linux/fs/dlm/lowcomms.c
Alexander Aring b30a624f50 fs: dlm: set connected bit after accept
This patch sets the CF_CONNECTED bit when dlm accepts a connection from
another node. If we don't set this bit, next time if the connection
socket gets writable it will assume an event that the connection is
successfully connected. However that is only the case when the
connection did a connect.

Signed-off-by: Alexander Aring <aahringo@redhat.com>
Signed-off-by: David Teigland <teigland@redhat.com>
2021-03-09 08:56:42 -06:00

1767 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/******************************************************************************
*******************************************************************************
**
** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
**
**
*******************************************************************************
******************************************************************************/
/*
* lowcomms.c
*
* This is the "low-level" comms layer.
*
* It is responsible for sending/receiving messages
* from other nodes in the cluster.
*
* Cluster nodes are referred to by their nodeids. nodeids are
* simply 32 bit numbers to the locking module - if they need to
* be expanded for the cluster infrastructure then that is its
* responsibility. It is this layer's
* responsibility to resolve these into IP address or
* whatever it needs for inter-node communication.
*
* The comms level is two kernel threads that deal mainly with
* the receiving of messages from other nodes and passing them
* up to the mid-level comms layer (which understands the
* message format) for execution by the locking core, and
* a send thread which does all the setting up of connections
* to remote nodes and the sending of data. Threads are not allowed
* to send their own data because it may cause them to wait in times
* of high load. Also, this way, the sending thread can collect together
* messages bound for one node and send them in one block.
*
* lowcomms will choose to use either TCP or SCTP as its transport layer
* depending on the configuration variable 'protocol'. This should be set
* to 0 (default) for TCP or 1 for SCTP. It should be configured using a
* cluster-wide mechanism as it must be the same on all nodes of the cluster
* for the DLM to function.
*
*/
#include <asm/ioctls.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/mutex.h>
#include <linux/sctp.h>
#include <linux/slab.h>
#include <net/sctp/sctp.h>
#include <net/ipv6.h>
#include "dlm_internal.h"
#include "lowcomms.h"
#include "midcomms.h"
#include "config.h"
#define NEEDED_RMEM (4*1024*1024)
#define CONN_HASH_SIZE 32
/* Number of messages to send before rescheduling */
#define MAX_SEND_MSG_COUNT 25
#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
struct connection {
struct socket *sock; /* NULL if not connected */
uint32_t nodeid; /* So we know who we are in the list */
struct mutex sock_mutex;
unsigned long flags;
#define CF_READ_PENDING 1
#define CF_WRITE_PENDING 2
#define CF_INIT_PENDING 4
#define CF_IS_OTHERCON 5
#define CF_CLOSE 6
#define CF_APP_LIMITED 7
#define CF_CLOSING 8
#define CF_SHUTDOWN 9
#define CF_CONNECTED 10
struct list_head writequeue; /* List of outgoing writequeue_entries */
spinlock_t writequeue_lock;
void (*connect_action) (struct connection *); /* What to do to connect */
void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
int retries;
#define MAX_CONNECT_RETRIES 3
struct hlist_node list;
struct connection *othercon;
struct work_struct rwork; /* Receive workqueue */
struct work_struct swork; /* Send workqueue */
wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
unsigned char *rx_buf;
int rx_buflen;
int rx_leftover;
struct rcu_head rcu;
};
#define sock2con(x) ((struct connection *)(x)->sk_user_data)
struct listen_connection {
struct socket *sock;
struct work_struct rwork;
};
/* An entry waiting to be sent */
struct writequeue_entry {
struct list_head list;
struct page *page;
int offset;
int len;
int end;
int users;
struct connection *con;
};
struct dlm_node_addr {
struct list_head list;
int nodeid;
int mark;
int addr_count;
int curr_addr_index;
struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
};
static struct listen_sock_callbacks {
void (*sk_error_report)(struct sock *);
void (*sk_data_ready)(struct sock *);
void (*sk_state_change)(struct sock *);
void (*sk_write_space)(struct sock *);
} listen_sock;
static LIST_HEAD(dlm_node_addrs);
static DEFINE_SPINLOCK(dlm_node_addrs_spin);
static struct listen_connection listen_con;
static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
static int dlm_local_count;
static int dlm_allow_conn;
/* Work queues */
static struct workqueue_struct *recv_workqueue;
static struct workqueue_struct *send_workqueue;
static struct hlist_head connection_hash[CONN_HASH_SIZE];
static DEFINE_SPINLOCK(connections_lock);
DEFINE_STATIC_SRCU(connections_srcu);
static void process_recv_sockets(struct work_struct *work);
static void process_send_sockets(struct work_struct *work);
static void sctp_connect_to_sock(struct connection *con);
static void tcp_connect_to_sock(struct connection *con);
static void dlm_tcp_shutdown(struct connection *con);
/* This is deliberately very simple because most clusters have simple
sequential nodeids, so we should be able to go straight to a connection
struct in the array */
static inline int nodeid_hash(int nodeid)
{
return nodeid & (CONN_HASH_SIZE-1);
}
static struct connection *__find_con(int nodeid)
{
int r, idx;
struct connection *con;
r = nodeid_hash(nodeid);
idx = srcu_read_lock(&connections_srcu);
hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
if (con->nodeid == nodeid) {
srcu_read_unlock(&connections_srcu, idx);
return con;
}
}
srcu_read_unlock(&connections_srcu, idx);
return NULL;
}
static int dlm_con_init(struct connection *con, int nodeid)
{
con->rx_buflen = dlm_config.ci_buffer_size;
con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
if (!con->rx_buf)
return -ENOMEM;
con->nodeid = nodeid;
mutex_init(&con->sock_mutex);
INIT_LIST_HEAD(&con->writequeue);
spin_lock_init(&con->writequeue_lock);
INIT_WORK(&con->swork, process_send_sockets);
INIT_WORK(&con->rwork, process_recv_sockets);
init_waitqueue_head(&con->shutdown_wait);
if (dlm_config.ci_protocol == 0) {
con->connect_action = tcp_connect_to_sock;
con->shutdown_action = dlm_tcp_shutdown;
} else {
con->connect_action = sctp_connect_to_sock;
}
return 0;
}
/*
* If 'allocation' is zero then we don't attempt to create a new
* connection structure for this node.
