize_t len;
size_t t;
clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE)
bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0);
rqstp->rq_respages = &rqstp->rq_pages[i];
rqstp->rq_next_page = rqstp->rq_respages + 1;
iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen);
if (seek) {
iov_iter_advance(&msg.msg_iter, seek);
buflen -= seek;
}
len = svc_tcp_sock_recv_cmsg(svsk, &msg);
if (len > 0)
svc_flush_bvec(bvec, len, seek);
/* If we read a full record, then assume there may be more
* data to read (stream based sockets only!)
*/
if (len == buflen)
set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
return len;
}
/*
* Set socket snd and rcv buffer lengths
*/
static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs)
{
unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg;
struct socket *sock = svsk->sk_sock;
nreqs = min(nreqs, INT_MAX / 2 / max_mesg);
lock_sock(sock->sk);
sock->sk->sk_sndbuf = nreqs * max_mesg * 2;
sock->sk->sk_rcvbuf = nreqs * max_mesg * 2;
sock->sk->sk_write_space(sock->sk);
release_sock(sock->sk);
}
static void svc_sock_secure_port(struct svc_rqst *rqstp)
{
if (svc_port_is_privileged(svc_addr(rqstp)))
set_bit(RQ_SECURE, &rqstp->rq_flags);
else
clear_bit(RQ_SECURE, &rqstp->rq_flags);
}
/*
* INET callback when data has been received on the socket.
*/
static void svc_data_ready(struct sock *sk)
{
struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
trace_sk_data_ready(sk);
if (svsk) {
/* Refer to svc_setup_socket() for details. */
rmb();
svsk->sk_odata(sk);
trace_svcsock_data_ready(&svsk->sk_xprt, 0);
if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags))
return;
if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags))
svc_xprt_enqueue(&svsk->sk_xprt);
}
}
/*
* INET callback when space is newly available on the socket.
*/
static void svc_write_space(struct sock *sk)
{
struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
if (svsk) {
/* Refer to svc_setup_socket() for details. */
rmb();
trace_svcsock_write_space(&svsk->sk_xprt, 0);
svsk->sk_owspace(sk);
svc_xprt_enqueue(&svsk->sk_xprt);
}
}
static int svc_tcp_has_wspace(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
return 1;
return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
}
static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
sock_no_linger(svsk->sk_sock->sk);
}
/**
* svc_tcp_handshake_done - Handshake completion handler
* @data: address of xprt to wake
* @status: status of handshake
* @peerid: serial number of key containing the remote peer's identity
*
* If a security policy is specified as an export option, we don't
* have a specific export here to check. So we set a "TLS session
* is present" flag on the xprt and let an upper layer enforce local
* security policy.
*/
static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid)
{
struct svc_xprt *xprt = data;
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
if (!status) {
if (peerid != TLS_NO_PEERID)
set_bit(XPT_PEER_AUTH, &xprt->xpt_flags);
set_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
}
clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
complete_all(&svsk->sk_handshake_done);
}
/**
* svc_tcp_handshake - Perform a transport-layer security handshake
* @xprt: connected transport endpoint
*
*/
static void svc_tcp_handshake(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
struct sock *sk = svsk->sk_sock->sk;
struct tls_handshake_args args = {
.ta_sock = svsk->sk_sock,
.ta_done = svc_tcp_handshake_done,
.ta_data = xprt,
};
int ret;
trace_svc_tls_upcall(xprt);
clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
init_completion(&svsk->sk_handshake_done);
ret = tls_server_hello_x509(&args, GFP_KERNEL);
if (ret) {
trace_svc_tls_not_started(xprt);
goto out_failed;
}
ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done,
SVC_HANDSHAKE_TO);
if (ret <= 0) {
if (tls_handshake_cancel(sk)) {
trace_svc_tls_timed_out(xprt);
goto out_close;
}
}
if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) {
trace_svc_tls_unavailable(xprt);
goto out_close;
}
/* Mark the transport ready in case the remote sent RPC
* traffic before the kernel received the handshake
* completion downcall.
