linux/kernel/irq/irqdesc.c
Lukas Wunner 792ea6a074 genirq: Remove WARN_ON_ONCE() in generic_handle_domain_irq()
Since commit 0953fb263714 ("irq: remove handle_domain_{irq,nmi}()"),
generic_handle_domain_irq() warns if called outside hardirq context, even
though the function calls down to handle_irq_desc(), which warns about the
same, but conditionally on handle_enforce_irqctx().

The newly added warning is a false positive if the interrupt originates
from any other irqchip than x86 APIC or ARM GIC/GICv3.  Those are the only
ones for which handle_enforce_irqctx() returns true.  Per commit
c16816acd086 ("genirq: Add protection against unsafe usage of
generic_handle_irq()"):

 "In general calling generic_handle_irq() with interrupts disabled from non
  interrupt context is harmless. For some interrupt controllers like the
  x86 trainwrecks this is outright dangerous as it might corrupt state if
  an interrupt affinity change is pending."

Examples for interrupt chips where the warning is a false positive are
USB-attached GPIO controllers such as drivers/gpio/gpio-dln2.c:

  USB gadgets are incapable of directly signaling an interrupt because they
  cannot initiate a bus transaction by themselves.  All communication on
  the bus is initiated by the host controller, which polls a gadget's
  Interrupt Endpoint in regular intervals.  If an interrupt is pending,
  that information is passed up the stack in softirq context, from which a
  hardirq is synthesized via generic_handle_domain_irq().

Remove the warning to eliminate such false positives.

Fixes: 0953fb263714 ("irq: remove handle_domain_{irq,nmi}()")
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Jakub Kicinski <kuba@kernel.org>
CC: Linus Walleij <linus.walleij@linaro.org>
Cc: Bartosz Golaszewski <brgl@bgdev.pl>
Cc: Octavian Purdila <octavian.purdila@nxp.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220505113207.487861b2@kernel.org
Link: https://lore.kernel.org/r/20220506203242.GA1855@wunner.de
Link: https://lore.kernel.org/r/c3caf60bfa78e5fdbdf483096b7174da65d1813a.1652168866.git.lukas@wunner.de
2022-05-11 02:22:52 +02:00

969 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
* Copyright (C) 2005-2006, Thomas Gleixner, Russell King
*
* This file contains the interrupt descriptor management code. Detailed
* information is available in Documentation/core-api/genericirq.rst
*
*/
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/radix-tree.h>
#include <linux/bitmap.h>
#include <linux/irqdomain.h>
#include <linux/sysfs.h>
#include "internals.h"
/*
* lockdep: we want to handle all irq_desc locks as a single lock-class:
*/
static struct lock_class_key irq_desc_lock_class;
#if defined(CONFIG_SMP)
static int __init irq_affinity_setup(char *str)
{
alloc_bootmem_cpumask_var(&irq_default_affinity);
cpulist_parse(str, irq_default_affinity);
/*
* Set at least the boot cpu. We don't want to end up with
* bugreports caused by random commandline masks
*/
cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
return 1;
}
__setup("irqaffinity=", irq_affinity_setup);
static void __init init_irq_default_affinity(void)
{
if (!cpumask_available(irq_default_affinity))
zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
if (cpumask_empty(irq_default_affinity))
cpumask_setall(irq_default_affinity);
}
#else
static void __init init_irq_default_affinity(void)
{
}
#endif
#ifdef CONFIG_SMP
static int alloc_masks(struct irq_desc *desc, int node)
{
if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
GFP_KERNEL, node))
return -ENOMEM;
#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
GFP_KERNEL, node)) {
free_cpumask_var(desc->irq_common_data.affinity);
return -ENOMEM;
}
#endif
#ifdef CONFIG_GENERIC_PENDING_IRQ
if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
free_cpumask_var(desc->irq_common_data.effective_affinity);
#endif
free_cpumask_var(desc->irq_common_data.affinity);
return -ENOMEM;
}
#endif
return 0;
}
static void desc_smp_init(struct irq_desc *desc, int node,
const struct cpumask *affinity)
{
if (!affinity)
affinity = irq_default_affinity;
cpumask_copy(desc->irq_common_data.affinity, affinity);