*/
static struct connection *nodeid2con(int nodeid, gfp_t alloc)
{
struct connection *con, *tmp;
int r, ret;
con = __find_con(nodeid);
if (con || !alloc)
return con;
con = kzalloc(sizeof(*con), alloc);
if (!con)
return NULL;
ret = dlm_con_init(con, nodeid);
if (ret) {
kfree(con);
return NULL;
}
r = nodeid_hash(nodeid);
spin_lock(&connections_lock);
/* Because multiple workqueues/threads calls this function it can
* race on multiple cpu's. Instead of locking hot path __find_con()
* we just check in rare cases of recently added nodes again
* under protection of connections_lock. If this is the case we
* abort our connection creation and return the existing connection.
*/
tmp = __find_con(nodeid);
if (tmp) {
spin_unlock(&connections_lock);
kfree(con->rx_buf);
kfree(con);
return tmp;
}
hlist_add_head_rcu(&con->list, &connection_hash[r]);
spin_unlock(&connections_lock);
return con;
}
/* Loop round all connections */
static void foreach_conn(void (*conn_func)(struct connection *c))
{
int i, idx;
struct connection *con;
idx = srcu_read_lock(&connections_srcu);
for (i = 0; i < CONN_HASH_SIZE; i++) {
hlist_for_each_entry_rcu(con, &connection_hash[i], list)
conn_func(con);
}
srcu_read_unlock(&connections_srcu, idx);
}
static struct dlm_node_addr *find_node_addr(int nodeid)
{
struct dlm_node_addr *na;
list_for_each_entry(na, &dlm_node_addrs, list) {
if (na->nodeid == nodeid)
return na;
}
return NULL;
}
static int addr_compare(const struct sockaddr_storage *x,
const struct sockaddr_storage *y)
{
switch (x->ss_family) {
case AF_INET: {
struct sockaddr_in *sinx = (struct sockaddr_in *)x;
struct sockaddr_in *siny = (struct sockaddr_in *)y;
if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
return 0;
if (sinx->sin_port != siny->sin_port)
return 0;
break;
}
case AF_INET6: {
struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
return 0;
if (sinx->sin6_port != siny->sin6_port)
return 0;
break;
}
default:
return 0;
}
return 1;
}
static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
struct sockaddr *sa_out, bool try_new_addr,
unsigned int *mark)
{
struct sockaddr_storage sas;
struct dlm_node_addr *na;
if (!dlm_local_count)
return -1;
spin_lock(&dlm_node_addrs_spin);
na = find_node_addr(nodeid);
if (na && na->addr_count) {
memcpy(&sas, na->addr[na->curr_addr_index],
sizeof(struct sockaddr_storage));
if (try_new_addr) {
na->curr_addr_index++;
if (na->curr_addr_index == na->addr_count)
na->curr_addr_index = 0;
}
}
spin_unlock(&dlm_node_addrs_spin);
if (!na)
return -EEXIST;
if (!na->addr_count)
return -ENOENT;
*mark = na->mark;
if (sas_out)
memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
if (!sa_out)
return 0;
if (dlm_local_addr[0]->ss_family == AF_INET) {
struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
} else {
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
ret6->sin6_addr = in6->sin6_addr;
}
return 0;
}
static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
unsigned int *mark)
{
struct dlm_node_addr *na;
int rv = -EEXIST;
int addr_i;
spin_lock(&dlm_node_addrs_spin);
list_for_each_entry(na, &dlm_node_addrs, list) {
if (!na->addr_count)
continue;
for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
if (addr_compare(na->addr[addr_i], addr)) {
*nodeid = na->nodeid;
*mark = na->mark;
rv = 0;
goto unlock;
}
}
}
unlock:
spin_unlock(&dlm_node_addrs_spin);
return rv;
}
/* caller need to held dlm_node_addrs_spin lock */
static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na,
const struct sockaddr_storage *addr)
{
int i;
for (i = 0; i < na->addr_count; i++) {
if (addr_compare(na->addr[i], addr))
return true;
}
return false;
}
int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
{
struct sockaddr_storage *new_addr;
struct dlm_node_addr *new_node, *na;
bool ret;
new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
if (!new_node)
return -ENOMEM;
new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
if (!new_addr) {
kfree(new_node);
return -ENOMEM;
}
memcpy(new_addr, addr, len);
spin_lock(&dlm_node_addrs_spin);
na = find_node_addr(nodeid);
if (!na) {
new_node->nodeid = nodeid;
new_node->addr[0] = new_addr;
new_node->addr_count = 1;
new_node->mark = dlm_config.ci_mark;
list_add(&new_node->list, &dlm_node_addrs);
spin_unlock(&dlm_node_addrs_spin);
return 0;
}
ret = dlm_lowcomms_na_has_addr(na, addr);
if (ret) {
spin_unlock(&dlm_node_addrs_spin);
kfree(new_addr);
kfree(new_node);
return -EEXIST;
}
if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
spin_unlock(&dlm_node_addrs_spin);
kfree(new_addr);
kfree(new_node);
return -ENOSPC;
}
na->addr[na->addr_count++] = new_addr;