*/
set_bit(XPT_DATA, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
return;
out_close:
set_bit(XPT_CLOSE, &xprt->xpt_flags);
out_failed:
clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
set_bit(XPT_DATA, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
}
/*
* See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
*/
static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
struct cmsghdr *cmh)
{
struct in_pktinfo *pki = CMSG_DATA(cmh);
struct sockaddr_in *daddr = svc_daddr_in(rqstp);
if (cmh->cmsg_type != IP_PKTINFO)
return 0;
daddr->sin_family = AF_INET;
daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
return 1;
}
/*
* See net/ipv6/datagram.c : ip6_datagram_recv_ctl
*/
static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
struct cmsghdr *cmh)
{
struct in6_pktinfo *pki = CMSG_DATA(cmh);
struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
if (cmh->cmsg_type != IPV6_PKTINFO)
return 0;
daddr->sin6_family = AF_INET6;
daddr->sin6_addr = pki->ipi6_addr;
daddr->sin6_scope_id = pki->ipi6_ifindex;
return 1;
}
/*
* Copy the UDP datagram's destination address to the rqstp structure.
* The 'destination' address in this case is the address to which the
* peer sent the datagram, i.e. our local address. For multihomed
* hosts, this can change from msg to msg. Note that only the IP
* address changes, the port number should remain the same.
*/
static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
struct cmsghdr *cmh)
{
switch (cmh->cmsg_level) {
case SOL_IP:
return svc_udp_get_dest_address4(rqstp, cmh);
case SOL_IPV6:
return svc_udp_get_dest_address6(rqstp, cmh);
}
return 0;
}
/**
* svc_udp_recvfrom - Receive a datagram from a UDP socket.
* @rqstp: request structure into which to receive an RPC Call
*
* Called in a loop when XPT_DATA has been set.
*
* Returns:
* On success, the number of bytes in a received RPC Call, or
* %0 if a complete RPC Call message was not ready to return
*/
static int svc_udp_recvfrom(struct svc_rqst *rqstp)
{
struct svc_sock *svsk =
container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
struct svc_serv *serv = svsk->sk_xprt.xpt_server;
struct sk_buff *skb;
union {
struct cmsghdr hdr;
long all[SVC_PKTINFO_SPACE / sizeof(long)];
} buffer;
struct cmsghdr *cmh = &buffer.hdr;
struct msghdr msg = {
.msg_name = svc_addr(rqstp),
.msg_control = cmh,
.msg_controllen = sizeof(buffer),
.msg_flags = MSG_DONTWAIT,
};
size_t len;
int err;
if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
/* udp sockets need large rcvbuf as all pending
* requests are still in that buffer. sndbuf must
* also be large enough that there is enough space
* for one reply per thread. We count all threads
* rather than threads in a particular pool, which
* provides an upper bound on the number of threads
* which will access the socket.
*/
svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3);
clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
0, 0, MSG_PEEK | MSG_DONTWAIT);
if (err < 0)
goto out_recv_err;
skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err);
if (!skb)
goto out_recv_err;
len = svc_addr_len(svc_addr(rqstp));
rqstp->rq_addrlen = len;
if (skb->tstamp == 0) {
skb->tstamp = ktime_get_real();
/* Don't enable netstamp, sunrpc doesn't
need that much accuracy */
}
sock_write_timestamp(svsk->sk_sk, skb->tstamp);
set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
len = skb->len;
rqstp->rq_arg.len = len;
trace_svcsock_udp_recv(&svsk->sk_xprt, len);
rqstp->rq_prot = IPPROTO_UDP;
if (!svc_udp_get_dest_address(rqstp, cmh))
goto out_cmsg_err;
rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
if (skb_is_nonlinear(skb)) {
/* we have to copy */
local_bh_disable();
if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb))
goto out_bh_enable;
local_bh_enable();
consume_skb(skb);
} else {
/* we can use it in-place */
rqstp->rq_arg.head[0].iov_base = skb->data;
rqstp->rq_arg.head[0].iov_len = len;
if (skb_checksum_complete(skb))
goto out_free;
rqstp->rq_xprt_ctxt = skb;
}
rqstp->rq_arg.page_base = 0;
if (len <= rqstp->rq_arg.head[0].iov_len) {
rqstp->rq_arg.head[0].iov_len = len;
rqstp->rq_arg.page_len = 0;
rqstp->rq_respages = rqstp->rq_pages+1;
} else {
rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
rqstp->rq_respages = rqstp->rq_pages + 1 +
DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
}
rqstp->rq_next_page = rqstp->rq_respages+1;
if (serv->sv_stats)
serv->sv_stats->netudpcnt++;
svc_sock_secure_port(rqstp);
svc_xprt_received(rqstp->rq_xprt);
return len;
out_recv_err:
if (err != -EAGAIN) {
/* possibly an icmp error */
set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
}
trace_svcsock_udp_recv_err(&svsk->sk_xprt, err);
goto out_clear_busy;
out_cmsg_err:
net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n",
cmh->cmsg_level, cmh->cmsg_type);
goto out_free;
out_bh_enable:
local_bh_enable();
out_free:
kfree_skb(skb);
out_clear_busy:
svc_xprt_received(rqstp->rq_xprt);
return 0;
}
/**
* svc_udp_sendto - Send out a reply on a UDP socket
* @rqstp: completed svc_rqst
*
* xpt_mutex ensures @rqstp's whole message is written to the socket
* without interruption.
