Signed-off-by: Emil Tantilov <emil.s.tantilov@intel.com> Tested-by: Stephen Ko <stephen.s.ko@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
		
			
				
	
	
		
			2886 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2886 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*******************************************************************************
 | |
| 
 | |
|   Intel 10 Gigabit PCI Express Linux driver
 | |
|   Copyright(c) 1999 - 2011 Intel Corporation.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify it
 | |
|   under the terms and conditions of the GNU General Public License,
 | |
|   version 2, as published by the Free Software Foundation.
 | |
| 
 | |
|   This program is distributed in the hope it will be useful, but WITHOUT
 | |
|   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|   more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License along with
 | |
|   this program; if not, write to the Free Software Foundation, Inc.,
 | |
|   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 | |
| 
 | |
|   The full GNU General Public License is included in this distribution in
 | |
|   the file called "COPYING".
 | |
| 
 | |
|   Contact Information:
 | |
|   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
| 
 | |
| *******************************************************************************/
 | |
| 
 | |
| #include <linux/pci.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/netdevice.h>
 | |
| 
 | |
| #include "ixgbe.h"
 | |
| #include "ixgbe_common.h"
 | |
| #include "ixgbe_phy.h"
 | |
| 
 | |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
 | |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
 | |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
 | |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
 | |
|                                         u16 count);
 | |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
 | |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
 | |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
 | |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
 | |
| 
 | |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
 | |
| static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
 | |
| 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
 | |
| static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Starts the hardware by filling the bus info structure and media type, clears
 | |
|  *  all on chip counters, initializes receive address registers, multicast
 | |
|  *  table, VLAN filter table, calls routine to set up link and flow control
 | |
|  *  settings, and leaves transmit and receive units disabled and uninitialized
 | |
|  **/
 | |
| s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 ctrl_ext;
 | |
| 
 | |
| 	/* Set the media type */
 | |
| 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 | |
| 
 | |
| 	/* Identify the PHY */
 | |
| 	hw->phy.ops.identify(hw);
 | |
| 
 | |
| 	/* Clear the VLAN filter table */
 | |
| 	hw->mac.ops.clear_vfta(hw);
 | |
| 
 | |
| 	/* Clear statistics registers */
 | |
| 	hw->mac.ops.clear_hw_cntrs(hw);
 | |
| 
 | |
| 	/* Set No Snoop Disable */
 | |
| 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 | |
| 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	/* Setup flow control */
 | |
| 	ixgbe_setup_fc(hw, 0);
 | |
| 
 | |
| 	/* Clear adapter stopped flag */
 | |
| 	hw->adapter_stopped = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_init_hw_generic - Generic hardware initialization
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Initialize the hardware by resetting the hardware, filling the bus info
 | |
|  *  structure and media type, clears all on chip counters, initializes receive
 | |
|  *  address registers, multicast table, VLAN filter table, calls routine to set
 | |
|  *  up link and flow control settings, and leaves transmit and receive units
 | |
|  *  disabled and uninitialized
 | |
|  **/
 | |
| s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status;
 | |
| 
 | |
| 	/* Reset the hardware */
 | |
| 	status = hw->mac.ops.reset_hw(hw);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		/* Start the HW */
 | |
| 		status = hw->mac.ops.start_hw(hw);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Clears all hardware statistics counters by reading them from the hardware
 | |
|  *  Statistics counters are clear on read.
 | |
|  **/
 | |
| s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u16 i = 0;
 | |
| 
 | |
| 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 | |
| 
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MLFC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MRFC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RLEC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 | |
| 	if (hw->mac.type >= ixgbe_mac_82599EB) {
 | |
| 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 | |
| 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 | |
| 	} else {
 | |
| 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 | |
| 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 | |
| 		if (hw->mac.type >= ixgbe_mac_82599EB) {
 | |
| 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 | |
| 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 | |
| 		} else {
 | |
| 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 | |
| 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 | |
| 		}
 | |
| 	}
 | |
| 	if (hw->mac.type >= ixgbe_mac_82599EB)
 | |
| 		for (i = 0; i < 8; i++)
 | |
| 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC64);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC127);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC255);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC511);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_BPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GPTC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GORCL);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GORCH);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RUC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RFC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_ROC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RJC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TORL);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TORH);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TPR);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TPT);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC64);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC127);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC255);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC511);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MPTC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_BPTC);
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 | |
| 		if (hw->mac.type >= ixgbe_mac_82599EB) {
 | |
| 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 | |
| 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 | |
| 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 | |
| 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 | |
| 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 | |
| 		} else {
 | |
| 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 | |
| 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac.type == ixgbe_mac_X540) {
 | |
| 		if (hw->phy.id == 0)
 | |
| 			hw->phy.ops.identify(hw);
 | |
| 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
 | |
| 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
 | |
| 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
 | |
| 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @pba_num: stores the part number string from the EEPROM
 | |
|  *  @pba_num_size: part number string buffer length
 | |
|  *
 | |
|  *  Reads the part number string from the EEPROM.
 | |
|  **/
 | |
| s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 | |
|                                   u32 pba_num_size)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 	u16 data;
 | |
| 	u16 pba_ptr;
 | |
| 	u16 offset;
 | |
| 	u16 length;
 | |
| 
 | |
| 	if (pba_num == NULL) {
 | |
| 		hw_dbg(hw, "PBA string buffer was null\n");
 | |
| 		return IXGBE_ERR_INVALID_ARGUMENT;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg(hw, "NVM Read Error\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg(hw, "NVM Read Error\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if data is not ptr guard the PBA must be in legacy format which
 | |
| 	 * means pba_ptr is actually our second data word for the PBA number
 | |
| 	 * and we can decode it into an ascii string
 | |
| 	 */
 | |
| 	if (data != IXGBE_PBANUM_PTR_GUARD) {
 | |
| 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 | |
| 
 | |
| 		/* we will need 11 characters to store the PBA */
 | |
| 		if (pba_num_size < 11) {
 | |
| 			hw_dbg(hw, "PBA string buffer too small\n");
 | |
| 			return IXGBE_ERR_NO_SPACE;
 | |
| 		}
 | |
| 
 | |
| 		/* extract hex string from data and pba_ptr */
 | |
| 		pba_num[0] = (data >> 12) & 0xF;
 | |
| 		pba_num[1] = (data >> 8) & 0xF;
 | |
| 		pba_num[2] = (data >> 4) & 0xF;
 | |
| 		pba_num[3] = data & 0xF;
 | |
| 		pba_num[4] = (pba_ptr >> 12) & 0xF;
 | |
| 		pba_num[5] = (pba_ptr >> 8) & 0xF;
 | |
| 		pba_num[6] = '-';
 | |
| 		pba_num[7] = 0;
 | |
| 		pba_num[8] = (pba_ptr >> 4) & 0xF;
 | |
| 		pba_num[9] = pba_ptr & 0xF;
 | |
| 
 | |
| 		/* put a null character on the end of our string */
 | |
| 		pba_num[10] = '\0';
 | |
| 
 | |
| 		/* switch all the data but the '-' to hex char */
 | |
| 		for (offset = 0; offset < 10; offset++) {
 | |
| 			if (pba_num[offset] < 0xA)
 | |
| 				pba_num[offset] += '0';
 | |
| 			else if (pba_num[offset] < 0x10)
 | |
| 				pba_num[offset] += 'A' - 0xA;
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg(hw, "NVM Read Error\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	if (length == 0xFFFF || length == 0) {
 | |
| 		hw_dbg(hw, "NVM PBA number section invalid length\n");
 | |
| 		return IXGBE_ERR_PBA_SECTION;
 | |
| 	}
 | |
| 
 | |
| 	/* check if pba_num buffer is big enough */
 | |
| 	if (pba_num_size  < (((u32)length * 2) - 1)) {
 | |
| 		hw_dbg(hw, "PBA string buffer too small\n");
 | |
| 		return IXGBE_ERR_NO_SPACE;
 | |
| 	}
 | |
| 
 | |
| 	/* trim pba length from start of string */
 | |
| 	pba_ptr++;
 | |
| 	length--;
 | |
| 
 | |
| 	for (offset = 0; offset < length; offset++) {
 | |
| 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 | |
| 		if (ret_val) {
 | |
| 			hw_dbg(hw, "NVM Read Error\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 		pba_num[offset * 2] = (u8)(data >> 8);
 | |
| 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 | |
| 	}
 | |
| 	pba_num[offset * 2] = '\0';
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_mac_addr_generic - Generic get MAC address
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mac_addr: Adapter MAC address
 | |
|  *
 | |
|  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 | |
|  *  A reset of the adapter must be performed prior to calling this function
 | |
|  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 | |
|  **/
 | |
| s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 | |
| {
 | |
| 	u32 rar_high;
 | |
| 	u32 rar_low;
 | |
| 	u16 i;
 | |
| 
 | |
| 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 | |
| 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 | |
| 
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		mac_addr[i] = (u8)(rar_low >> (i*8));
 | |
| 
 | |
| 	for (i = 0; i < 2; i++)
 | |
| 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 | |
|  **/
 | |
| s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_adapter *adapter = hw->back;
 | |
| 	struct ixgbe_mac_info *mac = &hw->mac;
 | |
| 	u16 link_status;
 | |
| 
 | |
| 	hw->bus.type = ixgbe_bus_type_pci_express;
 | |
| 
 | |
| 	/* Get the negotiated link width and speed from PCI config space */
 | |
| 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 | |
| 	                     &link_status);
 | |
| 
 | |
| 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 | |
| 	case IXGBE_PCI_LINK_WIDTH_1:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x1;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_WIDTH_2:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x2;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_WIDTH_4:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x4;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_WIDTH_8:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x8;
 | |
| 		break;
 | |
| 	default:
 | |
| 		hw->bus.width = ixgbe_bus_width_unknown;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 | |
| 	case IXGBE_PCI_LINK_SPEED_2500:
 | |
| 		hw->bus.speed = ixgbe_bus_speed_2500;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_SPEED_5000:
 | |
| 		hw->bus.speed = ixgbe_bus_speed_5000;
 | |
| 		break;
 | |
| 	default:
 | |
| 		hw->bus.speed = ixgbe_bus_speed_unknown;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mac->ops.set_lan_id(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Determines the LAN function id by reading memory-mapped registers
 | |
|  *  and swaps the port value if requested.