spin_unlock(&dlm_node_addrs_spin);
kfree(new_node);
return 0;
}
/* Data available on socket or listen socket received a connect */
static void lowcomms_data_ready(struct sock *sk)
{
struct connection *con;
read_lock_bh(&sk->sk_callback_lock);
con = sock2con(sk);
if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
queue_work(recv_workqueue, &con->rwork);
read_unlock_bh(&sk->sk_callback_lock);
}
static void lowcomms_listen_data_ready(struct sock *sk)
{
queue_work(recv_workqueue, &listen_con.rwork);
}
static void lowcomms_write_space(struct sock *sk)
{
struct connection *con;
read_lock_bh(&sk->sk_callback_lock);
con = sock2con(sk);
if (!con)
goto out;
if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
log_print("successful connected to node %d", con->nodeid);
queue_work(send_workqueue, &con->swork);
goto out;
}
clear_bit(SOCK_NOSPACE, &con->sock->flags);
if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
con->sock->sk->sk_write_pending--;
clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
}
queue_work(send_workqueue, &con->swork);
out:
read_unlock_bh(&sk->sk_callback_lock);
}
static inline void lowcomms_connect_sock(struct connection *con)
{
if (test_bit(CF_CLOSE, &con->flags))
return;
queue_work(send_workqueue, &con->swork);
cond_resched();
}
static void lowcomms_state_change(struct sock *sk)
{
/* SCTP layer is not calling sk_data_ready when the connection
* is done, so we catch the signal through here. Also, it
* doesn't switch socket state when entering shutdown, so we
* skip the write in that case.
*/
if (sk->sk_shutdown) {
if (sk->sk_shutdown == RCV_SHUTDOWN)
lowcomms_data_ready(sk);
} else if (sk->sk_state == TCP_ESTABLISHED) {
lowcomms_write_space(sk);
}
}
int dlm_lowcomms_connect_node(int nodeid)
{
struct connection *con;
if (nodeid == dlm_our_nodeid())
return 0;
con = nodeid2con(nodeid, GFP_NOFS);
if (!con)
return -ENOMEM;
lowcomms_connect_sock(con);
return 0;
}
int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
{
struct dlm_node_addr *na;
spin_lock(&dlm_node_addrs_spin);
na = find_node_addr(nodeid);
if (!na) {
spin_unlock(&dlm_node_addrs_spin);
return -ENOENT;
}
na->mark = mark;
spin_unlock(&dlm_node_addrs_spin);
return 0;
}
static void lowcomms_error_report(struct sock *sk)
{
struct connection *con;
struct sockaddr_storage saddr;
void (*orig_report)(struct sock *) = NULL;
read_lock_bh(&sk->sk_callback_lock);
con = sock2con(sk);
if (con == NULL)
goto out;
orig_report = listen_sock.sk_error_report;
if (con->sock == NULL ||
kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
"sending to node %d, port %d, "
"sk_err=%d/%d\n", dlm_our_nodeid(),
con->nodeid, dlm_config.ci_tcp_port,
sk->sk_err, sk->sk_err_soft);
} else if (saddr.ss_family == AF_INET) {
struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
"sending to node %d at %pI4, port %d, "
"sk_err=%d/%d\n", dlm_our_nodeid(),
con->nodeid, &sin4->sin_addr.s_addr,
dlm_config.ci_tcp_port, sk->sk_err,
sk->sk_err_soft);
} else {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
"sending to node %d at %u.%u.%u.%u, "
"port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
con->nodeid, sin6->sin6_addr.s6_addr32[0],
sin6->sin6_addr.s6_addr32[1],
sin6->sin6_addr.s6_addr32[2],
sin6->sin6_addr.s6_addr32[3],
dlm_config.ci_tcp_port, sk->sk_err,
sk->sk_err_soft);
}
out:
read_unlock_bh(&sk->sk_callback_lock);
if (orig_report)
orig_report(sk);
}
/* Note: sk_callback_lock must be locked before calling this function. */
static void save_listen_callbacks(struct socket *sock)
{
struct sock *sk = sock->sk;
listen_sock.sk_data_ready = sk->sk_data_ready;
listen_sock.sk_state_change = sk->sk_state_change;
listen_sock.sk_write_space = sk->sk_write_space;
listen_sock.sk_error_report = sk->sk_error_report;
}
static void restore_callbacks(struct socket *sock)
{
struct sock *sk = sock->sk;
write_lock_bh(&sk->sk_callback_lock);
sk->sk_user_data = NULL;
sk->sk_data_ready = listen_sock.sk_data_ready;
sk->sk_state_change = listen_sock.sk_state_change;
sk->sk_write_space = listen_sock.sk_write_space;
sk->sk_error_report = listen_sock.sk_error_report;
write_unlock_bh(&sk->sk_callback_lock);
}
static void add_listen_sock(struct socket *sock, struct listen_connection *con)
{
struct sock *sk = sock->sk;
write_lock_bh(&sk->sk_callback_lock);
save_listen_callbacks(sock);
con->sock = sock;
sk->sk_user_data = con;
sk->sk_allocation = GFP_NOFS;
/* Install a data_ready callback */
sk->sk_data_ready = lowcomms_listen_data_ready;
write_unlock_bh(&sk->sk_callback_lock);
}
/* Make a socket active */
static void add_sock(struct socket *sock, struct connection *con)