*
* Returns the number of bytes sent, or a negative errno.
*/
static int svc_udp_sendto(struct svc_rqst *rqstp)
{
struct svc_xprt *xprt = rqstp->rq_xprt;
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
struct xdr_buf *xdr = &rqstp->rq_res;
union {
struct cmsghdr hdr;
long all[SVC_PKTINFO_SPACE / sizeof(long)];
} buffer;
struct cmsghdr *cmh = &buffer.hdr;
struct msghdr msg = {
.msg_name = &rqstp->rq_addr,
.msg_namelen = rqstp->rq_addrlen,
.msg_control = cmh,
.msg_controllen = sizeof(buffer),
};
unsigned int sent;
int err;
svc_udp_release_rqst(rqstp);
svc_set_cmsg_data(rqstp, cmh);
mutex_lock(&xprt->xpt_mutex);
if (svc_xprt_is_dead(xprt))
goto out_notconn;
err = xdr_alloc_bvec(xdr, GFP_KERNEL);
if (err < 0)
goto out_unlock;
err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent);
if (err == -ECONNREFUSED) {
/* ICMP error on earlier request. */
err = xprt_sock_sendmsg(svsk->sk_sock, &msg, xdr, 0, 0, &sent);
}
xdr_free_bvec(xdr);
trace_svcsock_udp_send(xprt, err);
out_unlock:
mutex_unlock(&xprt->xpt_mutex);
if (err < 0)
return err;
return sent;
out_notconn:
mutex_unlock(&xprt->xpt_mutex);
return -ENOTCONN;
}
static int svc_udp_has_wspace(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
struct svc_serv *serv = xprt->xpt_server;
unsigned long required;
/*
* Set the SOCK_NOSPACE flag before checking the available
* sock space.
*/
set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
if (required*2 > sock_wspace(svsk->sk_sk))
return 0;
clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
return 1;
}
static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
{
BUG();
return NULL;
}
static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt)
{
}
static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags)
{
return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
}
static const struct svc_xprt_ops svc_udp_ops = {
.xpo_create = svc_udp_create,
.xpo_recvfrom = svc_udp_recvfrom,
.xpo_sendto = svc_udp_sendto,
.xpo_result_payload = svc_sock_result_payload,
.xpo_release_rqst = svc_udp_release_rqst,
.xpo_detach = svc_sock_detach,
.xpo_free = svc_sock_free,
.xpo_has_wspace = svc_udp_has_wspace,
.xpo_accept = svc_udp_accept,
.xpo_kill_temp_xprt = svc_udp_kill_temp_xprt,
};
static struct svc_xprt_class svc_udp_class = {
.xcl_name = "udp",
.xcl_owner = THIS_MODULE,
.xcl_ops = &svc_udp_ops,
.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
.xcl_ident = XPRT_TRANSPORT_UDP,
};
static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
{
svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
&svsk->sk_xprt, serv);
clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
svsk->sk_sk->sk_data_ready = svc_data_ready;
svsk->sk_sk->sk_write_space = svc_write_space;
/* initialise setting must have enough space to
* receive and respond to one request.
* svc_udp_recvfrom will re-adjust if necessary
*/
svc_sock_setbufsize(svsk, 3);
/* data might have come in before data_ready set up */
set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
/* make sure we get destination address info */
switch (svsk->sk_sk->sk_family) {
case AF_INET:
ip_sock_set_pktinfo(svsk->sk_sock->sk);
break;
case AF_INET6:
ip6_sock_set_recvpktinfo(svsk->sk_sock->sk);
break;
default:
BUG();
}
}
/*
* A data_ready event on a listening socket means there's a connection
* pending. Do not use state_change as a substitute for it.
*/
static void svc_tcp_listen_data_ready(struct sock *sk)
{
struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
trace_sk_data_ready(sk);
if (svsk) {
/* Refer to svc_setup_socket() for details. */
rmb();
svsk->sk_odata(sk);
}
/*
* This callback may called twice when a new connection
* is established as a child socket inherits everything
* from a parent LISTEN socket.