 | |
|  **/
 | |
| void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_bus_info *bus = &hw->bus;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 | |
| 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 | |
| 	bus->lan_id = bus->func;
 | |
| 
 | |
| 	/* check for a port swap */
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 | |
| 	if (reg & IXGBE_FACTPS_LFS)
 | |
| 		bus->func ^= 0x1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 | |
|  *  disables transmit and receive units. The adapter_stopped flag is used by
 | |
|  *  the shared code and drivers to determine if the adapter is in a stopped
 | |
|  *  state and should not touch the hardware.
 | |
|  **/
 | |
| s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 number_of_queues;
 | |
| 	u32 reg_val;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the adapter_stopped flag so other driver functions stop touching
 | |
| 	 * the hardware
 | |
| 	 */
 | |
| 	hw->adapter_stopped = true;
 | |
| 
 | |
| 	/* Disable the receive unit */
 | |
| 	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
 | |
| 	reg_val &= ~(IXGBE_RXCTRL_RXEN);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	msleep(2);
 | |
| 
 | |
| 	/* Clear interrupt mask to stop from interrupts being generated */
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 | |
| 
 | |
| 	/* Clear any pending interrupts */
 | |
| 	IXGBE_READ_REG(hw, IXGBE_EICR);
 | |
| 
 | |
| 	/* Disable the transmit unit.  Each queue must be disabled. */
 | |
| 	number_of_queues = hw->mac.max_tx_queues;
 | |
| 	for (i = 0; i < number_of_queues; i++) {
 | |
| 		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
 | |
| 		if (reg_val & IXGBE_TXDCTL_ENABLE) {
 | |
| 			reg_val &= ~IXGBE_TXDCTL_ENABLE;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 | |
| 	 * access and verify no pending requests
 | |
| 	 */
 | |
| 	ixgbe_disable_pcie_master(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to turn on
 | |
|  **/
 | |
| s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	/* To turn on the LED, set mode to ON. */
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to turn off
 | |
|  **/
 | |
| s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	/* To turn off the LED, set mode to OFF. */
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 | |
|  *  ixgbe_hw struct in order to set up EEPROM access.
 | |
|  **/
 | |
| s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 | |
| 	u32 eec;
 | |
| 	u16 eeprom_size;
 | |
| 
 | |
| 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 | |
| 		eeprom->type = ixgbe_eeprom_none;
 | |
| 		/* Set default semaphore delay to 10ms which is a well
 | |
| 		 * tested value */
 | |
| 		eeprom->semaphore_delay = 10;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for EEPROM present first.
 | |
| 		 * If not present leave as none
 | |
| 		 */
 | |
| 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 		if (eec & IXGBE_EEC_PRES) {
 | |
| 			eeprom->type = ixgbe_eeprom_spi;
 | |
| 
 | |
| 			/*
 | |
| 			 * SPI EEPROM is assumed here.  This code would need to
 | |
| 			 * change if a future EEPROM is not SPI.
 | |
| 			 */
 | |
| 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 | |
| 					    IXGBE_EEC_SIZE_SHIFT);
 | |
| 			eeprom->word_size = 1 << (eeprom_size +
 | |
| 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 | |
| 		}
 | |
| 
 | |
| 		if (eec & IXGBE_EEC_ADDR_SIZE)
 | |
| 			eeprom->address_bits = 16;
 | |
| 		else
 | |
| 			eeprom->address_bits = 8;
 | |
| 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 | |
| 			  "%d\n", eeprom->type, eeprom->word_size,
 | |
| 			  eeprom->address_bits);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @offset: offset within the EEPROM to be written to
 | |
|  *  @data: 16 bit word to be written to the EEPROM
 | |
|  *
 | |
|  *  If ixgbe_eeprom_update_checksum is not called after this function, the
 | |
|  *  EEPROM will most likely contain an invalid checksum.
 | |
|  **/
 | |
| s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 | |
| 
 | |
| 	hw->eeprom.ops.init_params(hw);
 | |
| 
 | |
| 	if (offset >= hw->eeprom.word_size) {
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the EEPROM for writing  */
 | |
| 	status = ixgbe_acquire_eeprom(hw);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		if (ixgbe_ready_eeprom(hw) != 0) {
 | |
| 			ixgbe_release_eeprom(hw);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some SPI eeproms use the 8th address bit embedded in the
 | |
| 		 * opcode
 | |
| 		 */
 | |
| 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
 | |
| 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 | |
| 
 | |
| 		/* Send the Write command (8-bit opcode + addr) */
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
 | |
| 		                            hw->eeprom.address_bits);
 | |
| 
 | |
| 		/* Send the data */
 | |
| 		data = (data >> 8) | (data << 8);
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, data, 16);
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		/* Done with writing - release the EEPROM */
 | |
| 		ixgbe_release_eeprom(hw);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @offset: offset within the EEPROM to be read
 | |
|  *  @data: read 16 bit value from EEPROM
 | |
|  *
 | |
|  *  Reads 16 bit value from EEPROM through bit-bang method
 | |
|  **/
 | |
| s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 | |
|                                        u16 *data)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u16 word_in;
 | |
| 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
 | |
| 
 | |
| 	hw->eeprom.ops.init_params(hw);
 | |
| 
 | |
| 	if (offset >= hw->eeprom.word_size) {
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the EEPROM for reading  */
 | |
| 	status = ixgbe_acquire_eeprom(hw);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		if (ixgbe_ready_eeprom(hw) != 0) {
 | |
| 			ixgbe_release_eeprom(hw);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some SPI eeproms use the 8th address bit embedded in the
 | |
| 		 * opcode
 | |
| 		 */
 | |
| 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
 | |
| 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 | |
| 
 | |
| 		/* Send the READ command (opcode + addr) */
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
 | |
| 		                            hw->eeprom.address_bits);
 | |
| 
 | |
| 		/* Read the data. */
 | |
| 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
 | |
| 		*data = (word_in >> 8) | (word_in << 8);
 | |
| 
 | |
| 		/* End this read operation */
 | |
| 		ixgbe_release_eeprom(hw);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @offset: offset of  word in the EEPROM to read
 | |
|  *  @data: word read from the EEPROM
 | |
|  *
 | |
|  *  Reads a 16 bit word from the EEPROM using the EERD register.
 | |
|  **/
 | |
| s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
 | |
| {
 | |
| 	u32 eerd;
 | |
| 	s32 status;
 | |
| 
 | |
| 	hw->eeprom.ops.init_params(hw);
 | |
| 
 | |
| 	if (offset >= hw->eeprom.word_size) {
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
 | |
| 	       IXGBE_EEPROM_RW_REG_START;
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
 | |
| 	status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
 | |
| 
 | |
| 	if (status == 0)
 | |
| 		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
 | |
| 		         IXGBE_EEPROM_RW_REG_DATA);
 | |
| 	else
 | |
| 		hw_dbg(hw, "Eeprom read timed out\n");
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @ee_reg: EEPROM flag for polling
 | |
|  *
 | |
|  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 | |
|  *  read or write is done respectively.
 | |
|  **/
 | |
| s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 reg;
 | |
| 	s32 status = IXGBE_ERR_EEPROM;
 | |
| 
 | |
| 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
 | |
| 		if (ee_reg == IXGBE_NVM_POLL_READ)
 | |
| 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
 | |
| 		else
 | |
| 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
 | |
| 
 | |
| 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
 | |
| 			status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Prepares EEPROM for access using bit-bang method. This function should
 | |
|  *  be called before issuing a command to the EEPROM.
 | |
|  **/
 | |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 	u32 eec;
 | |
| 	u32 i;
 | |
| 
 | |
| 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
 | |
| 		status = IXGBE_ERR_SWFW_SYNC;
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 		/* Request EEPROM Access */
 | |
| 		eec |= IXGBE_EEC_REQ;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 
 | |
| 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
 | |
| 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 			if (eec & IXGBE_EEC_GNT)
 | |
| 				break;
 | |
| 			udelay(5);
 | |
| 		}
 | |
| 
 | |
| 		/* Release if grant not acquired */
 | |
| 		if (!(eec & IXGBE_EEC_GNT)) {
 | |
| 			eec &= ~IXGBE_EEC_REQ;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
 | |
| 
 | |
| 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 
 | |
| 		/* Setup EEPROM for Read/Write */
 | |
| 		if (status == 0) {
 | |
| 			/* Clear CS and SK */
 | |
| 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 			IXGBE_WRITE_FLUSH(hw);
 | |
| 			udelay(1);
 | |
| 		}
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 | |
|  **/
 | |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status = IXGBE_ERR_EEPROM;
 | |
| 	u32 timeout = 2000;
 | |
| 	u32 i;
 | |
| 	u32 swsm;
 | |
| 
 | |
| 	/* Get SMBI software semaphore between device drivers first */
 | |
| 	for (i = 0; i < timeout; i++) {
 | |
| 		/*
 | |
| 		 * If the SMBI bit is 0 when we read it, then the bit will be
 | |
| 		 * set and we have the semaphore
 | |
| 		 */
 | |
| 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 		if (!(swsm & IXGBE_SWSM_SMBI)) {
 | |
| 			status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(50);
 | |
| 	}
 | |
| 
 | |
| 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
 | |
| 	if (status == 0) {
 | |
| 		for (i = 0; i < timeout; i++) {
 | |
| 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 
 | |
| 			/* Set the SW EEPROM semaphore bit to request access */
 | |
| 			swsm |= IXGBE_SWSM_SWESMBI;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 | |
| 
 | |
| 			/*
 | |
| 			 * If we set the bit successfully then we got the
 | |
| 			 * semaphore.