{
struct sock *sk = sock->sk;
write_lock_bh(&sk->sk_callback_lock);
con->sock = sock;
sk->sk_user_data = con;
/* Install a data_ready callback */
sk->sk_data_ready = lowcomms_data_ready;
sk->sk_write_space = lowcomms_write_space;
sk->sk_state_change = lowcomms_state_change;
sk->sk_allocation = GFP_NOFS;
sk->sk_error_report = lowcomms_error_report;
write_unlock_bh(&sk->sk_callback_lock);
}
/* Add the port number to an IPv6 or 4 sockaddr and return the address
length */
static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
int *addr_len)
{
saddr->ss_family = dlm_local_addr[0]->ss_family;
if (saddr->ss_family == AF_INET) {
struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
in4_addr->sin_port = cpu_to_be16(port);
*addr_len = sizeof(struct sockaddr_in);
memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
} else {
struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
in6_addr->sin6_port = cpu_to_be16(port);
*addr_len = sizeof(struct sockaddr_in6);
}
memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
}
static void dlm_close_sock(struct socket **sock)
{
if (*sock) {
restore_callbacks(*sock);
sock_release(*sock);
*sock = NULL;
}
}
/* Close a remote connection and tidy up */
static void close_connection(struct connection *con, bool and_other,
bool tx, bool rx)
{
bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
if (tx && !closing && cancel_work_sync(&con->swork)) {
log_print("canceled swork for node %d", con->nodeid);
clear_bit(CF_WRITE_PENDING, &con->flags);
}
if (rx && !closing && cancel_work_sync(&con->rwork)) {
log_print("canceled rwork for node %d", con->nodeid);
clear_bit(CF_READ_PENDING, &con->flags);
}
mutex_lock(&con->sock_mutex);
dlm_close_sock(&con->sock);
if (con->othercon && and_other) {
/* Will only re-enter once. */
close_connection(con->othercon, false, true, true);
}
con->rx_leftover = 0;
con->retries = 0;
clear_bit(CF_CONNECTED, &con->flags);
mutex_unlock(&con->sock_mutex);
clear_bit(CF_CLOSING, &con->flags);
}
static void shutdown_connection(struct connection *con)
{
int ret;
if (cancel_work_sync(&con->swork)) {
log_print("canceled swork for node %d", con->nodeid);
clear_bit(CF_WRITE_PENDING, &con->flags);
}
mutex_lock(&con->sock_mutex);
/* nothing to shutdown */
if (!con->sock) {
mutex_unlock(&con->sock_mutex);
return;
}
set_bit(CF_SHUTDOWN, &con->flags);
ret = kernel_sock_shutdown(con->sock, SHUT_WR);
mutex_unlock(&con->sock_mutex);
if (ret) {
log_print("Connection %p failed to shutdown: %d will force close",
con, ret);
goto force_close;
} else {
ret = wait_event_timeout(con->shutdown_wait,
!test_bit(CF_SHUTDOWN, &con->flags),
DLM_SHUTDOWN_WAIT_TIMEOUT);
if (ret == 0) {
log_print("Connection %p shutdown timed out, will force close",
con);
goto force_close;
}
}
return;
force_close:
clear_bit(CF_SHUTDOWN, &con->flags);
close_connection(con, false, true, true);
}
static void dlm_tcp_shutdown(struct connection *con)
{
if (con->othercon)
shutdown_connection(con->othercon);
shutdown_connection(con);
}
static int con_realloc_receive_buf(struct connection *con, int newlen)
{
unsigned char *newbuf;
newbuf = kmalloc(newlen, GFP_NOFS);
if (!newbuf)
return -ENOMEM;
/* copy any leftover from last receive */
if (con->rx_leftover)
memmove(newbuf, con->rx_buf, con->rx_leftover);
/* swap to new buffer space */
kfree(con->rx_buf);
con->rx_buflen = newlen;
con->rx_buf = newbuf;
return 0;
}
/* Data received from remote end */
static int receive_from_sock(struct connection *con)
{
int call_again_soon = 0;
struct msghdr msg;
struct kvec iov;
int ret, buflen;
mutex_lock(&con->sock_mutex);
if (con->sock == NULL) {
ret = -EAGAIN;
goto out_close;
}
/* realloc if we get new buffer size to read out */
buflen = dlm_config.ci_buffer_size;
if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
ret = con_realloc_receive_buf(con, buflen);
if (ret < 0)
goto out_resched;
}
/* calculate new buffer parameter regarding last receive and
* possible leftover bytes
*/
iov.iov_base = con->rx_buf + con->rx_leftover;
iov.iov_len = con->rx_buflen - con->rx_leftover;
memset(&msg, 0, sizeof(msg));
msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
msg.msg_flags);
if (ret <= 0)
goto out_close;
else if (ret == iov.iov_len)
call_again_soon = 1;
/* new buflen according readed bytes and leftover from last receive */
buflen = ret + con->rx_leftover;
ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
if (ret < 0)
goto out_close;
/* calculate leftover bytes from process and put it into begin of
* the receive buffer, so next receive we have the full message
* at the start address of the receive buffer.
