Currently, many architecture-specific non-atomic bitop implementations use inline asm or other hacks which are faster or more robust when working with "real" variables (i.e. fields from the structures etc.), but the compilers have no clue how to optimize them out when called on compile-time constants. That said, the following code: DECLARE_BITMAP(foo, BITS_PER_LONG) = { }; // -> unsigned long foo[1]; unsigned long bar = BIT(BAR_BIT); unsigned long baz = 0; __set_bit(FOO_BIT, foo); baz |= BIT(BAZ_BIT); BUILD_BUG_ON(!__builtin_constant_p(test_bit(FOO_BIT, foo)); BUILD_BUG_ON(!__builtin_constant_p(bar & BAR_BIT)); BUILD_BUG_ON(!__builtin_constant_p(baz & BAZ_BIT)); triggers the first assertion on x86_64, which means that the compiler is unable to evaluate it to a compile-time initializer when the architecture-specific bitop is used even if it's obvious. In order to let the compiler optimize out such cases, expand the bitop() macro to use the "constant" C non-atomic bitop implementations when all of the arguments passed are compile-time constants, which means that the result will be a compile-time constant as well, so that it produces more efficient and simple code in 100% cases, comparing to the architecture-specific counterparts. The savings are architecture, compiler and compiler flags dependent, for example, on x86_64 -O2: GCC 12: add/remove: 78/29 grow/shrink: 332/525 up/down: 31325/-61560 (-30235) LLVM 13: add/remove: 79/76 grow/shrink: 184/537 up/down: 55076/-141892 (-86816) LLVM 14: add/remove: 10/3 grow/shrink: 93/138 up/down: 3705/-6992 (-3287) and ARM64 (courtesy of Mark): GCC 11: add/remove: 92/29 grow/shrink: 933/2766 up/down: 39340/-82580 (-43240) LLVM 14: add/remove: 21/11 grow/shrink: 620/651 up/down: 12060/-15824 (-3764) Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com> Reviewed-by: Marco Elver <elver@google.com> Signed-off-by: Yury Norov <yury.norov@gmail.com>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%