 | |
| 			 */
 | |
| 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 			if (swsm & IXGBE_SWSM_SWESMBI)
 | |
| 				break;
 | |
| 
 | |
| 			udelay(50);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Release semaphores and return error if SW EEPROM semaphore
 | |
| 		 * was not granted because we don't have access to the EEPROM
 | |
| 		 */
 | |
| 		if (i >= timeout) {
 | |
| 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
 | |
| 			       "not granted.\n");
 | |
| 			ixgbe_release_eeprom_semaphore(hw);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 	} else {
 | |
| 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
 | |
| 		       "not granted.\n");
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  This function clears hardware semaphore bits.
 | |
|  **/
 | |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 swsm;
 | |
| 
 | |
| 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 
 | |
| 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
 | |
| 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_ready_eeprom - Polls for EEPROM ready
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 	u16 i;
 | |
| 	u8 spi_stat_reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
 | |
| 	 * EEPROM will signal that the command has been completed by clearing
 | |
| 	 * bit 0 of the internal status register.  If it's not cleared within
 | |
| 	 * 5 milliseconds, then error out.
 | |
| 	 */
 | |
| 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
 | |
| 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(5);
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
 | |
| 	 * devices (and only 0-5mSec on 5V devices)
 | |
| 	 */
 | |
| 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
 | |
| 		hw_dbg(hw, "SPI EEPROM Status error\n");
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 eec;
 | |
| 
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	/* Toggle CS to flush commands */
 | |
| 	eec |= IXGBE_EEC_CS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| 	eec &= ~IXGBE_EEC_CS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @data: data to send to the EEPROM
 | |
|  *  @count: number of bits to shift out
 | |
|  **/
 | |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
 | |
|                                         u16 count)
 | |
| {
 | |
| 	u32 eec;
 | |
| 	u32 mask;
 | |
| 	u32 i;
 | |
| 
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
 | |
| 	 * one bit at a time.  Determine the starting bit based on count
 | |
| 	 */
 | |
| 	mask = 0x01 << (count - 1);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		/*
 | |
| 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
 | |
| 		 * "1", and then raising and then lowering the clock (the SK
 | |
| 		 * bit controls the clock input to the EEPROM).  A "0" is
 | |
| 		 * shifted out to the EEPROM by setting "DI" to "0" and then
 | |
| 		 * raising and then lowering the clock.
 | |
| 		 */
 | |
| 		if (data & mask)
 | |
| 			eec |= IXGBE_EEC_DI;
 | |
| 		else
 | |
| 			eec &= ~IXGBE_EEC_DI;
 | |
| 
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 		IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		udelay(1);
 | |
| 
 | |
| 		ixgbe_raise_eeprom_clk(hw, &eec);
 | |
| 		ixgbe_lower_eeprom_clk(hw, &eec);
 | |
| 
 | |
| 		/*
 | |
| 		 * Shift mask to signify next bit of data to shift in to the
 | |
| 		 * EEPROM
 | |
| 		 */
 | |
| 		mask = mask >> 1;
 | |
| 	};
 | |
| 
 | |
| 	/* We leave the "DI" bit set to "0" when we leave this routine. */
 | |
| 	eec &= ~IXGBE_EEC_DI;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
 | |
| {
 | |
| 	u32 eec;
 | |
| 	u32 i;
 | |
| 	u16 data = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to read a register from the EEPROM, we need to shift
 | |
| 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
 | |
| 	 * the clock input to the EEPROM (setting the SK bit), and then reading
 | |
| 	 * the value of the "DO" bit.  During this "shifting in" process the
 | |
| 	 * "DI" bit should always be clear.
 | |
| 	 */
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		data = data << 1;
 | |
| 		ixgbe_raise_eeprom_clk(hw, &eec);
 | |
| 
 | |
| 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 		eec &= ~(IXGBE_EEC_DI);
 | |
| 		if (eec & IXGBE_EEC_DO)
 | |
| 			data |= 1;
 | |
| 
 | |
| 		ixgbe_lower_eeprom_clk(hw, &eec);
 | |
| 	}
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @eec: EEC register's current value
 | |
|  **/
 | |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
 | |
| {
 | |
| 	/*
 | |
| 	 * Raise the clock input to the EEPROM
 | |
| 	 * (setting the SK bit), then delay
 | |
| 	 */
 | |
| 	*eec = *eec | IXGBE_EEC_SK;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @eecd: EECD's current value
 | |
|  **/
 | |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
 | |
| {
 | |
| 	/*
 | |
| 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
 | |
| 	 * delay
 | |
| 	 */
 | |
| 	*eec = *eec & ~IXGBE_EEC_SK;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 eec;
 | |
| 
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
 | |
| 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	udelay(1);
 | |
| 
 | |
| 	/* Stop requesting EEPROM access */
 | |
| 	eec &= ~IXGBE_EEC_REQ;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 
 | |
| 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
 | |
| 
 | |
| 	/* Delay before attempt to obtain semaphore again to allow FW access */
 | |
| 	msleep(hw->eeprom.semaphore_delay);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u16 i;
 | |
| 	u16 j;
 | |
| 	u16 checksum = 0;
 | |
| 	u16 length = 0;
 | |
| 	u16 pointer = 0;
 | |
| 	u16 word = 0;
 | |
| 
 | |
| 	/* Include 0x0-0x3F in the checksum */
 | |
| 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
 | |
| 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
 | |
| 			hw_dbg(hw, "EEPROM read failed\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		checksum += word;
 | |
| 	}
 | |
| 
 | |
| 	/* Include all data from pointers except for the fw pointer */
 | |
| 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
 | |
| 		hw->eeprom.ops.read(hw, i, &pointer);
 | |
| 
 | |
| 		/* Make sure the pointer seems valid */
 | |
| 		if (pointer != 0xFFFF && pointer != 0) {
 | |
| 			hw->eeprom.ops.read(hw, pointer, &length);
 | |
| 
 | |
| 			if (length != 0xFFFF && length != 0) {
 | |
| 				for (j = pointer+1; j <= pointer+length; j++) {
 | |
| 					hw->eeprom.ops.read(hw, j, &word);
 | |
| 					checksum += word;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
 | |
| 
 | |
| 	return checksum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @checksum_val: calculated checksum
 | |
|  *
 | |
|  *  Performs checksum calculation and validates the EEPROM checksum.  If the
 | |
|  *  caller does not need checksum_val, the value can be NULL.
 | |
|  **/
 | |
| s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
 | |
|                                            u16 *checksum_val)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u16 checksum;
 | |
| 	u16 read_checksum = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the first word from the EEPROM. If this times out or fails, do
 | |
| 	 * not continue or we could be in for a very long wait while every
 | |
| 	 * EEPROM read fails
 | |
| 	 */
 | |
| 	status = hw->eeprom.ops.read(hw, 0, &checksum);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		checksum = hw->eeprom.ops.calc_checksum(hw);
 | |
| 
 | |
| 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify read checksum from EEPROM is the same as
 | |
| 		 * calculated checksum
 | |
| 		 */
 | |
| 		if (read_checksum != checksum)
 | |
| 			status = IXGBE_ERR_EEPROM_CHECKSUM;
 | |
| 
 | |
| 		/* If the user cares, return the calculated checksum */
 | |
| 		if (checksum_val)
 | |
| 			*checksum_val = checksum;
 | |
| 	} else {
 | |
| 		hw_dbg(hw, "EEPROM read failed\n");
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u16 checksum;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the first word from the EEPROM. If this times out or fails, do
 | |
| 	 * not continue or we could be in for a very long wait while every
 | |
| 	 * EEPROM read fails
 | |
| 	 */
 | |
| 	status = hw->eeprom.ops.read(hw, 0, &checksum);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		checksum = hw->eeprom.ops.calc_checksum(hw);
 | |
| 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
 | |
| 					      checksum);
 | |
| 	} else {
 | |
| 		hw_dbg(hw, "EEPROM read failed\n");
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_validate_mac_addr - Validate MAC address
 | |
|  *  @mac_addr: pointer to MAC address.