*/
con->rx_leftover = buflen - ret;
if (con->rx_leftover) {
memmove(con->rx_buf, con->rx_buf + ret,
con->rx_leftover);
call_again_soon = true;
}
if (call_again_soon)
goto out_resched;
mutex_unlock(&con->sock_mutex);
return 0;
out_resched:
if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
queue_work(recv_workqueue, &con->rwork);
mutex_unlock(&con->sock_mutex);
return -EAGAIN;
out_close:
mutex_unlock(&con->sock_mutex);
if (ret != -EAGAIN) {
/* Reconnect when there is something to send */
close_connection(con, false, true, false);
if (ret == 0) {
log_print("connection %p got EOF from %d",
con, con->nodeid);
/* handling for tcp shutdown */
clear_bit(CF_SHUTDOWN, &con->flags);
wake_up(&con->shutdown_wait);
/* signal to breaking receive worker */
ret = -1;
}
}
return ret;
}
/* Listening socket is busy, accept a connection */
static int accept_from_sock(struct listen_connection *con)
{
int result;
struct sockaddr_storage peeraddr;
struct socket *newsock;
int len;
int nodeid;
struct connection *newcon;
struct connection *addcon;
unsigned int mark;
if (!dlm_allow_conn) {
return -1;
}
if (!con->sock)
return -ENOTCONN;
result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
if (result < 0)
goto accept_err;
/* Get the connected socket's peer */
memset(&peeraddr, 0, sizeof(peeraddr));
len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
if (len < 0) {
result = -ECONNABORTED;
goto accept_err;
}
/* Get the new node's NODEID */
make_sockaddr(&peeraddr, 0, &len);
if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
unsigned char *b=(unsigned char *)&peeraddr;
log_print("connect from non cluster node");
print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
b, sizeof(struct sockaddr_storage));
sock_release(newsock);
return -1;
}
log_print("got connection from %d", nodeid);
/* Check to see if we already have a connection to this node. This
* could happen if the two nodes initiate a connection at roughly
* the same time and the connections cross on the wire.
* In this case we store the incoming one in "othercon"
*/
newcon = nodeid2con(nodeid, GFP_NOFS);
if (!newcon) {
result = -ENOMEM;
goto accept_err;
}
sock_set_mark(newsock->sk, mark);
mutex_lock(&newcon->sock_mutex);
if (newcon->sock) {
struct connection *othercon = newcon->othercon;
if (!othercon) {
othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
if (!othercon) {
log_print("failed to allocate incoming socket");
mutex_unlock(&newcon->sock_mutex);
result = -ENOMEM;
goto accept_err;
}
result = dlm_con_init(othercon, nodeid);
if (result < 0) {
kfree(othercon);
goto accept_err;
}
newcon->othercon = othercon;
} else {
/* close other sock con if we have something new */
close_connection(othercon, false, true, false);
}
mutex_lock_nested(&othercon->sock_mutex, 1);
add_sock(newsock, othercon);
addcon = othercon;
mutex_unlock(&othercon->sock_mutex);
}
else {
/* accept copies the sk after we've saved the callbacks, so we
don't want to save them a second time or comm errors will
result in calling sk_error_report recursively. */
add_sock(newsock, newcon);
addcon = newcon;
}
set_bit(CF_CONNECTED, &addcon->flags);
mutex_unlock(&newcon->sock_mutex);
/*
* Add it to the active queue in case we got data
* between processing the accept adding the socket
* to the read_sockets list
*/
if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
queue_work(recv_workqueue, &addcon->rwork);
return 0;
accept_err:
if (newsock)
sock_release(newsock);
if (result != -EAGAIN)
log_print("error accepting connection from node: %d", result);
return result;
}
static void free_entry(struct writequeue_entry *e)
{
__free_page(e->page);
kfree(e);
}
/*
* writequeue_entry_complete - try to delete and free write queue entry
* @e: write queue entry to try to delete
* @completed: bytes completed
*
* writequeue_lock must be held.
*/
static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
{
e->offset += completed;
e->len -= completed;
if (e->len == 0 && e->users == 0) {
list_del(&e->list);
free_entry(e);
}
}
/*
* sctp_bind_addrs - bind a SCTP socket to all our addresses
*/
static int sctp_bind_addrs(struct socket *sock, uint16_t port)
{
struct sockaddr_storage localaddr;
struct sockaddr *addr = (struct sockaddr *)&localaddr;
int i, addr_len, result = 0;
for (i = 0; i < dlm_local_count; i++) {
memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
make_sockaddr(&localaddr, port, &addr_len);
if (!i)
result = kernel_bind(sock, addr, addr_len);
else
result = sock_bind_add(sock->sk, addr, addr_len);
if (result < 0) {
log_print("Can't bind to %d addr number %d, %d.\n",
port, i + 1, result);
break;
}
}
return result;
}
/* Initiate an SCTP association.
This is a special case of send_to_sock() in that we don't yet have a
peeled-off socket for this association, so we use the listening socket
and add the primary IP address of the remote node.
*/
static void sctp_connect_to_sock(struct connection *con)
{
struct sockaddr_storage daddr;
int result;
int addr_len;
struct socket *sock;
unsigned int mark;
mutex_lock(&con->sock_mutex);
/* Some odd races can cause double-connects, ignore them */
if (con->retries++ > MAX_CONNECT_RETRIES)
goto out;
if (con->sock) {
log_print("node %d already connected.", con->nodeid);
goto out;
}
memset(&daddr, 0, sizeof(daddr));
result = nodeid_to_addr(con->nodeid, &daddr, NULL, true, &mark);
if (result < 0) {
log_print("no address for nodeid %d", con->nodeid);
goto out;
}
/* Create a socket to communicate with */
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
SOCK_STREAM, IPPROTO_SCTP, &sock);
if (result < 0)
goto socket_err;
sock_set_mark(sock->sk, mark);
add_sock(sock, con);
/* Bind to all addresses. */
if (sctp_bind_addrs(con->sock, 0))
goto bind_err;
make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
log_print("connecting to %d", con->nodeid);
/* Turn off Nagle's algorithm */
sctp_sock_set_nodelay(sock->sk);
/*
* Make sock->ops->connect() function return in specified time,
* since O_NONBLOCK argument in connect() function does not work here,
* then, we should restore the default value of this attribute.
