linux/fs/bcachefs/replicas.c
Kent Overstreet af9d3bc203 bcachefs: stripe support for replicas tracking
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:11 -04:00

826 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "replicas.h"
#include "super-io.h"
struct bch_replicas_entry_padded {
struct bch_replicas_entry e;
u8 pad[BCH_SB_MEMBERS_MAX];
};
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *,
struct bch_replicas_cpu *);
/* Replicas tracking - in memory: */
static inline int u8_cmp(u8 l, u8 r)
{
return (l > r) - (l < r);
}
static void replicas_entry_sort(struct bch_replicas_entry *e)
{
bubble_sort(e->devs, e->nr_devs, u8_cmp);
}
#define for_each_cpu_replicas_entry(_r, _i) \
for (_i = (_r)->entries; \
(void *) (_i) < (void *) (_r)->entries + (_r)->nr * (_r)->entry_size;\
_i = (void *) (_i) + (_r)->entry_size)
static inline struct bch_replicas_entry *
cpu_replicas_entry(struct bch_replicas_cpu *r, unsigned i)
{
return (void *) r->entries + r->entry_size * i;
}
static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r)
{
eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL);
}
static void replicas_entry_to_text(struct printbuf *out,
struct bch_replicas_entry *e)
{
unsigned i;
pr_buf(out, "%s: %u/%u [",
bch2_data_types[e->data_type],
e->nr_required,
e->nr_devs);
for (i = 0; i < e->nr_devs; i++)
pr_buf(out, i ? " %u" : "%u", e->devs[i]);
pr_buf(out, "]");
}
void bch2_cpu_replicas_to_text(struct printbuf *out,
struct bch_replicas_cpu *r)
{
struct bch_replicas_entry *e;
bool first = true;
for_each_cpu_replicas_entry(r, e) {
if (!first)
pr_buf(out, " ");
first = false;
replicas_entry_to_text(out, e);
}
}
static void extent_to_replicas(struct bkey_s_c k,
struct bch_replicas_entry *r)
{
if (bkey_extent_is_data(k.k)) {
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
r->nr_required = 1;
extent_for_each_ptr_decode(e, p, entry)
if (!p.ptr.cached)
r->devs[r->nr_devs++] = p.ptr.dev;
}
}
static void bkey_to_replicas(enum bkey_type type,
struct bkey_s_c k,
struct bch_replicas_entry *e)
{
e->nr_devs = 0;
switch (type) {
case BKEY_TYPE_BTREE:
e->data_type = BCH_DATA_BTREE;
extent_to_replicas(k, e);
break;
case BKEY_TYPE_EXTENTS:
e->data_type = BCH_DATA_USER;
extent_to_replicas(k, e);
break;
default:
break;
}
replicas_entry_sort(e);
}
static inline void devlist_to_replicas(struct bch_devs_list devs,
enum bch_data_type data_type,
struct bch_replicas_entry *e)
{
unsigned i;
BUG_ON(!data_type ||
data_type == BCH_DATA_SB ||
data_type >= BCH_DATA_NR);
e->data_type = data_type;
e->nr_devs = 0;
e->nr_required = 1;
for (i = 0; i < devs.nr; i++)
e->devs[e->nr_devs++] = devs.devs[i];
replicas_entry_sort(e);
}
static struct bch_replicas_cpu *
cpu_replicas_add_entry(struct bch_replicas_cpu *old,
struct bch_replicas_entry *new_entry)
{
struct bch_replicas_cpu *new;
unsigned i, nr, entry_size;
entry_size = max_t(unsigned, old->entry_size,
replicas_entry_bytes(new_entry));
nr = old->nr + 1;
new = kzalloc(sizeof(struct bch_replicas_cpu) +
nr * entry_size, GFP_NOIO);
if (!new)
return NULL;
new->nr = nr;
new->entry_size = entry_size;
for (i = 0; i < old->nr; i++)
memcpy(cpu_replicas_entry(new, i),
cpu_replicas_entry(old, i),
old->entry_size);
memcpy(cpu_replicas_entry(new, old->nr),
new_entry,
replicas_entry_bytes(new_entry));
bch2_cpu_replicas_sort(new);
return new;
}
static bool replicas_has_entry(struct bch_replicas_cpu *r,
struct bch_replicas_entry *search)
{
return replicas_entry_bytes(search) <= r->entry_size &&
eytzinger0_find(r->entries, r->nr,
r->entry_size,