 | |
|  *
 | |
|  *  Tests a MAC address to ensure it is a valid Individual Address
 | |
|  **/
 | |
| s32 ixgbe_validate_mac_addr(u8 *mac_addr)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 
 | |
| 	/* Make sure it is not a multicast address */
 | |
| 	if (IXGBE_IS_MULTICAST(mac_addr))
 | |
| 		status = IXGBE_ERR_INVALID_MAC_ADDR;
 | |
| 	/* Not a broadcast address */
 | |
| 	else if (IXGBE_IS_BROADCAST(mac_addr))
 | |
| 		status = IXGBE_ERR_INVALID_MAC_ADDR;
 | |
| 	/* Reject the zero address */
 | |
| 	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
 | |
| 	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
 | |
| 		status = IXGBE_ERR_INVALID_MAC_ADDR;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_rar_generic - Set Rx address register
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: Receive address register to write
 | |
|  *  @addr: Address to put into receive address register
 | |
|  *  @vmdq: VMDq "set" or "pool" index
 | |
|  *  @enable_addr: set flag that address is active
 | |
|  *
 | |
|  *  Puts an ethernet address into a receive address register.
 | |
|  **/
 | |
| s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
 | |
|                           u32 enable_addr)
 | |
| {
 | |
| 	u32 rar_low, rar_high;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/* Make sure we are using a valid rar index range */
 | |
| 	if (index >= rar_entries) {
 | |
| 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
 | |
| 		return IXGBE_ERR_INVALID_ARGUMENT;
 | |
| 	}
 | |
| 
 | |
| 	/* setup VMDq pool selection before this RAR gets enabled */
 | |
| 	hw->mac.ops.set_vmdq(hw, index, vmdq);
 | |
| 
 | |
| 	/*
 | |
| 	 * HW expects these in little endian so we reverse the byte
 | |
| 	 * order from network order (big endian) to little endian
 | |
| 	 */
 | |
| 	rar_low = ((u32)addr[0] |
 | |
| 		   ((u32)addr[1] << 8) |
 | |
| 		   ((u32)addr[2] << 16) |
 | |
| 		   ((u32)addr[3] << 24));
 | |
| 	/*
 | |
| 	 * Some parts put the VMDq setting in the extra RAH bits,
 | |
| 	 * so save everything except the lower 16 bits that hold part
 | |
| 	 * of the address and the address valid bit.
 | |
| 	 */
 | |
| 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
 | |
| 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
 | |
| 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
 | |
| 
 | |
| 	if (enable_addr != 0)
 | |
| 		rar_high |= IXGBE_RAH_AV;
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_clear_rar_generic - Remove Rx address register
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: Receive address register to write
 | |
|  *
 | |
|  *  Clears an ethernet address from a receive address register.
 | |
|  **/
 | |
| s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 rar_high;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/* Make sure we are using a valid rar index range */
 | |
| 	if (index >= rar_entries) {
 | |
| 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
 | |
| 		return IXGBE_ERR_INVALID_ARGUMENT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some parts put the VMDq setting in the extra RAH bits,
 | |
| 	 * so save everything except the lower 16 bits that hold part
 | |
| 	 * of the address and the address valid bit.
 | |
| 	 */
 | |
| 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
 | |
| 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 | |
| 
 | |
| 	/* clear VMDq pool/queue selection for this RAR */
 | |
| 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Places the MAC address in receive address register 0 and clears the rest
 | |
|  *  of the receive address registers. Clears the multicast table. Assumes
 | |
|  *  the receiver is in reset when the routine is called.
 | |
|  **/
 | |
| s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the current mac address is valid, assume it is a software override
 | |
| 	 * to the permanent address.
 | |
| 	 * Otherwise, use the permanent address from the eeprom.
 | |
| 	 */
 | |
| 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
 | |
| 	    IXGBE_ERR_INVALID_MAC_ADDR) {
 | |
| 		/* Get the MAC address from the RAR0 for later reference */
 | |
| 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
 | |
| 
 | |
| 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
 | |
| 	} else {
 | |
| 		/* Setup the receive address. */
 | |
| 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
 | |
| 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
 | |
| 
 | |
| 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
 | |
| 
 | |
| 		/*  clear VMDq pool/queue selection for RAR 0 */
 | |
| 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
 | |
| 	}
 | |
| 	hw->addr_ctrl.overflow_promisc = 0;
 | |
| 
 | |
| 	hw->addr_ctrl.rar_used_count = 1;
 | |
| 
 | |
| 	/* Zero out the other receive addresses. */
 | |
| 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
 | |
| 	for (i = 1; i < rar_entries; i++) {
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the MTA */
 | |
| 	hw->addr_ctrl.mta_in_use = 0;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
 | |
| 
 | |
| 	hw_dbg(hw, " Clearing MTA\n");
 | |
| 	for (i = 0; i < hw->mac.mcft_size; i++)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
 | |
| 
 | |
| 	if (hw->mac.ops.init_uta_tables)
 | |
| 		hw->mac.ops.init_uta_tables(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mc_addr: the multicast address
 | |
|  *
 | |
|  *  Extracts the 12 bits, from a multicast address, to determine which
 | |
|  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 | |
|  *  incoming rx multicast addresses, to determine the bit-vector to check in
 | |
|  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
 | |
|  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
 | |
|  *  to mc_filter_type.
 | |
|  **/
 | |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
 | |
| {
 | |
| 	u32 vector = 0;
 | |
| 
 | |
| 	switch (hw->mac.mc_filter_type) {
 | |
| 	case 0:   /* use bits [47:36] of the address */
 | |
| 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
 | |
| 		break;
 | |
| 	case 1:   /* use bits [46:35] of the address */
 | |
| 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
 | |
| 		break;
 | |
| 	case 2:   /* use bits [45:34] of the address */
 | |
| 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
 | |
| 		break;
 | |
| 	case 3:   /* use bits [43:32] of the address */
 | |
| 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
 | |
| 		break;
 | |
| 	default:  /* Invalid mc_filter_type */
 | |
| 		hw_dbg(hw, "MC filter type param set incorrectly\n");
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* vector can only be 12-bits or boundary will be exceeded */
 | |
| 	vector &= 0xFFF;
 | |
| 	return vector;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_mta - Set bit-vector in multicast table
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @hash_value: Multicast address hash value
 | |
|  *
 | |
|  *  Sets the bit-vector in the multicast table.
 | |
|  **/
 | |
| static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
 | |
| {
 | |
| 	u32 vector;
 | |
| 	u32 vector_bit;
 | |
| 	u32 vector_reg;
 | |
| 
 | |
| 	hw->addr_ctrl.mta_in_use++;
 | |
| 
 | |
| 	vector = ixgbe_mta_vector(hw, mc_addr);
 | |
| 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
 | |
| 
 | |
| 	/*
 | |
| 	 * The MTA is a register array of 128 32-bit registers. It is treated
 | |
| 	 * like an array of 4096 bits.  We want to set bit
 | |
| 	 * BitArray[vector_value]. So we figure out what register the bit is
 | |
| 	 * in, read it, OR in the new bit, then write back the new value.  The
 | |
| 	 * register is determined by the upper 7 bits of the vector value and
 | |
| 	 * the bit within that register are determined by the lower 5 bits of
 | |
| 	 * the value.
 | |
| 	 */
 | |
| 	vector_reg = (vector >> 5) & 0x7F;
 | |
| 	vector_bit = vector & 0x1F;
 | |
| 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @netdev: pointer to net device structure
 | |
|  *
 | |
|  *  The given list replaces any existing list. Clears the MC addrs from receive
 | |
|  *  address registers and the multicast table. Uses unused receive address
 | |
|  *  registers for the first multicast addresses, and hashes the rest into the
 | |
|  *  multicast table.
 | |
|  **/
 | |
| s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
 | |
| 				      struct net_device *netdev)
 | |
| {
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	u32 i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the new number of MC addresses that we are being requested to
 | |
| 	 * use.
 | |
| 	 */
 | |
| 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
 | |
| 	hw->addr_ctrl.mta_in_use = 0;
 | |
| 
 | |
| 	/* Clear mta_shadow */
 | |
| 	hw_dbg(hw, " Clearing MTA\n");
 | |
| 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 | |
| 
 | |
| 	/* Update mta shadow */
 | |
| 	netdev_for_each_mc_addr(ha, netdev) {
 | |
| 		hw_dbg(hw, " Adding the multicast addresses:\n");
 | |
| 		ixgbe_set_mta(hw, ha->addr);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable mta */
 | |
| 	for (i = 0; i < hw->mac.mcft_size; i++)
 | |
| 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
 | |
| 				      hw->mac.mta_shadow[i]);
 | |
| 
 | |
| 	if (hw->addr_ctrl.mta_in_use > 0)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
 | |
| 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
 | |
| 
 | |
| 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Enables multicast address in RAR and the use of the multicast hash table.
 | |
|  **/
 | |
| s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
 | |
| 
 | |
| 	if (a->mta_in_use > 0)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
 | |
| 		                hw->mac.mc_filter_type);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Disables multicast address in RAR and the use of the multicast hash table.
 | |
|  **/
 | |
| s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
 | |
| 
 | |
| 	if (a->mta_in_use > 0)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_fc_enable_generic - Enable flow control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @packetbuf_num: packet buffer number (0-7)
 | |
|  *
 | |
|  *  Enable flow control according to the current settings.