*/
sock_set_sndtimeo(sock->sk, 5);
result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
0);
sock_set_sndtimeo(sock->sk, 0);
if (result == -EINPROGRESS)
result = 0;
if (result == 0) {
if (!test_and_set_bit(CF_CONNECTED, &con->flags))
log_print("successful connected to node %d", con->nodeid);
goto out;
}
bind_err:
con->sock = NULL;
sock_release(sock);
socket_err:
/*
* Some errors are fatal and this list might need adjusting. For other
* errors we try again until the max number of retries is reached.
*/
if (result != -EHOSTUNREACH &&
result != -ENETUNREACH &&
result != -ENETDOWN &&
result != -EINVAL &&
result != -EPROTONOSUPPORT) {
log_print("connect %d try %d error %d", con->nodeid,
con->retries, result);
mutex_unlock(&con->sock_mutex);
msleep(1000);
lowcomms_connect_sock(con);
return;
}
out:
mutex_unlock(&con->sock_mutex);
}
/* Connect a new socket to its peer */
static void tcp_connect_to_sock(struct connection *con)
{
struct sockaddr_storage saddr, src_addr;
unsigned int mark;
int addr_len;
struct socket *sock = NULL;
int result;
mutex_lock(&con->sock_mutex);
if (con->retries++ > MAX_CONNECT_RETRIES)
goto out;
/* Some odd races can cause double-connects, ignore them */
if (con->sock)
goto out;
/* Create a socket to communicate with */
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
SOCK_STREAM, IPPROTO_TCP, &sock);
if (result < 0)
goto out_err;
memset(&saddr, 0, sizeof(saddr));
result = nodeid_to_addr(con->nodeid, &saddr, NULL, false, &mark);
if (result < 0) {
log_print("no address for nodeid %d", con->nodeid);
goto out_err;
}
sock_set_mark(sock->sk, mark);
add_sock(sock, con);
/* Bind to our cluster-known address connecting to avoid
routing problems */
memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
make_sockaddr(&src_addr, 0, &addr_len);
result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
addr_len);
if (result < 0) {
log_print("could not bind for connect: %d", result);
/* This *may* not indicate a critical error */
}
make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
log_print("connecting to %d", con->nodeid);
/* Turn off Nagle's algorithm */
tcp_sock_set_nodelay(sock->sk);
result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
O_NONBLOCK);
if (result == -EINPROGRESS)
result = 0;
if (result == 0)
goto out;
out_err:
if (con->sock) {
sock_release(con->sock);
con->sock = NULL;
} else if (sock) {
sock_release(sock);
}
/*
* Some errors are fatal and this list might need adjusting. For other
* errors we try again until the max number of retries is reached.
*/
if (result != -EHOSTUNREACH &&
result != -ENETUNREACH &&
result != -ENETDOWN &&
result != -EINVAL &&
result != -EPROTONOSUPPORT) {
log_print("connect %d try %d error %d", con->nodeid,
con->retries, result);
mutex_unlock(&con->sock_mutex);
msleep(1000);
lowcomms_connect_sock(con);
return;
}
out:
mutex_unlock(&con->sock_mutex);
return;
}
/* On error caller must run dlm_close_sock() for the
* listen connection socket.
*/
static int tcp_create_listen_sock(struct listen_connection *con,
struct sockaddr_storage *saddr)
{
struct socket *sock = NULL;
int result = 0;
int addr_len;
if (dlm_local_addr[0]->ss_family == AF_INET)
addr_len = sizeof(struct sockaddr_in);
else
addr_len = sizeof(struct sockaddr_in6);
/* Create a socket to communicate with */
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
SOCK_STREAM, IPPROTO_TCP, &sock);
if (result < 0) {
log_print("Can't create listening comms socket");
goto create_out;
}
sock_set_mark(sock->sk, dlm_config.ci_mark);
/* Turn off Nagle's algorithm */
tcp_sock_set_nodelay(sock->sk);
sock_set_reuseaddr(sock->sk);
add_listen_sock(sock, con);
/* Bind to our port */
make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
if (result < 0) {
log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
goto create_out;
}
sock_set_keepalive(sock->sk);
result = sock->ops->listen(sock, 5);
if (result < 0) {
log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
goto create_out;
}
return 0;
create_out:
return result;
}
/* Get local addresses */
static void init_local(void)
{
struct sockaddr_storage sas, *addr;
int i;
dlm_local_count = 0;
for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
if (dlm_our_addr(&sas, i))
break;
addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
if (!addr)
break;
dlm_local_addr[dlm_local_count++] = addr;
}
}
static void deinit_local(void)
{
int i;
for (i = 0; i < dlm_local_count; i++)
kfree(dlm_local_addr[i]);
}
/* Initialise SCTP socket and bind to all interfaces
* On error caller must run dlm_close_sock() for the
* listen connection socket.