memcmp, search) < r->nr;
}
noinline
static int bch2_mark_replicas_slowpath(struct bch_fs *c,
struct bch_replicas_entry *new_entry)
{
struct bch_replicas_cpu *old_gc, *new_gc = NULL, *old_r, *new_r = NULL;
int ret = -ENOMEM;
mutex_lock(&c->sb_lock);
old_gc = rcu_dereference_protected(c->replicas_gc,
lockdep_is_held(&c->sb_lock));
if (old_gc && !replicas_has_entry(old_gc, new_entry)) {
new_gc = cpu_replicas_add_entry(old_gc, new_entry);
if (!new_gc)
goto err;
}
old_r = rcu_dereference_protected(c->replicas,
lockdep_is_held(&c->sb_lock));
if (!replicas_has_entry(old_r, new_entry)) {
new_r = cpu_replicas_add_entry(old_r, new_entry);
if (!new_r)
goto err;
ret = bch2_cpu_replicas_to_sb_replicas(c, new_r);
if (ret)
goto err;
}
/* allocations done, now commit: */
if (new_r)
bch2_write_super(c);
/* don't update in memory replicas until changes are persistent */
if (new_gc) {
rcu_assign_pointer(c->replicas_gc, new_gc);
kfree_rcu(old_gc, rcu);
}
if (new_r) {
rcu_assign_pointer(c->replicas, new_r);
kfree_rcu(old_r, rcu);
}
mutex_unlock(&c->sb_lock);
return 0;
err:
mutex_unlock(&c->sb_lock);
kfree(new_gc);
kfree(new_r);
return ret;
}
static int __bch2_mark_replicas(struct bch_fs *c,
struct bch_replicas_entry *devs)
{
struct bch_replicas_cpu *r, *gc_r;
bool marked;
rcu_read_lock();
r = rcu_dereference(c->replicas);
gc_r = rcu_dereference(c->replicas_gc);
marked = replicas_has_entry(r, devs) &&
(!likely(gc_r) || replicas_has_entry(gc_r, devs));
rcu_read_unlock();
return likely(marked) ? 0
: bch2_mark_replicas_slowpath(c, devs);
}
int bch2_mark_replicas(struct bch_fs *c,
enum bch_data_type data_type,
struct bch_devs_list devs)
{
struct bch_replicas_entry_padded search;
if (!devs.nr)
return 0;
memset(&search, 0, sizeof(search));
BUG_ON(devs.nr >= BCH_REPLICAS_MAX);
devlist_to_replicas(devs, data_type, &search.e);
return __bch2_mark_replicas(c, &search.e);
}
int bch2_mark_bkey_replicas(struct bch_fs *c,
enum bkey_type type,
struct bkey_s_c k)
{
struct bch_replicas_entry_padded search;
int ret;
memset(&search, 0, sizeof(search));
if (type == BKEY_TYPE_EXTENTS) {
struct bch_devs_list cached = bch2_bkey_cached_devs(k);
unsigned i;
for (i = 0; i < cached.nr; i++)
if ((ret = bch2_mark_replicas(c, BCH_DATA_CACHED,
bch2_dev_list_single(cached.devs[i]))))
return ret;
}
bkey_to_replicas(type, k, &search.e);
return search.e.nr_devs
? __bch2_mark_replicas(c, &search.e)
: 0;
}
int bch2_replicas_gc_end(struct bch_fs *c, int ret)
{
struct bch_replicas_cpu *new_r, *old_r;
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
new_r = rcu_dereference_protected(c->replicas_gc,
lockdep_is_held(&c->sb_lock));
rcu_assign_pointer(c->replicas_gc, NULL);
if (ret)
goto err;
if (bch2_cpu_replicas_to_sb_replicas(c, new_r)) {
ret = -ENOSPC;
goto err;
}
bch2_write_super(c);
/* don't update in memory replicas until changes are persistent */
old_r = rcu_dereference_protected(c->replicas,
lockdep_is_held(&c->sb_lock));
rcu_assign_pointer(c->replicas, new_r);
kfree_rcu(old_r, rcu);
out:
mutex_unlock(&c->sb_lock);
return ret;
err:
kfree_rcu(new_r, rcu);
goto out;
}
int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask)
{
struct bch_replicas_cpu *dst, *src;
struct bch_replicas_entry *e;
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
BUG_ON(c->replicas_gc);
src = rcu_dereference_protected(c->replicas,
lockdep_is_held(&c->sb_lock));
dst = kzalloc(sizeof(struct bch_replicas_cpu) +
src->nr * src->entry_size, GFP_NOIO);
if (!dst) {
mutex_unlock(&c->sb_lock);
return -ENOMEM;
}
dst->nr = 0;