 | |
|  **/
 | |
| s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 mflcn_reg, fccfg_reg;
 | |
| 	u32 reg;
 | |
| 	u32 rx_pba_size;
 | |
| 	u32 fcrtl, fcrth;
 | |
| 
 | |
| #ifdef CONFIG_DCB
 | |
| 	if (hw->fc.requested_mode == ixgbe_fc_pfc)
 | |
| 		goto out;
 | |
| 
 | |
| #endif /* CONFIG_DCB */
 | |
| 	/* Negotiate the fc mode to use */
 | |
| 	ret_val = ixgbe_fc_autoneg(hw);
 | |
| 	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Disable any previous flow control settings */
 | |
| 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
 | |
| 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
 | |
| 
 | |
| 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
 | |
| 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
 | |
| 
 | |
| 	/*
 | |
| 	 * The possible values of fc.current_mode are:
 | |
| 	 * 0: Flow control is completely disabled
 | |
| 	 * 1: Rx flow control is enabled (we can receive pause frames,
 | |
| 	 *    but not send pause frames).
 | |
| 	 * 2: Tx flow control is enabled (we can send pause frames but
 | |
| 	 *    we do not support receiving pause frames).
 | |
| 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 | |
| #ifdef CONFIG_DCB
 | |
| 	 * 4: Priority Flow Control is enabled.
 | |
| #endif
 | |
| 	 * other: Invalid.
 | |
| 	 */
 | |
| 	switch (hw->fc.current_mode) {
 | |
| 	case ixgbe_fc_none:
 | |
| 		/*
 | |
| 		 * Flow control is disabled by software override or autoneg.
 | |
| 		 * The code below will actually disable it in the HW.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case ixgbe_fc_rx_pause:
 | |
| 		/*
 | |
| 		 * Rx Flow control is enabled and Tx Flow control is
 | |
| 		 * disabled by software override. Since there really
 | |
| 		 * isn't a way to advertise that we are capable of RX
 | |
| 		 * Pause ONLY, we will advertise that we support both
 | |
| 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
 | |
| 		 * disable the adapter's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		mflcn_reg |= IXGBE_MFLCN_RFCE;
 | |
| 		break;
 | |
| 	case ixgbe_fc_tx_pause:
 | |
| 		/*
 | |
| 		 * Tx Flow control is enabled, and Rx Flow control is
 | |
| 		 * disabled by software override.
 | |
| 		 */
 | |
| 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
 | |
| 		break;
 | |
| 	case ixgbe_fc_full:
 | |
| 		/* Flow control (both Rx and Tx) is enabled by SW override. */
 | |
| 		mflcn_reg |= IXGBE_MFLCN_RFCE;
 | |
| 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
 | |
| 		break;
 | |
| #ifdef CONFIG_DCB
 | |
| 	case ixgbe_fc_pfc:
 | |
| 		goto out;
 | |
| 		break;
 | |
| #endif /* CONFIG_DCB */
 | |
| 	default:
 | |
| 		hw_dbg(hw, "Flow control param set incorrectly\n");
 | |
| 		ret_val = IXGBE_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Set 802.3x based flow control settings. */
 | |
| 	mflcn_reg |= IXGBE_MFLCN_DPF;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
 | |
| 
 | |
| 	rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
 | |
| 	rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
 | |
| 
 | |
| 	fcrth = (rx_pba_size - hw->fc.high_water) << 10;
 | |
| 	fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
 | |
| 
 | |
| 	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
 | |
| 		fcrth |= IXGBE_FCRTH_FCEN;
 | |
| 		if (hw->fc.send_xon)
 | |
| 			fcrtl |= IXGBE_FCRTL_XONE;
 | |
| 	}
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
 | |
| 
 | |
| 	/* Configure pause time (2 TCs per register) */
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
 | |
| 	if ((packetbuf_num & 1) == 0)
 | |
| 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
 | |
| 	else
 | |
| 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_fc_autoneg - Configure flow control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Compares our advertised flow control capabilities to those advertised by
 | |
|  *  our link partner, and determines the proper flow control mode to use.
 | |
|  **/
 | |
| s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
 | |
| 	ixgbe_link_speed speed;
 | |
| 	bool link_up;
 | |
| 
 | |
| 	if (hw->fc.disable_fc_autoneg)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * AN should have completed when the cable was plugged in.
 | |
| 	 * Look for reasons to bail out.  Bail out if:
 | |
| 	 * - FC autoneg is disabled, or if
 | |
| 	 * - link is not up.
 | |
| 	 *
 | |
| 	 * Since we're being called from an LSC, link is already known to be up.
 | |
| 	 * So use link_up_wait_to_complete=false.
 | |
| 	 */
 | |
| 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
 | |
| 	if (!link_up) {
 | |
| 		ret_val = IXGBE_ERR_FLOW_CONTROL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (hw->phy.media_type) {
 | |
| 	/* Autoneg flow control on fiber adapters */
 | |
| 	case ixgbe_media_type_fiber:
 | |
| 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
 | |
| 			ret_val = ixgbe_fc_autoneg_fiber(hw);
 | |
| 		break;
 | |
| 
 | |
| 	/* Autoneg flow control on backplane adapters */
 | |
| 	case ixgbe_media_type_backplane:
 | |
| 		ret_val = ixgbe_fc_autoneg_backplane(hw);
 | |
| 		break;
 | |
| 
 | |
| 	/* Autoneg flow control on copper adapters */
 | |
| 	case ixgbe_media_type_copper:
 | |
| 		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
 | |
| 			ret_val = ixgbe_fc_autoneg_copper(hw);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (ret_val == 0) {
 | |
| 		hw->fc.fc_was_autonegged = true;
 | |
| 	} else {
 | |
| 		hw->fc.fc_was_autonegged = false;
 | |
| 		hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 	}
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Enable flow control according on 1 gig fiber.
 | |
|  **/
 | |
| static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	/*
 | |
| 	 * On multispeed fiber at 1g, bail out if
 | |
| 	 * - link is up but AN did not complete, or if
 | |
| 	 * - link is up and AN completed but timed out
 | |
| 	 */
 | |
| 
 | |
| 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
 | |
| 	if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
 | |
| 	    ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
 | |
| 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 | |
| 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
 | |
| 
 | |
| 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
 | |
| 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
 | |
| 			       IXGBE_PCS1GANA_ASM_PAUSE,
 | |
| 			       IXGBE_PCS1GANA_SYM_PAUSE,
 | |
| 			       IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Enable flow control according to IEEE clause 37.
 | |
|  **/
 | |
| static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 links2, anlp1_reg, autoc_reg, links;
 | |
| 	s32 ret_val;
 | |
| 
 | |
| 	/*
 | |
| 	 * On backplane, bail out if
 | |
| 	 * - backplane autoneg was not completed, or if
 | |
| 	 * - we are 82599 and link partner is not AN enabled
 | |
| 	 */
 | |
| 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
 | |
| 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
 | |
| 		hw->fc.fc_was_autonegged = false;
 | |
| 		hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac.type == ixgbe_mac_82599EB) {
 | |
| 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
 | |
| 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
 | |
| 			hw->fc.fc_was_autonegged = false;
 | |
| 			hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Read the 10g AN autoc and LP ability registers and resolve
 | |
| 	 * local flow control settings accordingly
 | |
| 	 */
 | |
| 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
 | |
| 
 | |
| 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
 | |
| 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
 | |
| 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Enable flow control according to IEEE clause 37.
 | |
|  **/
 | |
| static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u16 technology_ability_reg = 0;
 | |
| 	u16 lp_technology_ability_reg = 0;
 | |
| 
 | |
| 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 | |
| 			     MDIO_MMD_AN,
 | |
| 			     &technology_ability_reg);
 | |
| 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
 | |
| 			     MDIO_MMD_AN,
 | |
| 			     &lp_technology_ability_reg);
 | |
| 
 | |
| 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
 | |
| 				  (u32)lp_technology_ability_reg,
 | |
| 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
 | |
| 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_negotiate_fc - Negotiate flow control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @adv_reg: flow control advertised settings
 | |
|  *  @lp_reg: link partner's flow control settings
 | |
|  *  @adv_sym: symmetric pause bit in advertisement
 | |
|  *  @adv_asm: asymmetric pause bit in advertisement
 | |
|  *  @lp_sym: symmetric pause bit in link partner advertisement
 | |
|  *  @lp_asm: asymmetric pause bit in link partner advertisement
 | |
|  *
 | |
|  *  Find the intersection between advertised settings and link partner's
 | |
|  *  advertised settings
 | |
|  **/
 | |
| static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
 | |
| 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
 | |
| {
 | |
| 	if ((!(adv_reg)) ||  (!(lp_reg)))
 | |
| 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
 | |
| 
 | |
| 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
 | |
| 		/*
 | |
| 		 * Now we need to check if the user selected Rx ONLY
 | |
| 		 * of pause frames.  In this case, we had to advertise
 | |
| 		 * FULL flow control because we could not advertise RX
 | |
| 		 * ONLY. Hence, we must now check to see if we need to
 | |
| 		 * turn OFF the TRANSMISSION of PAUSE frames.
 | |
| 		 */
 | |
| 		if (hw->fc.requested_mode == ixgbe_fc_full) {
 | |
| 			hw->fc.current_mode = ixgbe_fc_full;
 | |
| 			hw_dbg(hw, "Flow Control = FULL.\n");
 | |
| 		} else {
 | |
| 			hw->fc.current_mode = ixgbe_fc_rx_pause;
 | |
| 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
 | |
| 		}
 | |
| 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
 | |
| 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
 | |
| 		hw->fc.current_mode = ixgbe_fc_tx_pause;
 | |
| 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
 | |
| 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
 | |
| 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
 | |
| 		hw->fc.current_mode = ixgbe_fc_rx_pause;
 | |
| 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
 | |
| 	} else {
 | |
| 		hw->fc.current_mode = ixgbe_fc_none;
 | |
| 		hw_dbg(hw, "Flow Control = NONE.\n");
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_setup_fc - Set up flow control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Called at init time to set up flow control.