*/
static int sctp_listen_for_all(struct listen_connection *con)
{
struct socket *sock = NULL;
int result = -EINVAL;
log_print("Using SCTP for communications");
result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
SOCK_STREAM, IPPROTO_SCTP, &sock);
if (result < 0) {
log_print("Can't create comms socket, check SCTP is loaded");
goto out;
}
sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
sock_set_mark(sock->sk, dlm_config.ci_mark);
sctp_sock_set_nodelay(sock->sk);
add_listen_sock(sock, con);
/* Bind to all addresses. */
result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port);
if (result < 0)
goto out;
result = sock->ops->listen(sock, 5);
if (result < 0) {
log_print("Can't set socket listening");
goto out;
}
return 0;
out:
return result;
}
static int tcp_listen_for_all(void)
{
/* We don't support multi-homed hosts */
if (dlm_local_count > 1) {
log_print("TCP protocol can't handle multi-homed hosts, "
"try SCTP");
return -EINVAL;
}
log_print("Using TCP for communications");
return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]);
}
static struct writequeue_entry *new_writequeue_entry(struct connection *con,
gfp_t allocation)
{
struct writequeue_entry *entry;
entry = kmalloc(sizeof(struct writequeue_entry), allocation);
if (!entry)
return NULL;
entry->page = alloc_page(allocation);
if (!entry->page) {
kfree(entry);
return NULL;
}
entry->offset = 0;
entry->len = 0;
entry->end = 0;
entry->users = 0;
entry->con = con;
return entry;
}
void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
{
struct connection *con;
struct writequeue_entry *e;
int offset = 0;
if (len > LOWCOMMS_MAX_TX_BUFFER_LEN) {
BUILD_BUG_ON(PAGE_SIZE < LOWCOMMS_MAX_TX_BUFFER_LEN);
log_print("failed to allocate a buffer of size %d", len);
return NULL;
}
con = nodeid2con(nodeid, allocation);
if (!con)
return NULL;
spin_lock(&con->writequeue_lock);
e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
if ((&e->list == &con->writequeue) ||
(PAGE_SIZE - e->end < len)) {
e = NULL;
} else {
offset = e->end;
e->end += len;
e->users++;
}
spin_unlock(&con->writequeue_lock);
if (e) {
got_one:
*ppc = page_address(e->page) + offset;
return e;
}
e = new_writequeue_entry(con, allocation);
if (e) {
spin_lock(&con->writequeue_lock);
offset = e->end;
e->end += len;
e->users++;
list_add_tail(&e->list, &con->writequeue);
spin_unlock(&con->writequeue_lock);
goto got_one;
}
return NULL;
}
void dlm_lowcomms_commit_buffer(void *mh)
{
struct writequeue_entry *e = (struct writequeue_entry *)mh;
struct connection *con = e->con;
int users;
spin_lock(&con->writequeue_lock);
users = --e->users;
if (users)
goto out;
e->len = e->end - e->offset;
spin_unlock(&con->writequeue_lock);
queue_work(send_workqueue, &con->swork);
return;
out:
spin_unlock(&con->writequeue_lock);
return;
}
/* Send a message */
static void send_to_sock(struct connection *con)
{
int ret = 0;
const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
struct writequeue_entry *e;
int len, offset;
int count = 0;
mutex_lock(&con->sock_mutex);
if (con->sock == NULL)
goto out_connect;
spin_lock(&con->writequeue_lock);
for (;;) {
e = list_entry(con->writequeue.next, struct writequeue_entry,
list);
if ((struct list_head *) e == &con->writequeue)
break;
len = e->len;
offset = e->offset;
BUG_ON(len == 0 && e->users == 0);
spin_unlock(&con->writequeue_lock);
ret = 0;
if (len) {
ret = kernel_sendpage(con->sock, e->page, offset, len,
msg_flags);
if (ret == -EAGAIN || ret == 0) {
if (ret == -EAGAIN &&
test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
!test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
/* Notify TCP that we're limited by the
* application window size.
*/
set_bit(SOCK_NOSPACE, &con->sock->flags);
con->sock->sk->sk_write_pending++;
}
cond_resched();
goto out;
} else if (ret < 0)
goto send_error;
}
/* Don't starve people filling buffers */
if (++count >= MAX_SEND_MSG_COUNT) {
cond_resched();
count = 0;
}
spin_lock(&con->writequeue_lock);
writequeue_entry_complete(e, ret);
}
spin_unlock(&con->writequeue_lock);
out:
mutex_unlock(&con->sock_mutex);
return;
send_error:
mutex_unlock(&con->sock_mutex);
close_connection(con, false, false, true);
/* Requeue the send work. When the work daemon runs again, it will try
a new connection, then call this function again. */
queue_work(send_workqueue, &con->swork);
return;
out_connect:
mutex_unlock(&con->sock_mutex);
queue_work(send_workqueue, &con->swork);
cond_resched();
}
static void clean_one_writequeue(struct connection *con)
{
struct writequeue_entry *e, *safe;
spin_lock(&con->writequeue_lock);
list_for_each_entry_safe(e, safe, &con->writequeue, list) {
list_del(&e->list);
free_entry(e);
}
spin_unlock(&con->writequeue_lock);
}
/* Called from recovery when it knows that a node has
left the cluster */
int dlm_lowcomms_close(int nodeid)
{
struct connection *con;
struct dlm_node_addr *na;
