linux/drivers/platform/x86/intel/ifs/runtest.c
Jithu Joseph fed696ce13 platform/x86/intel/ifs: Implement Array BIST test
Array BIST test (for a particular core) is triggered by writing
to MSR_ARRAY_BIST from one sibling of the core.

This will initiate a test for all supported arrays on that
CPU. Array BIST test may be aborted before completing all the
arrays in the event of an interrupt or other reasons.
In this case, kernel will restart the test from that point
onwards. Array test will also be aborted when the test fails,
in which case the test is stopped immediately without further
retry.

Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20230322003359.213046-8-jithu.joseph@intel.com
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2023-03-27 16:10:20 +02:00

347 lines
9.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2022 Intel Corporation. */
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/nmi.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include "ifs.h"
/*
* Note all code and data in this file is protected by
* ifs_sem. On HT systems all threads on a core will
* execute together, but only the first thread on the
* core will update results of the test.
*/
#define CREATE_TRACE_POINTS
#include <trace/events/intel_ifs.h>
/* Max retries on the same chunk */
#define MAX_IFS_RETRIES 5
/*
* Number of TSC cycles that a logical CPU will wait for the other
* logical CPU on the core in the WRMSR(ACTIVATE_SCAN).
*/
#define IFS_THREAD_WAIT 100000
enum ifs_status_err_code {
IFS_NO_ERROR = 0,
IFS_OTHER_THREAD_COULD_NOT_JOIN = 1,
IFS_INTERRUPTED_BEFORE_RENDEZVOUS = 2,
IFS_POWER_MGMT_INADEQUATE_FOR_SCAN = 3,
IFS_INVALID_CHUNK_RANGE = 4,
IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS = 5,
IFS_CORE_NOT_CAPABLE_CURRENTLY = 6,
IFS_UNASSIGNED_ERROR_CODE = 7,
IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT = 8,
IFS_INTERRUPTED_DURING_EXECUTION = 9,
};
static const char * const scan_test_status[] = {
[IFS_NO_ERROR] = "SCAN no error",
[IFS_OTHER_THREAD_COULD_NOT_JOIN] = "Other thread could not join.",
[IFS_INTERRUPTED_BEFORE_RENDEZVOUS] = "Interrupt occurred prior to SCAN coordination.",
[IFS_POWER_MGMT_INADEQUATE_FOR_SCAN] =
"Core Abort SCAN Response due to power management condition.",
[IFS_INVALID_CHUNK_RANGE] = "Non valid chunks in the range",
[IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS] = "Mismatch in arguments between threads T0/T1.",
[IFS_CORE_NOT_CAPABLE_CURRENTLY] = "Core not capable of performing SCAN currently",
[IFS_UNASSIGNED_ERROR_CODE] = "Unassigned error code 0x7",
[IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT] =
"Exceeded number of Logical Processors (LP) allowed to run Scan-At-Field concurrently",
[IFS_INTERRUPTED_DURING_EXECUTION] = "Interrupt occurred prior to SCAN start",
};
static void message_not_tested(struct device *dev, int cpu, union ifs_status status)
{
if (status.error_code < ARRAY_SIZE(scan_test_status)) {
dev_info(dev, "CPU(s) %*pbl: SCAN operation did not start. %s\n",
cpumask_pr_args(cpu_smt_mask(cpu)),
scan_test_status[status.error_code]);
} else if (status.error_code == IFS_SW_TIMEOUT) {
dev_info(dev, "CPU(s) %*pbl: software timeout during scan\n",
cpumask_pr_args(cpu_smt_mask(cpu)));
} else if (status.error_code == IFS_SW_PARTIAL_COMPLETION) {
dev_info(dev, "CPU(s) %*pbl: %s\n",
cpumask_pr_args(cpu_smt_mask(cpu)),
"Not all scan chunks were executed. Maximum forward progress retries exceeded");
} else {
dev_info(dev, "CPU(s) %*pbl: SCAN unknown status %llx\n",
cpumask_pr_args(cpu_smt_mask(cpu)), status.data);
}
}
static void message_fail(struct device *dev, int cpu, union ifs_status status)
{
struct ifs_data *ifsd = ifs_get_data(dev);
/*
* control_error is set when the microcode runs into a problem
* loading the image from the reserved BIOS memory, or it has
* been corrupted. Reloading the image may fix this issue.