* 1) data_ready method of the parent socket will be called
* when one of child sockets become ESTABLISHED.
* 2) data_ready method of the child socket may be called
* when it receives data before the socket is accepted.
* In case of 2, we should ignore it silently.
*/
if (sk->sk_state == TCP_LISTEN) {
if (svsk) {
set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
svc_xprt_enqueue(&svsk->sk_xprt);
}
}
}
/*
* A state change on a connected socket means it's dying or dead.
*/
static void svc_tcp_state_change(struct sock *sk)
{
struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
if (svsk) {
/* Refer to svc_setup_socket() for details. */
rmb();
svsk->sk_ostate(sk);
trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock);
if (sk->sk_state != TCP_ESTABLISHED)
svc_xprt_deferred_close(&svsk->sk_xprt);
}
}
/*
* Accept a TCP connection
*/
static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
struct sockaddr_storage addr;
struct sockaddr *sin = (struct sockaddr *) &addr;
struct svc_serv *serv = svsk->sk_xprt.xpt_server;
struct socket *sock = svsk->sk_sock;
struct socket *newsock;
struct svc_sock *newsvsk;
int err, slen;
if (!sock)
return NULL;
clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
err = kernel_accept(sock, &newsock, O_NONBLOCK);
if (err < 0) {
if (err == -ENOMEM)
printk(KERN_WARNING "%s: no more sockets!\n",
serv->sv_name);
else if (err != -EAGAIN)
net_warn_ratelimited("%s: accept failed (err %d)!\n",
serv->sv_name, -err);
trace_svcsock_accept_err(xprt, serv->sv_name, err);
return NULL;
}
set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
err = kernel_getpeername(newsock, sin);
if (err < 0) {
trace_svcsock_getpeername_err(xprt, serv->sv_name, err);
goto failed; /* aborted connection or whatever */
}
slen = err;
/* Reset the inherited callbacks before calling svc_setup_socket */
newsock->sk->sk_state_change = svsk->sk_ostate;
newsock->sk->sk_data_ready = svsk->sk_odata;
newsock->sk->sk_write_space = svsk->sk_owspace;
/* make sure that a write doesn't block forever when
* low on memory
*/
newsock->sk->sk_sndtimeo = HZ*30;
newsvsk = svc_setup_socket(serv, newsock,
(SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY));
if (IS_ERR(newsvsk))
goto failed;
svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
err = kernel_getsockname(newsock, sin);
slen = err;
if (unlikely(err < 0))
slen = offsetof(struct sockaddr, sa_data);
svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
if (sock_is_loopback(newsock->sk))
set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
else
clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
if (serv->sv_stats)
serv->sv_stats->nettcpconn++;
return &newsvsk->sk_xprt;
failed:
sock_release(newsock);
return NULL;
}
static size_t svc_tcp_restore_pages(struct svc_sock *svsk,
struct svc_rqst *rqstp)
{
size_t len = svsk->sk_datalen;
unsigned int i, npages;
if (!len)
return 0;
npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
if (rqstp->rq_pages[i] != NULL)
put_page(rqstp->rq_pages[i]);
BUG_ON(svsk->sk_pages[i] == NULL);
rqstp->rq_pages[i] = svsk->sk_pages[i];
svsk->sk_pages[i] = NULL;
}
rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
return len;
}
static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
{
unsigned int i, len, npages;
if (svsk->sk_datalen == 0)
return;
len = svsk->sk_datalen;
npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
svsk->sk_pages[i] = rqstp->rq_pages[i];
rqstp->rq_pages[i] = NULL;
}
}
static void svc_tcp_clear_pages(struct svc_sock *svsk)
{
unsigned int i, len, npages;
if (svsk->sk_datalen == 0)
goto out;
len = svsk->sk_datalen;
npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
if (svsk->sk_pages[i] == NULL) {
WARN_ON_ONCE(1);
continue;
}
put_page(svsk->sk_pages[i]);
svsk->sk_pages[i] = NULL;
}
out:
svsk->sk_tcplen = 0;
svsk->sk_datalen = 0;
}
/*
* Receive fragment record header into sk_marker.
*/
static ssize_t svc_tcp_read_marker(struct svc_sock *svsk,
struct svc_rqst *rqstp)
{
ssize_t want, len;
/* If we haven't gotten the record length yet,
* get the next four bytes.