log_print("closing connection to node %d", nodeid);
con = nodeid2con(nodeid, 0);
if (con) {
set_bit(CF_CLOSE, &con->flags);
close_connection(con, true, true, true);
clean_one_writequeue(con);
if (con->othercon)
clean_one_writequeue(con->othercon);
}
spin_lock(&dlm_node_addrs_spin);
na = find_node_addr(nodeid);
if (na) {
list_del(&na->list);
while (na->addr_count--)
kfree(na->addr[na->addr_count]);
kfree(na);
}
spin_unlock(&dlm_node_addrs_spin);
return 0;
}
/* Receive workqueue function */
static void process_recv_sockets(struct work_struct *work)
{
struct connection *con = container_of(work, struct connection, rwork);
int err;
clear_bit(CF_READ_PENDING, &con->flags);
do {
err = receive_from_sock(con);
} while (!err);
}
static void process_listen_recv_socket(struct work_struct *work)
{
accept_from_sock(&listen_con);
}
/* Send workqueue function */
static void process_send_sockets(struct work_struct *work)
{
struct connection *con = container_of(work, struct connection, swork);
clear_bit(CF_WRITE_PENDING, &con->flags);
if (con->sock == NULL) /* not mutex protected so check it inside too */
con->connect_action(con);
if (!list_empty(&con->writequeue))
send_to_sock(con);
}
static void work_stop(void)
{
if (recv_workqueue)
destroy_workqueue(recv_workqueue);
if (send_workqueue)
destroy_workqueue(send_workqueue);
}
static int work_start(void)
{
recv_workqueue = alloc_workqueue("dlm_recv",
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!recv_workqueue) {
log_print("can't start dlm_recv");
return -ENOMEM;
}
send_workqueue = alloc_workqueue("dlm_send",
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!send_workqueue) {
log_print("can't start dlm_send");
destroy_workqueue(recv_workqueue);
return -ENOMEM;
}
return 0;
}
static void _stop_conn(struct connection *con, bool and_other)
{
mutex_lock(&con->sock_mutex);
set_bit(CF_CLOSE, &con->flags);
set_bit(CF_READ_PENDING, &con->flags);
set_bit(CF_WRITE_PENDING, &con->flags);
if (con->sock && con->sock->sk) {
write_lock_bh(&con->sock->sk->sk_callback_lock);
con->sock->sk->sk_user_data = NULL;
write_unlock_bh(&con->sock->sk->sk_callback_lock);
}
if (con->othercon && and_other)
_stop_conn(con->othercon, false);
mutex_unlock(&con->sock_mutex);
}
static void stop_conn(struct connection *con)
{
_stop_conn(con, true);
}
static void shutdown_conn(struct connection *con)
{
if (con->shutdown_action)
con->shutdown_action(con);
}
static void connection_release(struct rcu_head *rcu)
{
struct connection *con = container_of(rcu, struct connection, rcu);
kfree(con->rx_buf);
kfree(con);
}
static void free_conn(struct connection *con)
{
close_connection(con, true, true, true);
spin_lock(&connections_lock);
hlist_del_rcu(&con->list);
spin_unlock(&connections_lock);
if (con->othercon) {
clean_one_writequeue(con->othercon);
call_srcu(&connections_srcu, &con->othercon->rcu,
connection_release);
}
clean_one_writequeue(con);
call_srcu(&connections_srcu, &con->rcu, connection_release);
}
static void work_flush(void)
{
int ok, idx;
int i;
struct connection *con;
do {
ok = 1;
foreach_conn(stop_conn);
if (recv_workqueue)
flush_workqueue(recv_workqueue);
if (send_workqueue)
flush_workqueue(send_workqueue);
idx = srcu_read_lock(&connections_srcu);
for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
hlist_for_each_entry_rcu(con, &connection_hash[i],
list) {
ok &= test_bit(CF_READ_PENDING, &con->flags);
ok &= test_bit(CF_WRITE_PENDING, &con->flags);
if (con->othercon) {
ok &= test_bit(CF_READ_PENDING,
&con->othercon->flags);
ok &= test_bit(CF_WRITE_PENDING,
&con->othercon->flags);
}
}
}
srcu_read_unlock(&connections_srcu, idx);
} while (!ok);
}
void dlm_lowcomms_stop(void)
{
/* Set all the flags to prevent any
socket activity.
*/
dlm_allow_conn = 0;
if (recv_workqueue)
flush_workqueue(recv_workqueue);
if (send_workqueue)
flush_workqueue(send_workqueue);
dlm_close_sock(&listen_con.sock);
foreach_conn(shutdown_conn);
work_flush();
foreach_conn(free_conn);
work_stop();
deinit_local();
}
int dlm_lowcomms_start(void)
{
int error = -EINVAL;
int i;
for (i = 0; i < CONN_HASH_SIZE; i++)
INIT_HLIST_HEAD(&connection_hash[i]);
init_local();
if (!dlm_local_count) {
error = -ENOTCONN;
log_print("no local IP address has been set");
goto fail;
}
INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
error = work_start();
if (error)
goto fail;
dlm_allow_conn = 1;
/* Start listening */
if (dlm_config.ci_protocol == 0)
error = tcp_listen_for_all();
else
error = sctp_listen_for_all(&listen_con);
if (error)
goto fail_unlisten;
return 0;
fail_unlisten:
dlm_allow_conn = 0;
dlm_close_sock(&listen_con.sock);
fail:
return error;
}
void dlm_lowcomms_exit(void)
{
struct dlm_node_addr *na, *safe;
spin_lock(&dlm_node_addrs_spin);
list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
list_del(&na->list);
while (na->addr_count--)
kfree(na->addr[na->addr_count]);
kfree(na);
}
spin_unlock(&dlm_node_addrs_spin);
}