*/
if (status.control_error) {
dev_err(dev, "CPU(s) %*pbl: could not execute from loaded scan image. Batch: %02x version: 0x%x\n",
cpumask_pr_args(cpu_smt_mask(cpu)), ifsd->cur_batch, ifsd->loaded_version);
}
/*
* signature_error is set when the output from the scan chains does not
* match the expected signature. This might be a transient problem (e.g.
* due to a bit flip from an alpha particle or neutron). If the problem
* repeats on a subsequent test, then it indicates an actual problem in
* the core being tested.
*/
if (status.signature_error) {
dev_err(dev, "CPU(s) %*pbl: test signature incorrect. Batch: %02x version: 0x%x\n",
cpumask_pr_args(cpu_smt_mask(cpu)), ifsd->cur_batch, ifsd->loaded_version);
}
}
static bool can_restart(union ifs_status status)
{
enum ifs_status_err_code err_code = status.error_code;
/* Signature for chunk is bad, or scan test failed */
if (status.signature_error || status.control_error)
return false;
switch (err_code) {
case IFS_NO_ERROR:
case IFS_OTHER_THREAD_COULD_NOT_JOIN:
case IFS_INTERRUPTED_BEFORE_RENDEZVOUS:
case IFS_POWER_MGMT_INADEQUATE_FOR_SCAN:
case IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT:
case IFS_INTERRUPTED_DURING_EXECUTION:
return true;
case IFS_INVALID_CHUNK_RANGE:
case IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS:
case IFS_CORE_NOT_CAPABLE_CURRENTLY:
case IFS_UNASSIGNED_ERROR_CODE:
break;
}
return false;
}
/*
* Execute the scan. Called "simultaneously" on all threads of a core
* at high priority using the stop_cpus mechanism.
*/
static int doscan(void *data)
{
int cpu = smp_processor_id();
u64 *msrs = data;
int first;
/* Only the first logical CPU on a core reports result */
first = cpumask_first(cpu_smt_mask(cpu));
/*
* This WRMSR will wait for other HT threads to also write
* to this MSR (at most for activate.delay cycles). Then it
* starts scan of each requested chunk. The core scan happens
* during the "execution" of the WRMSR. This instruction can
* take up to 200 milliseconds (in the case where all chunks
* are processed in a single pass) before it retires.
*/
wrmsrl(MSR_ACTIVATE_SCAN, msrs[0]);
if (cpu == first) {
/* Pass back the result of the scan */
rdmsrl(MSR_SCAN_STATUS, msrs[1]);
}
return 0;
}
/*
* Use stop_core_cpuslocked() to synchronize writing to MSR_ACTIVATE_SCAN
* on all threads of the core to be tested. Loop if necessary to complete
* run of all chunks. Include some defensive tests to make sure forward
* progress is made, and that the whole test completes in a reasonable time.