*/
if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
struct msghdr msg = { NULL };
struct kvec iov;
want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen;
iov.iov_len = want;
iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want);
len = svc_tcp_sock_recv_cmsg(svsk, &msg);
if (len < 0)
return len;
svsk->sk_tcplen += len;
if (len < want) {
/* call again to read the remaining bytes */
goto err_short;
}
trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker);
if (svc_sock_reclen(svsk) + svsk->sk_datalen >
svsk->sk_xprt.xpt_server->sv_max_mesg)
goto err_too_large;
}
return svc_sock_reclen(svsk);
err_too_large:
net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n",
__func__, svsk->sk_xprt.xpt_server->sv_name,
svc_sock_reclen(svsk));
svc_xprt_deferred_close(&svsk->sk_xprt);
err_short:
return -EAGAIN;
}
static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
{
struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
struct rpc_rqst *req = NULL;
struct kvec *src, *dst;
__be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
__be32 xid;
__be32 calldir;
xid = *p++;
calldir = *p;
if (!bc_xprt)
return -EAGAIN;
spin_lock(&bc_xprt->queue_lock);
req = xprt_lookup_rqst(bc_xprt, xid);
if (!req)
goto unlock_notfound;
memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
/*
* XXX!: cheating for now! Only copying HEAD.
* But we know this is good enough for now (in fact, for any
* callback reply in the forseeable future).
*/
dst = &req->rq_private_buf.head[0];
src = &rqstp->rq_arg.head[0];
if (dst->iov_len < src->iov_len)
goto unlock_eagain; /* whatever; just giving up. */
memcpy(dst->iov_base, src->iov_base, src->iov_len);
xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len);
rqstp->rq_arg.len = 0;
spin_unlock(&bc_xprt->queue_lock);
return 0;
unlock_notfound:
printk(KERN_NOTICE
"%s: Got unrecognized reply: "
"calldir 0x%x xpt_bc_xprt %p xid %08x\n",
__func__, ntohl(calldir),
bc_xprt, ntohl(xid));
unlock_eagain:
spin_unlock(&bc_xprt->queue_lock);
return -EAGAIN;
}
static void svc_tcp_fragment_received(struct svc_sock *svsk)
{
/* If we have more data, signal svc_xprt_enqueue() to try again */
svsk->sk_tcplen = 0;
svsk->sk_marker = xdr_zero;
}
/**
* svc_tcp_recvfrom - Receive data from a TCP socket
* @rqstp: request structure into which to receive an RPC Call
*
* Called in a loop when XPT_DATA has been set.
*
* Read the 4-byte stream record marker, then use the record length
* in that marker to set up exactly the resources needed to receive
* the next RPC message into @rqstp.
*
* Returns:
* On success, the number of bytes in a received RPC Call, or
* %0 if a complete RPC Call message was not ready to return
*
* The zero return case handles partial receives and callback Replies.
* The state of a partial receive is preserved in the svc_sock for
* the next call to svc_tcp_recvfrom.
*/
static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
{
struct svc_sock *svsk =
container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
struct svc_serv *serv = svsk->sk_xprt.xpt_server;
size_t want, base;
ssize_t len;
__be32 *p;
__be32 calldir;
clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
len = svc_tcp_read_marker(svsk, rqstp);
if (len < 0)
goto error;
base = svc_tcp_restore_pages(svsk, rqstp);
want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr));
len = svc_tcp_read_msg(rqstp, base + want, base);
if (len >= 0) {
trace_svcsock_tcp_recv(&svsk->sk_xprt, len);
svsk->sk_tcplen += len;
svsk->sk_datalen += len;
}
if (len != want || !svc_sock_final_rec(svsk))
goto err_incomplete;
if (svsk->sk_datalen < 8)
goto err_nuts;
rqstp->rq_arg.len = svsk->sk_datalen;
rqstp->rq_arg.page_base = 0;
if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
rqstp->rq_arg.page_len = 0;
} else
rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
rqstp->rq_xprt_ctxt = NULL;
rqstp->rq_prot = IPPROTO_TCP;
if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags))
set_bit(RQ_LOCAL, &rqstp->rq_flags);
else
clear_bit(RQ_LOCAL, &rqstp->rq_flags);
p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
calldir = p[1];
if (calldir)
len = receive_cb_reply(svsk, rqstp);
/* Reset TCP read info */
svsk->sk_datalen = 0;
svc_tcp_fragment_received(svsk);
if (len < 0)
goto error;
svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
if (serv->sv_stats)
serv->sv_stats->nettcpcnt++;
svc_sock_secure_port(rqstp);
svc_xprt_received(rqstp->rq_xprt);
return rqstp->rq_arg.len;
err_incomplete:
svc_tcp_save_pages(svsk, rqstp);
if (len < 0 && len != -EAGAIN)
goto err_delete;
if (len == want)
svc_tcp_fragment_received(svsk);
else
trace_svcsock_tcp_recv_short(&svsk->sk_xprt,
svc_sock_reclen(svsk),
svsk->sk_tcplen - sizeof(rpc_fraghdr));
goto err_noclose;
error:
if (len != -EAGAIN)
goto err_delete;
trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0);
goto err_noclose;
err_nuts:
svsk->sk_datalen = 0;
err_delete:
trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len);
svc_xprt_deferred_close(&svsk->sk_xprt);
err_noclose:
svc_xprt_received(rqstp->rq_xprt);
return 0; /* record not complete */
}
static int svc_tcp_send_kvec(struct socket *sock, const struct kvec *vec,
int flags)
{
return kernel_sendpage(sock, virt_to_page(vec->iov_base),
offset_in_page(vec->iov_base),
vec->iov_len, flags);
}
/*
* kernel_sendpage() is used exclusively to reduce the number of
* copy operations in this path. Therefore the caller must ensure
* that the pages backing @xdr are unchanging.