 | |
|  **/
 | |
| static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 reg = 0, reg_bp = 0;
 | |
| 	u16 reg_cu = 0;
 | |
| 
 | |
| #ifdef CONFIG_DCB
 | |
| 	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
 | |
| 		hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| #endif /* CONFIG_DCB */
 | |
| 	/* Validate the packetbuf configuration */
 | |
| 	if (packetbuf_num < 0 || packetbuf_num > 7) {
 | |
| 		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
 | |
| 		       "is 0-7\n", packetbuf_num);
 | |
| 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the water mark configuration.  Zero water marks are invalid
 | |
| 	 * because it causes the controller to just blast out fc packets.
 | |
| 	 */
 | |
| 	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
 | |
| 		hw_dbg(hw, "Invalid water mark configuration\n");
 | |
| 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the requested mode.  Strict IEEE mode does not allow
 | |
| 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 | |
| 	 */
 | |
| 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 | |
| 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
 | |
| 		       "IEEE mode\n");
 | |
| 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 10gig parts do not have a word in the EEPROM to determine the
 | |
| 	 * default flow control setting, so we explicitly set it to full.
 | |
| 	 */
 | |
| 	if (hw->fc.requested_mode == ixgbe_fc_default)
 | |
| 		hw->fc.requested_mode = ixgbe_fc_full;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the 1G and 10G flow control advertisement registers so the
 | |
| 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 | |
| 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 | |
| 	 */
 | |
| 
 | |
| 	switch (hw->phy.media_type) {
 | |
| 	case ixgbe_media_type_fiber:
 | |
| 	case ixgbe_media_type_backplane:
 | |
| 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 | |
| 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 		break;
 | |
| 
 | |
| 	case ixgbe_media_type_copper:
 | |
| 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 | |
| 					MDIO_MMD_AN, ®_cu);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The possible values of fc.requested_mode are:
 | |
| 	 * 0: Flow control is completely disabled
 | |
| 	 * 1: Rx flow control is enabled (we can receive pause frames,
 | |
| 	 *    but not send pause frames).
 | |
| 	 * 2: Tx flow control is enabled (we can send pause frames but
 | |
| 	 *    we do not support receiving pause frames).
 | |
| 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 | |
| #ifdef CONFIG_DCB
 | |
| 	 * 4: Priority Flow Control is enabled.
 | |
| #endif
 | |
| 	 * other: Invalid.
 | |
| 	 */
 | |
| 	switch (hw->fc.requested_mode) {
 | |
| 	case ixgbe_fc_none:
 | |
| 		/* Flow control completely disabled by software override. */
 | |
| 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		if (hw->phy.media_type == ixgbe_media_type_backplane)
 | |
| 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 | |
| 				    IXGBE_AUTOC_ASM_PAUSE);
 | |
| 		else if (hw->phy.media_type == ixgbe_media_type_copper)
 | |
| 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_rx_pause:
 | |
| 		/*
 | |
| 		 * Rx Flow control is enabled and Tx Flow control is
 | |
| 		 * disabled by software override. Since there really
 | |
| 		 * isn't a way to advertise that we are capable of RX
 | |
| 		 * Pause ONLY, we will advertise that we support both
 | |
| 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
 | |
| 		 * disable the adapter's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		if (hw->phy.media_type == ixgbe_media_type_backplane)
 | |
| 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
 | |
| 				   IXGBE_AUTOC_ASM_PAUSE);
 | |
| 		else if (hw->phy.media_type == ixgbe_media_type_copper)
 | |
| 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_tx_pause:
 | |
| 		/*
 | |
| 		 * Tx Flow control is enabled, and Rx Flow control is
 | |
| 		 * disabled by software override.
 | |
| 		 */
 | |
| 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
 | |
| 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 | |
| 			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
 | |
| 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
 | |
| 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 | |
| 			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
 | |
| 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
 | |
| 		}
 | |
| 		break;
 | |
| 	case ixgbe_fc_full:
 | |
| 		/* Flow control (both Rx and Tx) is enabled by SW override. */
 | |
| 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		if (hw->phy.media_type == ixgbe_media_type_backplane)
 | |
| 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
 | |
| 				   IXGBE_AUTOC_ASM_PAUSE);
 | |
| 		else if (hw->phy.media_type == ixgbe_media_type_copper)
 | |
| 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 | |
| 		break;
 | |
| #ifdef CONFIG_DCB
 | |
| 	case ixgbe_fc_pfc:
 | |
| 		goto out;
 | |
| 		break;
 | |
| #endif /* CONFIG_DCB */
 | |
| 	default:
 | |
| 		hw_dbg(hw, "Flow control param set incorrectly\n");
 | |
| 		ret_val = IXGBE_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac.type != ixgbe_mac_X540) {
 | |
| 		/*
 | |
| 		 * Enable auto-negotiation between the MAC & PHY;
 | |
| 		 * the MAC will advertise clause 37 flow control.
 | |
| 		 */
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 | |
| 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 | |
| 
 | |
| 		/* Disable AN timeout */
 | |
| 		if (hw->fc.strict_ieee)
 | |
| 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 | |
| 
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 | |
| 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 | |
| 	 * and copper. There is no need to set the PCS1GCTL register.
 | |
| 	 *
 | |
| 	 */
 | |
| 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 | |
| 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
 | |
| 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 | |
| 		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
 | |
| 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 | |
| 				      MDIO_MMD_AN, reg_cu);
 | |
| 	}
 | |
| 
 | |
| 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_disable_pcie_master - Disable PCI-express master access
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Disables PCI-Express master access and verifies there are no pending
 | |
|  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 | |
|  *  bit hasn't caused the master requests to be disabled, else 0
 | |
|  *  is returned signifying master requests disabled.
 | |
|  **/
 | |
| s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_adapter *adapter = hw->back;
 | |
| 	u32 i;
 | |
| 	u32 reg_val;
 | |
| 	u32 number_of_queues;
 | |
| 	s32 status = 0;
 | |
| 	u16 dev_status = 0;
 | |
| 
 | |
| 	/* Just jump out if bus mastering is already disabled */
 | |
| 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Disable the receive unit by stopping each queue */
 | |
| 	number_of_queues = hw->mac.max_rx_queues;
 | |
| 	for (i = 0; i < number_of_queues; i++) {
 | |
| 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 | |
| 		if (reg_val & IXGBE_RXDCTL_ENABLE) {
 | |
| 			reg_val &= ~IXGBE_RXDCTL_ENABLE;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
 | |
| 	reg_val |= IXGBE_CTRL_GIO_DIS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
 | |
| 
 | |
| 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
 | |
| 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
 | |
| 			goto check_device_status;
 | |
| 		udelay(100);
 | |
| 	}
 | |
| 
 | |
| 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
 | |
| 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
 | |
| 
 | |
| 	/*
 | |
| 	 * Before proceeding, make sure that the PCIe block does not have
 | |
| 	 * transactions pending.
 | |
| 	 */
 | |
| check_device_status:
 | |
| 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
 | |
| 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
 | |
| 							 &dev_status);
 | |
| 		if (!(dev_status & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
 | |
| 			break;
 | |
| 		udelay(100);
 | |
| 	}
 | |
| 
 | |
| 	if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
 | |
| 		hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
 | |
| 	else
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Two consecutive resets are required via CTRL.RST per datasheet
 | |
| 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
 | |
| 	 * of this need.  The first reset prevents new master requests from
 | |
| 	 * being issued by our device.  We then must wait 1usec for any
 | |
| 	 * remaining completions from the PCIe bus to trickle in, and then reset
 | |
| 	 * again to clear out any effects they may have had on our device.
 | |
| 	 */
 | |
| 	 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mask: Mask to specify which semaphore to acquire
 | |
|  *
 | |
|  *  Acquires the SWFW semaphore through the GSSR register for the specified
 | |
|  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 | |
|  **/
 | |
| s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
 | |
| {
 | |
| 	u32 gssr;
 | |
| 	u32 swmask = mask;
 | |
| 	u32 fwmask = mask << 5;
 | |
| 	s32 timeout = 200;
 | |
| 
 | |
| 	while (timeout) {
 | |
| 		/*
 | |
| 		 * SW EEPROM semaphore bit is used for access to all
 | |
| 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
 | |
| 		 */
 | |
| 		if (ixgbe_get_eeprom_semaphore(hw))
 | |
| 			return IXGBE_ERR_SWFW_SYNC;
 | |
| 
 | |
| 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
 | |
| 		if (!(gssr & (fwmask | swmask)))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Firmware currently using resource (fwmask) or other software
 | |
| 		 * thread currently using resource (swmask)
 | |
| 		 */
 | |
| 		ixgbe_release_eeprom_semaphore(hw);
 | |
| 		msleep(5);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
 | |
| 		return IXGBE_ERR_SWFW_SYNC;
 | |
| 	}
 | |
| 
 | |
| 	gssr |= swmask;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
 | |
| 
 | |
| 	ixgbe_release_eeprom_semaphore(hw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_release_swfw_sync - Release SWFW semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mask: Mask to specify which semaphore to release
 | |
|  *
 | |
|  *  Releases the SWFW semaphore through the GSSR register for the specified
 | |
|  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 | |
|  **/
 | |
| void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
 | |
| {
 | |
| 	u32 gssr;
 | |
| 	u32 swmask = mask;
 | |
| 
 | |
| 	ixgbe_get_eeprom_semaphore(hw);
 | |
| 
 | |
| 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
 | |
| 	gssr &= ~swmask;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
 | |
| 
 | |
| 	ixgbe_release_eeprom_semaphore(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @regval: register value to write to RXCTRL
 | |
|  *
 | |
|  *  Enables the Rx DMA unit
 | |
|  **/
 | |
| s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
 | |
| {
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_blink_led_start_generic - Blink LED based on index.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to blink
 | |
|  **/
 | |
| s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	ixgbe_link_speed speed = 0;
 | |
| 	bool link_up = 0;
 | |
| 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link must be up to auto-blink the LEDs;
 | |
| 	 * Force it if link is down.