*/
static void ifs_test_core(int cpu, struct device *dev)
{
union ifs_scan activate;
union ifs_status status;
unsigned long timeout;
struct ifs_data *ifsd;
u64 msrvals[2];
int retries;
ifsd = ifs_get_data(dev);
activate.rsvd = 0;
activate.delay = IFS_THREAD_WAIT;
activate.sigmce = 0;
activate.start = 0;
activate.stop = ifsd->valid_chunks - 1;
timeout = jiffies + HZ / 2;
retries = MAX_IFS_RETRIES;
while (activate.start <= activate.stop) {
if (time_after(jiffies, timeout)) {
status.error_code = IFS_SW_TIMEOUT;
break;
}
msrvals[0] = activate.data;
stop_core_cpuslocked(cpu, doscan, msrvals);
status.data = msrvals[1];
trace_ifs_status(cpu, activate, status);
/* Some cases can be retried, give up for others */
if (!can_restart(status))
break;
if (status.chunk_num == activate.start) {
/* Check for forward progress */
if (--retries == 0) {
if (status.error_code == IFS_NO_ERROR)
status.error_code = IFS_SW_PARTIAL_COMPLETION;
break;
}
} else {
retries = MAX_IFS_RETRIES;
activate.start = status.chunk_num;
}
}
/* Update status for this core */
ifsd->scan_details = status.data;
if (status.control_error || status.signature_error) {
ifsd->status = SCAN_TEST_FAIL;
message_fail(dev, cpu, status);
} else if (status.error_code) {
ifsd->status = SCAN_NOT_TESTED;
message_not_tested(dev, cpu, status);
} else {
ifsd->status = SCAN_TEST_PASS;
}
}
#define SPINUNIT 100 /* 100 nsec */
static atomic_t array_cpus_out;
/*
* Simplified cpu sibling rendezvous loop based on microcode loader __wait_for_cpus()
*/
static void wait_for_sibling_cpu(atomic_t *t, long long timeout)
{
int cpu = smp_processor_id();
const struct cpumask *smt_mask = cpu_smt_mask(cpu);
int all_cpus = cpumask_weight(smt_mask);
atomic_inc(t);
while (atomic_read(t) < all_cpus) {
if (timeout < SPINUNIT)
return;
ndelay(SPINUNIT);
timeout -= SPINUNIT;
touch_nmi_watchdog();
}
}
static int do_array_test(void *data)
{
union ifs_array *command = data;
int cpu = smp_processor_id();
int first;
/*
* Only one logical CPU on a core needs to trigger the Array test via MSR write.
*/
first = cpumask_first(cpu_smt_mask(cpu));
if (cpu == first) {
wrmsrl(MSR_ARRAY_BIST, command->data);
/* Pass back the result of the test */
rdmsrl(MSR_ARRAY_BIST, command->data);
}
/* Tests complete faster if the sibling is spinning here */
wait_for_sibling_cpu(&array_cpus_out, NSEC_PER_SEC);
return 0;
}
static void ifs_array_test_core(int cpu, struct device *dev)
{
union ifs_array command = {};
bool timed_out = false;
struct ifs_data *ifsd;
unsigned long timeout;
ifsd = ifs_get_data(dev);
command.array_bitmask = ~0U;
timeout = jiffies + HZ / 2;
do {
if (time_after(jiffies, timeout)) {
timed_out = true;
break;
}
atomic_set(&array_cpus_out, 0);
stop_core_cpuslocked(cpu, do_array_test, &command);
if (command.ctrl_result)
break;
} while (command.array_bitmask);
ifsd->scan_details = command.data;
if (command.ctrl_result)
ifsd->status = SCAN_TEST_FAIL;
else if (timed_out || command.array_bitmask)
ifsd->status = SCAN_NOT_TESTED;
else
ifsd->status = SCAN_TEST_PASS;
}
/*
* Initiate per core test. It wakes up work queue threads on the target cpu and
* its sibling cpu. Once all sibling threads wake up, the scan test gets executed and
* wait for all sibling threads to finish the scan test.
*/
int do_core_test(int cpu, struct device *dev)
{
const struct ifs_test_caps *test = ifs_get_test_caps(dev);
struct ifs_data *ifsd = ifs_get_data(dev);
int ret = 0;
/* Prevent CPUs from being taken offline during the scan test */
cpus_read_lock();
if (!cpu_online(cpu)) {
dev_info(dev, "cannot test on the offline cpu %d\n", cpu);
ret = -EINVAL;
goto out;
}
switch (test->test_num) {
case IFS_TYPE_SAF:
if (!ifsd->loaded)
return -EPERM;
ifs_test_core(cpu, dev);
break;
case IFS_TYPE_ARRAY_BIST:
ifs_array_test_core(cpu, dev);
break;
default:
return -EINVAL;
}
out:
cpus_read_unlock();
return ret;
}