*
* In addition, the logic assumes that * .bv_len is never larger
* than PAGE_SIZE.
*/
static int svc_tcp_sendmsg(struct socket *sock, struct xdr_buf *xdr,
rpc_fraghdr marker, unsigned int *sentp)
{
const struct kvec *head = xdr->head;
const struct kvec *tail = xdr->tail;
struct kvec rm = {
.iov_base = &marker,
.iov_len = sizeof(marker),
};
struct msghdr msg = {
.msg_flags = 0,
};
int ret;
*sentp = 0;
ret = xdr_alloc_bvec(xdr, GFP_KERNEL);
if (ret < 0)
return ret;
ret = kernel_sendmsg(sock, &msg, &rm, 1, rm.iov_len);
if (ret < 0)
return ret;
*sentp += ret;
if (ret != rm.iov_len)
return -EAGAIN;
ret = svc_tcp_send_kvec(sock, head, 0);
if (ret < 0)
return ret;
*sentp += ret;
if (ret != head->iov_len)
goto out;
if (xdr->page_len) {
unsigned int offset, len, remaining;
struct bio_vec *bvec;
bvec = xdr->bvec + (xdr->page_base >> PAGE_SHIFT);
offset = offset_in_page(xdr->page_base);
remaining = xdr->page_len;
while (remaining > 0) {
len = min(remaining, bvec->bv_len - offset);
ret = kernel_sendpage(sock, bvec->bv_page,
bvec->bv_offset + offset,
len, 0);
if (ret < 0)
return ret;
*sentp += ret;
if (ret != len)
goto out;
remaining -= len;
offset = 0;
bvec++;
}
}
if (tail->iov_len) {
ret = svc_tcp_send_kvec(sock, tail, 0);
if (ret < 0)
return ret;
*sentp += ret;
}
out:
return 0;
}
/**
* svc_tcp_sendto - Send out a reply on a TCP socket
* @rqstp: completed svc_rqst
*
* xpt_mutex ensures @rqstp's whole message is written to the socket
* without interruption.
*
* Returns the number of bytes sent, or a negative errno.