 | |
| 	 */
 | |
| 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
 | |
| 
 | |
| 	if (!link_up) {
 | |
| 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
 | |
| 		autoc_reg |= IXGBE_AUTOC_FLU;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
 | |
| 		msleep(10);
 | |
| 	}
 | |
| 
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg |= IXGBE_LED_BLINK(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to stop blinking
 | |
|  **/
 | |
| s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	autoc_reg &= ~IXGBE_AUTOC_FLU;
 | |
| 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
 | |
| 
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg &= ~IXGBE_LED_BLINK(index);
 | |
| 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @san_mac_offset: SAN MAC address offset
 | |
|  *
 | |
|  *  This function will read the EEPROM location for the SAN MAC address
 | |
|  *  pointer, and returns the value at that location.  This is used in both
 | |
|  *  get and set mac_addr routines.
 | |
|  **/
 | |
| static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
 | |
|                                         u16 *san_mac_offset)
 | |
| {
 | |
| 	/*
 | |
| 	 * First read the EEPROM pointer to see if the MAC addresses are
 | |
| 	 * available.
 | |
| 	 */
 | |
| 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @san_mac_addr: SAN MAC address
 | |
|  *
 | |
|  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 | |
|  *  per-port, so set_lan_id() must be called before reading the addresses.
 | |
|  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 | |
|  *  upon for non-SFP connections, so we must call it here.
 | |
|  **/
 | |
| s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
 | |
| {
 | |
| 	u16 san_mac_data, san_mac_offset;
 | |
| 	u8 i;
 | |
| 
 | |
| 	/*
 | |
| 	 * First read the EEPROM pointer to see if the MAC addresses are
 | |
| 	 * available.  If they're not, no point in calling set_lan_id() here.
 | |
| 	 */
 | |
| 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
 | |
| 
 | |
| 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
 | |
| 		/*
 | |
| 		 * No addresses available in this EEPROM.  It's not an
 | |
| 		 * error though, so just wipe the local address and return.
 | |
| 		 */
 | |
| 		for (i = 0; i < 6; i++)
 | |
| 			san_mac_addr[i] = 0xFF;
 | |
| 
 | |
| 		goto san_mac_addr_out;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure we know which port we need to program */
 | |
| 	hw->mac.ops.set_lan_id(hw);
 | |
| 	/* apply the port offset to the address offset */
 | |
| 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
 | |
| 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
 | |
| 		san_mac_addr[i * 2] = (u8)(san_mac_data);
 | |
| 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
 | |
| 		san_mac_offset++;
 | |
| 	}
 | |
| 
 | |
| san_mac_addr_out:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Read PCIe configuration space, and get the MSI-X vector count from
 | |
|  *  the capabilities table.
 | |
|  **/
 | |
| u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_adapter *adapter = hw->back;
 | |
| 	u16 msix_count;
 | |
| 	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
 | |
| 	                     &msix_count);
 | |
| 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
 | |
| 
 | |
| 	/* MSI-X count is zero-based in HW, so increment to give proper value */
 | |
| 	msix_count++;
 | |
| 
 | |
| 	return msix_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 | |
|  *  @hw: pointer to hardware struct
 | |
|  *  @rar: receive address register index to disassociate
 | |
|  *  @vmdq: VMDq pool index to remove from the rar
 | |
|  **/
 | |
| s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
 | |
| {
 | |
| 	u32 mpsar_lo, mpsar_hi;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/* Make sure we are using a valid rar index range */
 | |
| 	if (rar >= rar_entries) {
 | |
| 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
 | |
| 		return IXGBE_ERR_INVALID_ARGUMENT;
 | |
| 	}
 | |
| 
 | |
| 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
 | |
| 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
 | |
| 
 | |
| 	if (!mpsar_lo && !mpsar_hi)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
 | |
| 		if (mpsar_lo) {
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
 | |
| 			mpsar_lo = 0;
 | |
| 		}
 | |
| 		if (mpsar_hi) {
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
 | |
| 			mpsar_hi = 0;
 | |
| 		}
 | |
| 	} else if (vmdq < 32) {
 | |
| 		mpsar_lo &= ~(1 << vmdq);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
 | |
| 	} else {
 | |
| 		mpsar_hi &= ~(1 << (vmdq - 32));
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
 | |
| 	}
 | |
| 
 | |
| 	/* was that the last pool using this rar? */
 | |
| 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
 | |
| 		hw->mac.ops.clear_rar(hw, rar);
 | |
| done:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 | |
|  *  @hw: pointer to hardware struct
 | |
|  *  @rar: receive address register index to associate with a VMDq index
 | |
|  *  @vmdq: VMDq pool index
 | |
|  **/
 | |
| s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
 | |
| {
 | |
| 	u32 mpsar;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/* Make sure we are using a valid rar index range */
 | |
| 	if (rar >= rar_entries) {
 | |
| 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
 | |
| 		return IXGBE_ERR_INVALID_ARGUMENT;
 | |
| 	}
 | |
| 
 | |
| 	if (vmdq < 32) {
 | |
| 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
 | |
| 		mpsar |= 1 << vmdq;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
 | |
| 	} else {
 | |
| 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
 | |
| 		mpsar |= 1 << (vmdq - 32);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 128; i++)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @vlan: VLAN id to write to VLAN filter
 | |
|  *
 | |
|  *  return the VLVF index where this VLAN id should be placed
 | |
|  *
 | |
|  **/
 | |
| static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
 | |
| {
 | |
| 	u32 bits = 0;
 | |
| 	u32 first_empty_slot = 0;
 | |
| 	s32 regindex;
 | |
| 
 | |
| 	/* short cut the special case */
 | |
| 	if (vlan == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	  * Search for the vlan id in the VLVF entries. Save off the first empty
 | |
| 	  * slot found along the way
 | |
| 	  */
 | |
| 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
 | |
| 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
 | |
| 		if (!bits && !(first_empty_slot))
 | |
| 			first_empty_slot = regindex;
 | |
| 		else if ((bits & 0x0FFF) == vlan)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
 | |
| 	  * in the VLVF. Else use the first empty VLVF register for this
 | |
| 	  * vlan id.
 | |
| 	  */
 | |
| 	if (regindex >= IXGBE_VLVF_ENTRIES) {
 | |
| 		if (first_empty_slot)
 | |
| 			regindex = first_empty_slot;
 | |
| 		else {
 | |
| 			hw_dbg(hw, "No space in VLVF.\n");
 | |
| 			regindex = IXGBE_ERR_NO_SPACE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return regindex;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_vfta_generic - Set VLAN filter table
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @vlan: VLAN id to write to VLAN filter
 | |
|  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 | |
|  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
 | |
|  *
 | |
|  *  Turn on/off specified VLAN in the VLAN filter table.
 | |
|  **/
 | |
| s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
 | |
|                            bool vlan_on)
 | |
| {
 | |
| 	s32 regindex;
 | |
| 	u32 bitindex;
 | |
| 	u32 vfta;
 | |
| 	u32 bits;
 | |
| 	u32 vt;
 | |
| 	u32 targetbit;
 | |
| 	bool vfta_changed = false;
 | |
| 
 | |
| 	if (vlan > 4095)
 | |
| 		return IXGBE_ERR_PARAM;
 | |
| 
 | |
| 	/*
 | |
| 	 * this is a 2 part operation - first the VFTA, then the
 | |
| 	 * VLVF and VLVFB if VT Mode is set
 | |
| 	 * We don't write the VFTA until we know the VLVF part succeeded.