dst->entry_size = src->entry_size;
for_each_cpu_replicas_entry(src, e)
if (!((1 << e->data_type) & typemask))
memcpy(cpu_replicas_entry(dst, dst->nr++),
e, dst->entry_size);
bch2_cpu_replicas_sort(dst);
rcu_assign_pointer(c->replicas_gc, dst);
mutex_unlock(&c->sb_lock);
return 0;
}
/* Replicas tracking - superblock: */
static struct bch_replicas_cpu *
__bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r)
{
struct bch_replicas_entry *e, *dst;
struct bch_replicas_cpu *cpu_r;
unsigned nr = 0, entry_size = 0, idx = 0;
for_each_replicas_entry(sb_r, e) {
entry_size = max_t(unsigned, entry_size,
replicas_entry_bytes(e));
nr++;
}
cpu_r = kzalloc(sizeof(struct bch_replicas_cpu) +
nr * entry_size, GFP_NOIO);
if (!cpu_r)
return NULL;
cpu_r->nr = nr;
cpu_r->entry_size = entry_size;
for_each_replicas_entry(sb_r, e) {
dst = cpu_replicas_entry(cpu_r, idx++);
memcpy(dst, e, replicas_entry_bytes(e));
replicas_entry_sort(dst);
}
return cpu_r;
}
static struct bch_replicas_cpu *
__bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r)
{
struct bch_replicas_entry_v0 *e;
struct bch_replicas_cpu *cpu_r;
unsigned nr = 0, entry_size = 0, idx = 0;
for_each_replicas_entry(sb_r, e) {
entry_size = max_t(unsigned, entry_size,
replicas_entry_bytes(e));
nr++;
}
entry_size += sizeof(struct bch_replicas_entry) -
sizeof(struct bch_replicas_entry_v0);
cpu_r = kzalloc(sizeof(struct bch_replicas_cpu) +
nr * entry_size, GFP_NOIO);
if (!cpu_r)
return NULL;
cpu_r->nr = nr;
cpu_r->entry_size = entry_size;
for_each_replicas_entry(sb_r, e) {
struct bch_replicas_entry *dst =
cpu_replicas_entry(cpu_r, idx++);
dst->data_type = e->data_type;
dst->nr_devs = e->nr_devs;
dst->nr_required = 1;
memcpy(dst->devs, e->devs, e->nr_devs);
replicas_entry_sort(dst);
}
return cpu_r;
}
int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c)
{
struct bch_sb_field_replicas *sb_v1;
struct bch_sb_field_replicas_v0 *sb_v0;
struct bch_replicas_cpu *cpu_r, *old_r;
if ((sb_v1 = bch2_sb_get_replicas(c->disk_sb.sb)))
cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_v1);
else if ((sb_v0 = bch2_sb_get_replicas_v0(c->disk_sb.sb)))
cpu_r = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0);
else
cpu_r = kzalloc(sizeof(struct bch_replicas_cpu), GFP_NOIO);
if (!cpu_r)
return -ENOMEM;
bch2_cpu_replicas_sort(cpu_r);
old_r = rcu_dereference_check(c->replicas, lockdep_is_held(&c->sb_lock));
rcu_assign_pointer(c->replicas, cpu_r);
if (old_r)
kfree_rcu(old_r, rcu);
return 0;
}
static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_sb_field_replicas_v0 *sb_r;
struct bch_replicas_entry_v0 *dst;
struct bch_replicas_entry *src;
size_t bytes;
bytes = sizeof(struct bch_sb_field_replicas);
for_each_cpu_replicas_entry(r, src)
bytes += replicas_entry_bytes(src) - 1;
sb_r = bch2_sb_resize_replicas_v0(&c->disk_sb,
DIV_ROUND_UP(bytes, sizeof(u64)));
if (!sb_r)
return -ENOSPC;
bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas);
sb_r = bch2_sb_get_replicas_v0(c->disk_sb.sb);
memset(&sb_r->entries, 0,
vstruct_end(&sb_r->field) -
(void *) &sb_r->entries);
dst = sb_r->entries;
for_each_cpu_replicas_entry(r, src) {
dst->data_type = src->data_type;
dst->nr_devs = src->nr_devs;
memcpy(dst->devs, src->devs, src->nr_devs);
dst = replicas_entry_next(dst);
BUG_ON((void *) dst > vstruct_end(&sb_r->field));
}
return 0;
}
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_sb_field_replicas *sb_r;
struct bch_replicas_entry *dst, *src;
bool need_v1 = false;
size_t bytes;
bytes = sizeof(struct bch_sb_field_replicas);