#ifdef CONFIG_GENERIC_PENDING_IRQ
cpumask_clear(desc->pending_mask);
#endif
#ifdef CONFIG_NUMA
desc->irq_common_data.node = node;
#endif
}
#else
static inline int
alloc_masks(struct irq_desc *desc, int node) { return 0; }
static inline void
desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
#endif
static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
const struct cpumask *affinity, struct module *owner)
{
int cpu;
desc->irq_common_data.handler_data = NULL;
desc->irq_common_data.msi_desc = NULL;
desc->irq_data.common = &desc->irq_common_data;
desc->irq_data.irq = irq;
desc->irq_data.chip = &no_irq_chip;
desc->irq_data.chip_data = NULL;
irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
desc->handle_irq = handle_bad_irq;
desc->depth = 1;
desc->irq_count = 0;
desc->irqs_unhandled = 0;
desc->tot_count = 0;
desc->name = NULL;
desc->owner = owner;
for_each_possible_cpu(cpu)
*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
desc_smp_init(desc, node, affinity);
}
int nr_irqs = NR_IRQS;
EXPORT_SYMBOL_GPL(nr_irqs);
static DEFINE_MUTEX(sparse_irq_lock);
static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
#ifdef CONFIG_SPARSE_IRQ
static void irq_kobj_release(struct kobject *kobj);
#ifdef CONFIG_SYSFS
static struct kobject *irq_kobj_base;
#define IRQ_ATTR_RO(_name) \
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
static ssize_t per_cpu_count_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
ssize_t ret = 0;
char *p = "";
int cpu;
for_each_possible_cpu(cpu) {
unsigned int c = irq_desc_kstat_cpu(desc, cpu);
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
p = ",";
}
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
return ret;
}
IRQ_ATTR_RO(per_cpu_count);
static ssize_t chip_name_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
ssize_t ret = 0;
raw_spin_lock_irq(&desc->lock);
if (desc->irq_data.chip && desc->irq_data.chip->name) {
ret = scnprintf(buf, PAGE_SIZE, "%s\n",
desc->irq_data.chip->name);
}
raw_spin_unlock_irq(&desc->lock);
return ret;
}
IRQ_ATTR_RO(chip_name);
static ssize_t hwirq_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
ssize_t ret = 0;
raw_spin_lock_irq(&desc->lock);
if (desc->irq_data.domain)
ret = sprintf(buf, "%lu\n", desc->irq_data.hwirq);
raw_spin_unlock_irq(&desc->lock);
return ret;
}
IRQ_ATTR_RO(hwirq);
static ssize_t type_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
ssize_t ret = 0;
raw_spin_lock_irq(&desc->lock);
ret = sprintf(buf, "%s\n",
irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
raw_spin_unlock_irq(&desc->lock);
return ret;
}
IRQ_ATTR_RO(type);
static ssize_t wakeup_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
ssize_t ret = 0;
raw_spin_lock_irq(&desc->lock);
ret = sprintf(buf, "%s\n",
irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
raw_spin_unlock_irq(&desc->lock);
return ret;
}
IRQ_ATTR_RO(wakeup);
static ssize_t name_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
ssize_t ret = 0;
raw_spin_lock_irq(&desc->lock);
if (desc->name)
ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
raw_spin_unlock_irq(&desc->lock);
return ret;
}
IRQ_ATTR_RO(name);
static ssize_t actions_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
struct irqaction *action;
ssize_t ret = 0;
char *p = "";
raw_spin_lock_irq(&desc->lock);
for (action = desc->action; action != NULL; action = action->next) {
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
p, action->name);
p = ",";
}
raw_spin_unlock_irq(&desc->lock);
if (ret)
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
return ret;
}
IRQ_ATTR_RO(actions);
static struct attribute *irq_attrs[] = {
&per_cpu_count_attr.attr,
&chip_name_attr.attr,
&hwirq_attr.attr,
&type_attr.attr,
&wakeup_attr.attr,
&name_attr.attr,
&actions_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(irq);
static struct kobj_type irq_kobj_type = {
.release = irq_kobj_release,
.sysfs_ops = &kobj_sysfs_ops,
.default_groups = irq_groups,
};
static void irq_sysfs_add(int irq, struct irq_desc *desc)
{
if (irq_kobj_base) {
/*
* Continue even in case of failure as this is nothing
* crucial.