 | |
| 	 */
 | |
| 
 | |
| 	/* Part 1
 | |
| 	 * The VFTA is a bitstring made up of 128 32-bit registers
 | |
| 	 * that enable the particular VLAN id, much like the MTA:
 | |
| 	 *    bits[11-5]: which register
 | |
| 	 *    bits[4-0]:  which bit in the register
 | |
| 	 */
 | |
| 	regindex = (vlan >> 5) & 0x7F;
 | |
| 	bitindex = vlan & 0x1F;
 | |
| 	targetbit = (1 << bitindex);
 | |
| 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
 | |
| 
 | |
| 	if (vlan_on) {
 | |
| 		if (!(vfta & targetbit)) {
 | |
| 			vfta |= targetbit;
 | |
| 			vfta_changed = true;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((vfta & targetbit)) {
 | |
| 			vfta &= ~targetbit;
 | |
| 			vfta_changed = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Part 2
 | |
| 	 * If VT Mode is set
 | |
| 	 *   Either vlan_on
 | |
| 	 *     make sure the vlan is in VLVF
 | |
| 	 *     set the vind bit in the matching VLVFB
 | |
| 	 *   Or !vlan_on
 | |
| 	 *     clear the pool bit and possibly the vind
 | |
| 	 */
 | |
| 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
 | |
| 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
 | |
| 		s32 vlvf_index;
 | |
| 
 | |
| 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
 | |
| 		if (vlvf_index < 0)
 | |
| 			return vlvf_index;
 | |
| 
 | |
| 		if (vlan_on) {
 | |
| 			/* set the pool bit */
 | |
| 			if (vind < 32) {
 | |
| 				bits = IXGBE_READ_REG(hw,
 | |
| 						IXGBE_VLVFB(vlvf_index*2));
 | |
| 				bits |= (1 << vind);
 | |
| 				IXGBE_WRITE_REG(hw,
 | |
| 						IXGBE_VLVFB(vlvf_index*2),
 | |
| 						bits);
 | |
| 			} else {
 | |
| 				bits = IXGBE_READ_REG(hw,
 | |
| 						IXGBE_VLVFB((vlvf_index*2)+1));
 | |
| 				bits |= (1 << (vind-32));
 | |
| 				IXGBE_WRITE_REG(hw,
 | |
| 						IXGBE_VLVFB((vlvf_index*2)+1),
 | |
| 						bits);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* clear the pool bit */
 | |
| 			if (vind < 32) {
 | |
| 				bits = IXGBE_READ_REG(hw,
 | |
| 						IXGBE_VLVFB(vlvf_index*2));
 | |
| 				bits &= ~(1 << vind);
 | |
| 				IXGBE_WRITE_REG(hw,
 | |
| 						IXGBE_VLVFB(vlvf_index*2),
 | |
| 						bits);
 | |
| 				bits |= IXGBE_READ_REG(hw,
 | |
| 						IXGBE_VLVFB((vlvf_index*2)+1));
 | |
| 			} else {
 | |
| 				bits = IXGBE_READ_REG(hw,
 | |
| 						IXGBE_VLVFB((vlvf_index*2)+1));
 | |
| 				bits &= ~(1 << (vind-32));
 | |
| 				IXGBE_WRITE_REG(hw,
 | |
| 						IXGBE_VLVFB((vlvf_index*2)+1),
 | |
| 						bits);
 | |
| 				bits |= IXGBE_READ_REG(hw,
 | |
| 						IXGBE_VLVFB(vlvf_index*2));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If there are still bits set in the VLVFB registers
 | |
| 		 * for the VLAN ID indicated we need to see if the
 | |
| 		 * caller is requesting that we clear the VFTA entry bit.
 | |
| 		 * If the caller has requested that we clear the VFTA
 | |
| 		 * entry bit but there are still pools/VFs using this VLAN
 | |
| 		 * ID entry then ignore the request.  We're not worried
 | |
| 		 * about the case where we're turning the VFTA VLAN ID
 | |
| 		 * entry bit on, only when requested to turn it off as
 | |
| 		 * there may be multiple pools and/or VFs using the
 | |
| 		 * VLAN ID entry.  In that case we cannot clear the
 | |
| 		 * VFTA bit until all pools/VFs using that VLAN ID have also
 | |
| 		 * been cleared.  This will be indicated by "bits" being
 | |
| 		 * zero.
 | |
| 		 */
 | |
| 		if (bits) {
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
 | |
| 					(IXGBE_VLVF_VIEN | vlan));
 | |
| 			if (!vlan_on) {
 | |
| 				/* someone wants to clear the vfta entry
 | |
| 				 * but some pools/VFs are still using it.
 | |
| 				 * Ignore it. */
 | |
| 				vfta_changed = false;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
 | |
| 	}
 | |
| 
 | |
| 	if (vfta_changed)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Clears the VLAN filer table, and the VMDq index associated with the filter
 | |
|  **/
 | |
| s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 offset;
 | |
| 
 | |
| 	for (offset = 0; offset < hw->mac.vft_size; offset++)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
 | |
| 
 | |
| 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_check_mac_link_generic - Determine link and speed status
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @speed: pointer to link speed
 | |
|  *  @link_up: true when link is up
 | |
|  *  @link_up_wait_to_complete: bool used to wait for link up or not
 | |
|  *
 | |
|  *  Reads the links register to determine if link is up and the current speed
 | |
|  **/
 | |
| s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
 | |
| 				 bool *link_up, bool link_up_wait_to_complete)
 | |
| {
 | |
| 	u32 links_reg, links_orig;
 | |
| 	u32 i;
 | |
| 
 | |
| 	/* clear the old state */
 | |
| 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
 | |
| 
 | |
| 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
 | |
| 
 | |
| 	if (links_orig != links_reg) {
 | |
| 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
 | |
| 		       links_orig, links_reg);
 | |
| 	}
 | |
| 
 | |
| 	if (link_up_wait_to_complete) {
 | |
| 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
 | |
| 			if (links_reg & IXGBE_LINKS_UP) {
 | |
| 				*link_up = true;
 | |
| 				break;
 | |
| 			} else {
 | |
| 				*link_up = false;
 | |
| 			}
 | |
| 			msleep(100);
 | |
| 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (links_reg & IXGBE_LINKS_UP)
 | |
| 			*link_up = true;
 | |
| 		else
 | |
| 			*link_up = false;
 | |
| 	}
 | |
| 
 | |
| 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
 | |
| 	    IXGBE_LINKS_SPEED_10G_82599)
 | |
| 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
 | |
| 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
 | |
| 		 IXGBE_LINKS_SPEED_1G_82599)
 | |
| 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
 | |
| 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
 | |
| 		 IXGBE_LINKS_SPEED_100_82599)
 | |
| 		*speed = IXGBE_LINK_SPEED_100_FULL;
 | |
| 	else
 | |
| 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
 | |
| 
 | |
| 	/* if link is down, zero out the current_mode */
 | |
| 	if (*link_up == false) {
 | |
| 		hw->fc.current_mode = ixgbe_fc_none;
 | |
| 		hw->fc.fc_was_autonegged = false;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
 | |
|  *  the EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @wwnn_prefix: the alternative WWNN prefix
 | |
|  *  @wwpn_prefix: the alternative WWPN prefix
 | |
|  *
 | |
|  *  This function will read the EEPROM from the alternative SAN MAC address
 | |
|  *  block to check the support for the alternative WWNN/WWPN prefix support.
 | |
|  **/
 | |
| s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
 | |
|                                         u16 *wwpn_prefix)
 | |
| {
 | |
| 	u16 offset, caps;
 | |
| 	u16 alt_san_mac_blk_offset;
 | |
| 
 | |
| 	/* clear output first */
 | |
| 	*wwnn_prefix = 0xFFFF;
 | |
| 	*wwpn_prefix = 0xFFFF;
 | |
| 
 | |
| 	/* check if alternative SAN MAC is supported */
 | |
| 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
 | |
| 	                    &alt_san_mac_blk_offset);
 | |
| 
 | |
| 	if ((alt_san_mac_blk_offset == 0) ||
 | |
| 	    (alt_san_mac_blk_offset == 0xFFFF))
 | |
| 		goto wwn_prefix_out;
 | |
| 
 | |
| 	/* check capability in alternative san mac address block */
 | |
| 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
 | |
| 	hw->eeprom.ops.read(hw, offset, &caps);
 | |
| 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
 | |
| 		goto wwn_prefix_out;
 | |
| 
 | |
| 	/* get the corresponding prefix for WWNN/WWPN */
 | |
| 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
 | |
| 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
 | |
| 
 | |
| 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
 | |
| 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
 | |
| 
 | |
| wwn_prefix_out:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 | |
|  *  control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  There are several phys that do not support autoneg flow control. This
 | |
|  *  function check the device id to see if the associated phy supports
 | |
|  *  autoneg flow control.
 | |
|  **/
 | |
| static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
 | |
| {
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case IXGBE_DEV_ID_X540T:
 | |
| 		return 0;
 | |
| 	case IXGBE_DEV_ID_82599_T3_LOM:
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return IXGBE_ERR_FC_NOT_SUPPORTED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @enable: enable or disable switch for anti-spoofing
 | |
|  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
 | |
|  *
 | |
|  **/
 | |
| void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
 | |
| {
 | |
| 	int j;
 | |
| 	int pf_target_reg = pf >> 3;
 | |
| 	int pf_target_shift = pf % 8;
 | |
| 	u32 pfvfspoof = 0;
 | |
| 
 | |
| 	if (hw->mac.type == ixgbe_mac_82598EB)
 | |
| 		return;
 | |
| 
 | |
| 	if (enable)
 | |
| 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
 | |
| 	 * MAC anti-spoof enables in each register array element.
 | |
| 	 */
 | |
| 	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
 | |
| 
 | |
| 	/* If not enabling anti-spoofing then done */
 | |
| 	if (!enable)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The PF should be allowed to spoof so that it can support
 | |
| 	 * emulation mode NICs.  Reset the bit assigned to the PF
 | |
| 	 */
 | |
| 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
 | |
| 	pfvfspoof ^= (1 << pf_target_shift);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @enable: enable or disable switch for VLAN anti-spoofing
 | |
|  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 | |
|  *
 | |
|  **/
 | |
| void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
 | |
| {
 | |
| 	int vf_target_reg = vf >> 3;
 | |
| 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
 | |
| 	u32 pfvfspoof;
 | |
| 
 | |
| 	if (hw->mac.type == ixgbe_mac_82598EB)
 | |
| 		return;
 | |
| 
 | |
| 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
 | |
| 	if (enable)
 | |
| 		pfvfspoof |= (1 << vf_target_shift);
 | |
| 	else
 | |
| 		pfvfspoof &= ~(1 << vf_target_shift);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
 | |
| }
 |