for_each_cpu_replicas_entry(r, src) {
bytes += replicas_entry_bytes(src);
if (src->nr_required != 1)
need_v1 = true;
}
if (!need_v1)
return bch2_cpu_replicas_to_sb_replicas_v0(c, r);
sb_r = bch2_sb_resize_replicas(&c->disk_sb,
DIV_ROUND_UP(bytes, sizeof(u64)));
if (!sb_r)
return -ENOSPC;
bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0);
sb_r = bch2_sb_get_replicas(c->disk_sb.sb);
memset(&sb_r->entries, 0,
vstruct_end(&sb_r->field) -
(void *) &sb_r->entries);
dst = sb_r->entries;
for_each_cpu_replicas_entry(r, src) {
memcpy(dst, src, replicas_entry_bytes(src));
dst = replicas_entry_next(dst);
BUG_ON((void *) dst > vstruct_end(&sb_r->field));
}
return 0;
}
static const char *check_dup_replicas_entries(struct bch_replicas_cpu *cpu_r)
{
unsigned i;
sort_cmp_size(cpu_r->entries,
cpu_r->nr,
cpu_r->entry_size,
memcmp, NULL);
for (i = 0; i + 1 < cpu_r->nr; i++) {
struct bch_replicas_entry *l =
cpu_replicas_entry(cpu_r, i);
struct bch_replicas_entry *r =
cpu_replicas_entry(cpu_r, i + 1);
BUG_ON(memcmp(l, r, cpu_r->entry_size) > 0);
if (!memcmp(l, r, cpu_r->entry_size))
return "duplicate replicas entry";
}
return NULL;
}
static const char *bch2_sb_validate_replicas(struct bch_sb *sb, struct bch_sb_field *f)
{
struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas);
struct bch_sb_field_members *mi = bch2_sb_get_members(sb);
struct bch_replicas_cpu *cpu_r = NULL;
struct bch_replicas_entry *e;
const char *err;
unsigned i;
for_each_replicas_entry(sb_r, e) {
err = "invalid replicas entry: invalid data type";
if (e->data_type >= BCH_DATA_NR)
goto err;
err = "invalid replicas entry: no devices";
if (!e->nr_devs)
goto err;
err = "invalid replicas entry: bad nr_required";
if (!e->nr_required ||
(e->nr_required > 1 &&
e->nr_required >= e->nr_devs))
goto err;
err = "invalid replicas entry: invalid device";
for (i = 0; i < e->nr_devs; i++)
if (!bch2_dev_exists(sb, mi, e->devs[i]))
goto err;
}
err = "cannot allocate memory";
cpu_r = __bch2_sb_replicas_to_cpu_replicas(sb_r);
if (!cpu_r)
goto err;
err = check_dup_replicas_entries(cpu_r);
err:
kfree(cpu_r);
return err;
}
static void bch2_sb_replicas_to_text(struct printbuf *out,
struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_replicas *r = field_to_type(f, replicas);
struct bch_replicas_entry *e;
bool first = true;
for_each_replicas_entry(r, e) {
if (!first)
pr_buf(out, " ");
first = false;
replicas_entry_to_text(out, e);
}
}
const struct bch_sb_field_ops bch_sb_field_ops_replicas = {
.validate = bch2_sb_validate_replicas,
.to_text = bch2_sb_replicas_to_text,
};
static const char *bch2_sb_validate_replicas_v0(struct bch_sb *sb, struct bch_sb_field *f)
{
struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0);
struct bch_sb_field_members *mi = bch2_sb_get_members(sb);
struct bch_replicas_cpu *cpu_r = NULL;
struct bch_replicas_entry_v0 *e;
const char *err;
unsigned i;
for_each_replicas_entry_v0(sb_r, e) {
err = "invalid replicas entry: invalid data type";
if (e->data_type >= BCH_DATA_NR)
goto err;
err = "invalid replicas entry: no devices";
if (!e->nr_devs)
goto err;
err = "invalid replicas entry: invalid device";
for (i = 0; i < e->nr_devs; i++)
if (!bch2_dev_exists(sb, mi, e->devs[i]))
goto err;
}
err = "cannot allocate memory";
cpu_r = __bch2_sb_replicas_v0_to_cpu_replicas(sb_r);
if (!cpu_r)
goto err;
err = check_dup_replicas_entries(cpu_r);
err:
kfree(cpu_r);
return err;
}
const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = {
.validate = bch2_sb_validate_replicas_v0,
};
/* Query replicas: */