*/
if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
pr_warn("Failed to add kobject for irq %d\n", irq);
}
}
static void irq_sysfs_del(struct irq_desc *desc)
{
/*
* If irq_sysfs_init() has not yet been invoked (early boot), then
* irq_kobj_base is NULL and the descriptor was never added.
* kobject_del() complains about a object with no parent, so make
* it conditional.
*/
if (irq_kobj_base)
kobject_del(&desc->kobj);
}
static int __init irq_sysfs_init(void)
{
struct irq_desc *desc;
int irq;
/* Prevent concurrent irq alloc/free */
irq_lock_sparse();
irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
if (!irq_kobj_base) {
irq_unlock_sparse();
return -ENOMEM;
}
/* Add the already allocated interrupts */
for_each_irq_desc(irq, desc)
irq_sysfs_add(irq, desc);
irq_unlock_sparse();
return 0;
}
postcore_initcall(irq_sysfs_init);
#else /* !CONFIG_SYSFS */
static struct kobj_type irq_kobj_type = {
.release = irq_kobj_release,
};
static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
static void irq_sysfs_del(struct irq_desc *desc) {}
#endif /* CONFIG_SYSFS */
static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
{
radix_tree_insert(&irq_desc_tree, irq, desc);
}
struct irq_desc *irq_to_desc(unsigned int irq)
{
return radix_tree_lookup(&irq_desc_tree, irq);
}
#ifdef CONFIG_KVM_BOOK3S_64_HV_MODULE
EXPORT_SYMBOL_GPL(irq_to_desc);
#endif
static void delete_irq_desc(unsigned int irq)
{
radix_tree_delete(&irq_desc_tree, irq);
}
#ifdef CONFIG_SMP
static void free_masks(struct irq_desc *desc)
{
#ifdef CONFIG_GENERIC_PENDING_IRQ
free_cpumask_var(desc->pending_mask);
#endif
free_cpumask_var(desc->irq_common_data.affinity);
#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
free_cpumask_var(desc->irq_common_data.effective_affinity);
#endif
}
#else
static inline void free_masks(struct irq_desc *desc) { }
#endif
void irq_lock_sparse(void)
{
mutex_lock(&sparse_irq_lock);
}
void irq_unlock_sparse(void)
{
mutex_unlock(&sparse_irq_lock);
}
static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
const struct cpumask *affinity,
struct module *owner)
{
struct irq_desc *desc;
desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
if (!desc)
return NULL;
/* allocate based on nr_cpu_ids */
desc->kstat_irqs = alloc_percpu(unsigned int);
if (!desc->kstat_irqs)
goto err_desc;
if (alloc_masks(desc, node))
goto err_kstat;
raw_spin_lock_init(&desc->lock);
lockdep_set_class(&desc->lock, &irq_desc_lock_class);
mutex_init(&desc->request_mutex);
init_rcu_head(&desc->rcu);
init_waitqueue_head(&desc->wait_for_threads);
desc_set_defaults(irq, desc, node, affinity, owner);
irqd_set(&desc->irq_data, flags);
kobject_init(&desc->kobj, &irq_kobj_type);
return desc;
err_kstat:
free_percpu(desc->kstat_irqs);
err_desc:
kfree(desc);
return NULL;
}
static void irq_kobj_release(struct kobject *kobj)
{
struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
free_masks(desc);
free_percpu(desc->kstat_irqs);
kfree(desc);
}
static void delayed_free_desc(struct rcu_head *rhp)
{
struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
kobject_put(&desc->kobj);
}
static void free_desc(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
irq_remove_debugfs_entry(desc);
unregister_irq_proc(irq, desc);
/*
* sparse_irq_lock protects also show_interrupts() and
* kstat_irq_usr(). Once we deleted the descriptor from the
* sparse tree we can free it. Access in proc will fail to
* lookup the descriptor.
*
* The sysfs entry must be serialized against a concurrent
* irq_sysfs_init() as well.
*/
irq_sysfs_del(desc);
delete_irq_desc(irq);
/*
* We free the descriptor, masks and stat fields via RCU. That
* allows demultiplex interrupts to do rcu based management of
* the child interrupts.
* This also allows us to use rcu in kstat_irqs_usr().