*/
static int svc_tcp_sendto(struct svc_rqst *rqstp)
{
struct svc_xprt *xprt = rqstp->rq_xprt;
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
struct xdr_buf *xdr = &rqstp->rq_res;
rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT |
(u32)xdr->len);
unsigned int sent;
int err;
svc_tcp_release_rqst(rqstp);
atomic_inc(&svsk->sk_sendqlen);
mutex_lock(&xprt->xpt_mutex);
if (svc_xprt_is_dead(xprt))
goto out_notconn;
tcp_sock_set_cork(svsk->sk_sk, true);
err = svc_tcp_sendmsg(svsk->sk_sock, xdr, marker, &sent);
xdr_free_bvec(xdr);
trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent);
if (err < 0 || sent != (xdr->len + sizeof(marker)))
goto out_close;
if (atomic_dec_and_test(&svsk->sk_sendqlen))
tcp_sock_set_cork(svsk->sk_sk, false);
mutex_unlock(&xprt->xpt_mutex);
return sent;
out_notconn:
atomic_dec(&svsk->sk_sendqlen);
mutex_unlock(&xprt->xpt_mutex);
return -ENOTCONN;
out_close:
pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
xprt->xpt_server->sv_name,
(err < 0) ? "got error" : "sent",
(err < 0) ? err : sent, xdr->len);
svc_xprt_deferred_close(xprt);
atomic_dec(&svsk->sk_sendqlen);
mutex_unlock(&xprt->xpt_mutex);
return -EAGAIN;
}
static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags)
{
return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
}
static const struct svc_xprt_ops svc_tcp_ops = {
.xpo_create = svc_tcp_create,
.xpo_recvfrom = svc_tcp_recvfrom,
.xpo_sendto = svc_tcp_sendto,
.xpo_result_payload = svc_sock_result_payload,
.xpo_release_rqst = svc_tcp_release_rqst,
.xpo_detach = svc_tcp_sock_detach,
.xpo_free = svc_sock_free,
.xpo_has_wspace = svc_tcp_has_wspace,
.xpo_accept = svc_tcp_accept,
.xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt,
.xpo_handshake = svc_tcp_handshake,
};
static struct svc_xprt_class svc_tcp_class = {
.xcl_name = "tcp",
.xcl_owner = THIS_MODULE,
.xcl_ops = &svc_tcp_ops,
.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
.xcl_ident = XPRT_TRANSPORT_TCP,
};
void svc_init_xprt_sock(void)
{
svc_reg_xprt_class(&svc_tcp_class);
svc_reg_xprt_class(&svc_udp_class);
}
void svc_cleanup_xprt_sock(void)
{
svc_unreg_xprt_class(&svc_tcp_class);
svc_unreg_xprt_class(&svc_udp_class);
}
static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
{
struct sock *sk = svsk->sk_sk;
svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
&svsk->sk_xprt, serv);
set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags);
if (sk->sk_state == TCP_LISTEN) {
strcpy(svsk->sk_xprt.xpt_remotebuf, "listener");
set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
sk->sk_data_ready = svc_tcp_listen_data_ready;
set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
} else {
sk->sk_state_change = svc_tcp_state_change;
sk->sk_data_ready = svc_data_ready;
sk->sk_write_space = svc_write_space;
svsk->sk_marker = xdr_zero;
svsk->sk_tcplen = 0;
svsk->sk_datalen = 0;
memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages));
tcp_sock_set_nodelay(sk);
set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
switch (sk->sk_state) {
case TCP_SYN_RECV:
case TCP_ESTABLISHED:
break;
default:
svc_xprt_deferred_close(&svsk->sk_xprt);
}
}
}
void svc_sock_update_bufs(struct svc_serv *serv)
{
/*
* The number of server threads has changed. Update
* rcvbuf and sndbuf accordingly on all sockets
*/
struct svc_sock *svsk;
spin_lock_bh(&serv->sv_lock);
list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
spin_unlock_bh(&serv->sv_lock);
}
EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
/*
* Initialize socket for RPC use and create svc_sock struct
*/
static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
struct socket *sock,
int flags)
{
struct file *filp = NULL;
struct svc_sock *svsk;
struct sock *inet;
int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
if (!svsk)
return ERR_PTR(-ENOMEM);
if (!sock->file) {
filp = sock_alloc_file(sock, O_NONBLOCK, NULL);
if (IS_ERR(filp)) {
kfree(svsk);
return ERR_CAST(filp);
}
}
inet = sock->sk;
if (pmap_register) {
int err;
err = svc_register(serv, sock_net(sock->sk), inet->sk_family,
inet->sk_protocol,
ntohs(inet_sk(inet)->inet_sport));
if (err < 0) {
if (filp)
fput(filp);
kfree(svsk);
return ERR_PTR(err);
}
}
svsk->sk_sock = sock;
svsk->sk_sk = inet;
svsk->sk_ostate = inet->sk_state_change;
svsk->sk_odata = inet->sk_data_ready;
svsk->sk_owspace = inet->sk_write_space;
/*
* This barrier is necessary in order to prevent race condition
* with svc_data_ready(), svc_listen_data_ready() and others
* when calling callbacks above.
*/
wmb();
inet->sk_user_data = svsk;
/* Initialize the socket */
if (sock->type == SOCK_DGRAM)
svc_udp_init(svsk, serv);
else
svc_tcp_init(svsk, serv);
trace_svcsock_new_socket(sock);
return svsk;
}
bool svc_alien_sock(struct net *net, int fd)
{
int err;
struct socket *sock = sockfd_lookup(fd, &err);
bool ret = false;
if (!sock)
goto out;
if (sock_net(sock->sk) != net)
ret = true;
sockfd_put(sock);
out:
return ret;
}
EXPORT_SYMBOL_GPL(svc_alien_sock);
/**
* svc_addsock - add a listener socket to an RPC service
* @serv: pointer to RPC service to which to add a new listener
* @fd: file descriptor of the new listener
* @name_return: pointer to buffer to fill in with name of listener
* @len: size of the buffer
* @cred: credential
*
* Fills in socket name and returns positive length of name if successful.