bool bch2_replicas_marked(struct bch_fs *c,
enum bch_data_type data_type,
struct bch_devs_list devs)
{
struct bch_replicas_entry_padded search;
bool ret;
if (!devs.nr)
return true;
memset(&search, 0, sizeof(search));
devlist_to_replicas(devs, data_type, &search.e);
rcu_read_lock();
ret = replicas_has_entry(rcu_dereference(c->replicas), &search.e);
rcu_read_unlock();
return ret;
}
bool bch2_bkey_replicas_marked(struct bch_fs *c,
enum bkey_type type,
struct bkey_s_c k)
{
struct bch_replicas_entry_padded search;
bool ret;
memset(&search, 0, sizeof(search));
if (type == BKEY_TYPE_EXTENTS) {
struct bch_devs_list cached = bch2_bkey_cached_devs(k);
unsigned i;
for (i = 0; i < cached.nr; i++)
if (!bch2_replicas_marked(c, BCH_DATA_CACHED,
bch2_dev_list_single(cached.devs[i])))
return false;
}
bkey_to_replicas(type, k, &search.e);
if (!search.e.nr_devs)
return true;
rcu_read_lock();
ret = replicas_has_entry(rcu_dereference(c->replicas), &search.e);
rcu_read_unlock();
return ret;
}
struct replicas_status __bch2_replicas_status(struct bch_fs *c,
struct bch_devs_mask online_devs)
{
struct bch_sb_field_members *mi;
struct bch_replicas_entry *e;
struct bch_replicas_cpu *r;
unsigned i, nr_online, nr_offline;
struct replicas_status ret;
memset(&ret, 0, sizeof(ret));
for (i = 0; i < ARRAY_SIZE(ret.replicas); i++)
ret.replicas[i].redundancy = INT_MAX;
mi = bch2_sb_get_members(c->disk_sb.sb);
rcu_read_lock();
r = rcu_dereference(c->replicas);
for_each_cpu_replicas_entry(r, e) {
if (e->data_type >= ARRAY_SIZE(ret.replicas))
panic("e %p data_type %u\n", e, e->data_type);
nr_online = nr_offline = 0;
for (i = 0; i < e->nr_devs; i++) {
BUG_ON(!bch2_dev_exists(c->disk_sb.sb, mi,
e->devs[i]));
if (test_bit(e->devs[i], online_devs.d))
nr_online++;
else
nr_offline++;
}
ret.replicas[e->data_type].redundancy =
min(ret.replicas[e->data_type].redundancy,
(int) nr_online - (int) e->nr_required);
ret.replicas[e->data_type].nr_offline =
max(ret.replicas[e->data_type].nr_offline,
nr_offline);
}
rcu_read_unlock();
for (i = 0; i < ARRAY_SIZE(ret.replicas); i++)
if (ret.replicas[i].redundancy == INT_MAX)
ret.replicas[i].redundancy = 0;
return ret;
}
struct replicas_status bch2_replicas_status(struct bch_fs *c)
{
return __bch2_replicas_status(c, bch2_online_devs(c));
}
static bool have_enough_devs(struct replicas_status s,
enum bch_data_type type,
bool force_if_degraded,
bool force_if_lost)
{
return (!s.replicas[type].nr_offline || force_if_degraded) &&
(s.replicas[type].redundancy >= 0 || force_if_lost);
}
bool bch2_have_enough_devs(struct replicas_status s, unsigned flags)
{
return (have_enough_devs(s, BCH_DATA_JOURNAL,
flags & BCH_FORCE_IF_METADATA_DEGRADED,
flags & BCH_FORCE_IF_METADATA_LOST) &&
have_enough_devs(s, BCH_DATA_BTREE,
flags & BCH_FORCE_IF_METADATA_DEGRADED,
flags & BCH_FORCE_IF_METADATA_LOST) &&
have_enough_devs(s, BCH_DATA_USER,
flags & BCH_FORCE_IF_DATA_DEGRADED,
flags & BCH_FORCE_IF_DATA_LOST));
}
int bch2_replicas_online(struct bch_fs *c, bool meta)
{
struct replicas_status s = bch2_replicas_status(c);
return (meta
? min(s.replicas[BCH_DATA_JOURNAL].redundancy,
s.replicas[BCH_DATA_BTREE].redundancy)
: s.replicas[BCH_DATA_USER].redundancy) + 1;
}
unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_replicas_entry *e;
struct bch_replicas_cpu *r;
unsigned i, ret = 0;
rcu_read_lock();
r = rcu_dereference(c->replicas);
for_each_cpu_replicas_entry(r, e)
for (i = 0; i < e->nr_devs; i++)
if (e->devs[i] == ca->dev_idx)
ret |= 1 << e->data_type;
rcu_read_unlock();
return ret;
}