*/
call_rcu(&desc->rcu, delayed_free_desc);
}
static int alloc_descs(unsigned int start, unsigned int cnt, int node,
const struct irq_affinity_desc *affinity,
struct module *owner)
{
struct irq_desc *desc;
int i;
/* Validate affinity mask(s) */
if (affinity) {
for (i = 0; i < cnt; i++) {
if (cpumask_empty(&affinity[i].mask))
return -EINVAL;
}
}
for (i = 0; i < cnt; i++) {
const struct cpumask *mask = NULL;
unsigned int flags = 0;
if (affinity) {
if (affinity->is_managed) {
flags = IRQD_AFFINITY_MANAGED |
IRQD_MANAGED_SHUTDOWN;
}
mask = &affinity->mask;
node = cpu_to_node(cpumask_first(mask));
affinity++;
}
desc = alloc_desc(start + i, node, flags, mask, owner);
if (!desc)
goto err;
irq_insert_desc(start + i, desc);
irq_sysfs_add(start + i, desc);
irq_add_debugfs_entry(start + i, desc);
}
bitmap_set(allocated_irqs, start, cnt);
return start;
err:
for (i--; i >= 0; i--)
free_desc(start + i);
return -ENOMEM;
}
static int irq_expand_nr_irqs(unsigned int nr)
{
if (nr > IRQ_BITMAP_BITS)
return -ENOMEM;
nr_irqs = nr;
return 0;
}
int __init early_irq_init(void)
{
int i, initcnt, node = first_online_node;
struct irq_desc *desc;
init_irq_default_affinity();
/* Let arch update nr_irqs and return the nr of preallocated irqs */
initcnt = arch_probe_nr_irqs();
printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
NR_IRQS, nr_irqs, initcnt);
if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
nr_irqs = IRQ_BITMAP_BITS;
if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
initcnt = IRQ_BITMAP_BITS;
if (initcnt > nr_irqs)
nr_irqs = initcnt;
for (i = 0; i < initcnt; i++) {
desc = alloc_desc(i, node, 0, NULL, NULL);
set_bit(i, allocated_irqs);
irq_insert_desc(i, desc);
}
return arch_early_irq_init();
}
#else /* !CONFIG_SPARSE_IRQ */
struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
[0 ... NR_IRQS-1] = {
.handle_irq = handle_bad_irq,
.depth = 1,
.lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
}
};
int __init early_irq_init(void)
{
int count, i, node = first_online_node;
struct irq_desc *desc;
init_irq_default_affinity();
printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
desc = irq_desc;
count = ARRAY_SIZE(irq_desc);
for (i = 0; i < count; i++) {
desc[i].kstat_irqs = alloc_percpu(unsigned int);
alloc_masks(&desc[i], node);
raw_spin_lock_init(&desc[i].lock);
lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
mutex_init(&desc[i].request_mutex);
init_waitqueue_head(&desc[i].wait_for_threads);
desc_set_defaults(i, &desc[i], node, NULL, NULL);
}
return arch_early_irq_init();
}
struct irq_desc *irq_to_desc(unsigned int irq)
{
return (irq < NR_IRQS) ? irq_desc + irq : NULL;
}
EXPORT_SYMBOL(irq_to_desc);
static void free_desc(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned long flags;
raw_spin_lock_irqsave(&desc->lock, flags);
desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
raw_spin_unlock_irqrestore(&desc->lock, flags);
}
static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
const struct irq_affinity_desc *affinity,
struct module *owner)
{
u32 i;
for (i = 0; i < cnt; i++) {
struct irq_desc *desc = irq_to_desc(start + i);
desc->owner = owner;
}
bitmap_set(allocated_irqs, start, cnt);
return start;
}
static int irq_expand_nr_irqs(unsigned int nr)
{
return -ENOMEM;
}
void irq_mark_irq(unsigned int irq)
{
mutex_lock(&sparse_irq_lock);
bitmap_set(allocated_irqs, irq, 1);
mutex_unlock(&sparse_irq_lock);
}
#ifdef CONFIG_GENERIC_IRQ_LEGACY
void irq_init_desc(unsigned int irq)
{
free_desc(irq);
}
#endif
#endif /* !CONFIG_SPARSE_IRQ */
int handle_irq_desc(struct irq_desc *desc)
{
struct irq_data *data;
if (!desc)
return -EINVAL;
data = irq_desc_get_irq_data(desc);
if (WARN_ON_ONCE(!in_hardirq() && handle_enforce_irqctx(data)))
return -EPERM;
generic_handle_irq_desc(desc);
return 0;
}
/**
* generic_handle_irq - Invoke the handler for a particular irq
* @irq: The irq number to handle
*
* Returns: 0 on success, or -EINVAL if conversion has failed
*
* This function must be called from an IRQ context with irq regs
* initialized.