* Name is terminated with '\n'. On error, returns a negative errno
* value.
*/
int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
const size_t len, const struct cred *cred)
{
int err = 0;
struct socket *so = sockfd_lookup(fd, &err);
struct svc_sock *svsk = NULL;
struct sockaddr_storage addr;
struct sockaddr *sin = (struct sockaddr *)&addr;
int salen;
if (!so)
return err;
err = -EAFNOSUPPORT;
if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
goto out;
err = -EPROTONOSUPPORT;
if (so->sk->sk_protocol != IPPROTO_TCP &&
so->sk->sk_protocol != IPPROTO_UDP)
goto out;
err = -EISCONN;
if (so->state > SS_UNCONNECTED)
goto out;
err = -ENOENT;
if (!try_module_get(THIS_MODULE))
goto out;
svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS);
if (IS_ERR(svsk)) {
module_put(THIS_MODULE);
err = PTR_ERR(svsk);
goto out;
}
salen = kernel_getsockname(svsk->sk_sock, sin);
if (salen >= 0)
svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
svsk->sk_xprt.xpt_cred = get_cred(cred);
svc_add_new_perm_xprt(serv, &svsk->sk_xprt);
return svc_one_sock_name(svsk, name_return, len);
out:
sockfd_put(so);
return err;
}
EXPORT_SYMBOL_GPL(svc_addsock);
/*
* Create socket for RPC service.
*/
static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
int protocol,
struct net *net,
struct sockaddr *sin, int len,
int flags)
{
struct svc_sock *svsk;
struct socket *sock;
int error;
int type;
struct sockaddr_storage addr;
struct sockaddr *newsin = (struct sockaddr *)&addr;
int newlen;
int family;
if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
printk(KERN_WARNING "svc: only UDP and TCP "
"sockets supported\n");
return ERR_PTR(-EINVAL);
}
type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
switch (sin->sa_family) {
case AF_INET6:
family = PF_INET6;
break;
case AF_INET:
family = PF_INET;
break;
default:
return ERR_PTR(-EINVAL);
}
error = __sock_create(net, family, type, protocol, &sock, 1);
if (error < 0)
return ERR_PTR(error);
svc_reclassify_socket(sock);
/*
* If this is an PF_INET6 listener, we want to avoid
* getting requests from IPv4 remotes. Those should
* be shunted to a PF_INET listener via rpcbind.
*/
if (family == PF_INET6)
ip6_sock_set_v6only(sock->sk);
if (type == SOCK_STREAM)
sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */
error = kernel_bind(sock, sin, len);
if (error < 0)
goto bummer;
error = kernel_getsockname(sock, newsin);
if (error < 0)
goto bummer;
newlen = error;
if (protocol == IPPROTO_TCP) {
if ((error = kernel_listen(sock, 64)) < 0)
goto bummer;
}
svsk = svc_setup_socket(serv, sock, flags);
if (IS_ERR(svsk)) {
error = PTR_ERR(svsk);
goto bummer;
}
svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
return (struct svc_xprt *)svsk;
bummer:
sock_release(sock);
return ERR_PTR(error);
}
/*
* Detach the svc_sock from the socket so that no
* more callbacks occur.
*/
static void svc_sock_detach(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
struct sock *sk = svsk->sk_sk;
/* put back the old socket callbacks */
lock_sock(sk);
sk->sk_state_change = svsk->sk_ostate;
sk->sk_data_ready = svsk->sk_odata;
sk->sk_write_space = svsk->sk_owspace;
sk->sk_user_data = NULL;
release_sock(sk);
}
/*
* Disconnect the socket, and reset the callbacks
*/
static void svc_tcp_sock_detach(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
svc_sock_detach(xprt);
if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
svc_tcp_clear_pages(svsk);
kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
}
}
/*
* Free the svc_sock's socket resources and the svc_sock itself.
*/
static void svc_sock_free(struct svc_xprt *xprt)
{
struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
struct socket *sock = svsk->sk_sock;
tls_handshake_cancel(sock->sk);
if (sock->file)
sockfd_put(sock);
else
sock_release(sock);
kfree(svsk);
}