*/
int generic_handle_irq(unsigned int irq)
{
return handle_irq_desc(irq_to_desc(irq));
}
EXPORT_SYMBOL_GPL(generic_handle_irq);
/**
* generic_handle_irq_safe - Invoke the handler for a particular irq from any
* context.
* @irq: The irq number to handle
*
* Returns: 0 on success, a negative value on error.
*
* This function can be called from any context (IRQ or process context). It
* will report an error if not invoked from IRQ context and the irq has been
* marked to enforce IRQ-context only.
*/
int generic_handle_irq_safe(unsigned int irq)
{
unsigned long flags;
int ret;
local_irq_save(flags);
ret = handle_irq_desc(irq_to_desc(irq));
local_irq_restore(flags);
return ret;
}
EXPORT_SYMBOL_GPL(generic_handle_irq_safe);
#ifdef CONFIG_IRQ_DOMAIN
/**
* generic_handle_domain_irq - Invoke the handler for a HW irq belonging
* to a domain.
* @domain: The domain where to perform the lookup
* @hwirq: The HW irq number to convert to a logical one
*
* Returns: 0 on success, or -EINVAL if conversion has failed
*
* This function must be called from an IRQ context with irq regs
* initialized.
*/
int generic_handle_domain_irq(struct irq_domain *domain, unsigned int hwirq)
{
return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
}
EXPORT_SYMBOL_GPL(generic_handle_domain_irq);
/**
* generic_handle_domain_nmi - Invoke the handler for a HW nmi belonging
* to a domain.
* @domain: The domain where to perform the lookup
* @hwirq: The HW irq number to convert to a logical one
*
* Returns: 0 on success, or -EINVAL if conversion has failed
*
* This function must be called from an NMI context with irq regs
* initialized.
**/
int generic_handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq)
{
WARN_ON_ONCE(!in_nmi());
return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
}
#endif
/* Dynamic interrupt handling */
/**
* irq_free_descs - free irq descriptors
* @from: Start of descriptor range
* @cnt: Number of consecutive irqs to free
*/
void irq_free_descs(unsigned int from, unsigned int cnt)
{
int i;
if (from >= nr_irqs || (from + cnt) > nr_irqs)
return;
mutex_lock(&sparse_irq_lock);
for (i = 0; i < cnt; i++)
free_desc(from + i);
bitmap_clear(allocated_irqs, from, cnt);
mutex_unlock(&sparse_irq_lock);
}
EXPORT_SYMBOL_GPL(irq_free_descs);
/**
* __irq_alloc_descs - allocate and initialize a range of irq descriptors
* @irq: Allocate for specific irq number if irq >= 0
* @from: Start the search from this irq number
* @cnt: Number of consecutive irqs to allocate.
* @node: Preferred node on which the irq descriptor should be allocated
* @owner: Owning module (can be NULL)
* @affinity: Optional pointer to an affinity mask array of size @cnt which
* hints where the irq descriptors should be allocated and which
* default affinities to use
*
* Returns the first irq number or error code
*/
int __ref
__irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
struct module *owner, const struct irq_affinity_desc *affinity)
{
int start, ret;
if (!cnt)
return -EINVAL;
if (irq >= 0) {
if (from > irq)
return -EINVAL;
from = irq;
} else {
/*
* For interrupts which are freely allocated the
* architecture can force a lower bound to the @from
* argument. x86 uses this to exclude the GSI space.
*/
from = arch_dynirq_lower_bound(from);
}
mutex_lock(&sparse_irq_lock);
start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
from, cnt, 0);
ret = -EEXIST;
if (irq >=0 && start != irq)
goto unlock;
if (start + cnt > nr_irqs) {
ret = irq_expand_nr_irqs(start + cnt);
if (ret)
goto unlock;
}
ret = alloc_descs(start, cnt, node, affinity, owner);
unlock:
mutex_unlock(&sparse_irq_lock);
return ret;
}
EXPORT_SYMBOL_GPL(__irq_alloc_descs);
/**
* irq_get_next_irq - get next allocated irq number
* @offset: where to start the search
*
* Returns next irq number after offset or nr_irqs if none is found.
*/
unsigned int irq_get_next_irq(unsigned int offset)
{
return find_next_bit(allocated_irqs, nr_irqs, offset);
}
struct irq_desc *
__irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
unsigned int check)
{
struct irq_desc *desc = irq_to_desc(irq);
if (desc) {
if (check & _IRQ_DESC_CHECK) {
if ((check & _IRQ_DESC_PERCPU) &&
!irq_settings_is_per_cpu_devid(desc))
return NULL;
if (!(check & _IRQ_DESC_PERCPU) &&
irq_settings_is_per_cpu_devid(desc))
return NULL;
}
if (bus)
chip_bus_lock(desc);
raw_spin_lock_irqsave(&desc->lock, *flags);
}
return desc;
}
void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
__releases(&desc->lock)
{
raw_spin_unlock_irqrestore(&desc->lock, flags);
if (bus)
chip_bus_sync_unlock(desc);
}
int irq_set_percpu_devid_partition(unsigned int irq,
const struct cpumask *affinity)
{
struct irq_desc *desc = irq_to_desc(irq);
if (!desc)
return -EINVAL;
if (desc->percpu_enabled)
return -EINVAL;
desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
if (!desc->percpu_enabled)
return -ENOMEM;
if (affinity)
desc->percpu_affinity = affinity;
else
desc->percpu_affinity = cpu_possible_mask;
irq_set_percpu_devid_flags(irq);
return 0;
}
int irq_set_percpu_devid(unsigned int irq)
{
return irq_set_percpu_devid_partition(irq, NULL);
}
int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
{
struct irq_desc *desc = irq_to_desc(irq);
if (!desc || !desc->percpu_enabled)
return -EINVAL;
if (affinity)
cpumask_copy(affinity, desc->percpu_affinity);
return 0;
}
EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
void kstat_incr_irq_this_cpu(unsigned int irq)
{
kstat_incr_irqs_this_cpu(irq_to_desc(irq));
}
/**
* kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
* @irq: The interrupt number
* @cpu: The cpu number
*
* Returns the sum of interrupt counts on @cpu since boot for
* @irq. The caller must ensure that the interrupt is not removed
* concurrently.
*/
unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
{
struct irq_desc *desc = irq_to_desc(irq);
return desc && desc->kstat_irqs ?
*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
}
static bool irq_is_nmi(struct irq_desc *desc)
{
return desc->istate & IRQS_NMI;
}
static unsigned int kstat_irqs(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc(irq);
unsigned int sum = 0;
int cpu;
if (!desc || !desc->kstat_irqs)
return 0;
if (!irq_settings_is_per_cpu_devid(desc) &&
!irq_settings_is_per_cpu(desc) &&
!irq_is_nmi(desc))
return data_race(desc->tot_count);
for_each_possible_cpu(cpu)
sum += data_race(*per_cpu_ptr(desc->kstat_irqs, cpu));
return sum;
}
/**
* kstat_irqs_usr - Get the statistics for an interrupt from thread context
* @irq: The interrupt number
*
* Returns the sum of interrupt counts on all cpus since boot for @irq.
*
* It uses rcu to protect the access since a concurrent removal of an
* interrupt descriptor is observing an rcu grace period before
* delayed_free_desc()/irq_kobj_release().
*/
unsigned int kstat_irqs_usr(unsigned int irq)
{
unsigned int sum;
rcu_read_lock();
sum = kstat_irqs(irq);
rcu_read_unlock();
return sum;
}
#ifdef CONFIG_LOCKDEP
void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class,
struct lock_class_key *request_class)
{
struct irq_desc *desc = irq_to_desc(irq);
if (desc) {
lockdep_set_class(&desc->lock, lock_class);
lockdep_set_class(&desc->request_mutex, request_class);
}
}
EXPORT_SYMBOL_GPL(__irq_set_lockdep_class);
#endif