4a200a0978
For keyspace fullness scans, we want to be able to mask off the parts of the key that we don't care about. For most btree types we /do/ want the full keyspace, but for checking that a given space usage also has a full complement of rmapbt records (even if different/multiple owners) we need this masking so that we only track sparseness of rm_startblock, not the whole keyspace (which is extremely sparse). Augment the ->diff_two_keys and ->keys_contiguous helpers to take a third union xfs_btree_key argument, and wire up xfs_rmap_has_records to pass this through. This third "mask" argument should contain a nonzero value in each structure field that should be used in the key comparisons done during the scan. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
662 lines
16 KiB
C
662 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_btree_staging.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_extent_busy.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_ag.h"
|
|
|
|
static struct kmem_cache *xfs_allocbt_cur_cache;
|
|
|
|
STATIC struct xfs_btree_cur *
|
|
xfs_allocbt_dup_cursor(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
|
|
cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_allocbt_set_root(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_ptr *ptr,
|
|
int inc)
|
|
{
|
|
struct xfs_buf *agbp = cur->bc_ag.agbp;
|
|
struct xfs_agf *agf = agbp->b_addr;
|
|
int btnum = cur->bc_btnum;
|
|
|
|
ASSERT(ptr->s != 0);
|
|
|
|
agf->agf_roots[btnum] = ptr->s;
|
|
be32_add_cpu(&agf->agf_levels[btnum], inc);
|
|
cur->bc_ag.pag->pagf_levels[btnum] += inc;
|
|
|
|
xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_allocbt_alloc_block(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_ptr *start,
|
|
union xfs_btree_ptr *new,
|
|
int *stat)
|
|
{
|
|
int error;
|
|
xfs_agblock_t bno;
|
|
|
|
/* Allocate the new block from the freelist. If we can't, give up. */
|
|
error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
|
|
cur->bc_ag.agbp, &bno, 1);
|
|
if (error)
|
|
return error;
|
|
|
|
if (bno == NULLAGBLOCK) {
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
atomic64_inc(&cur->bc_mp->m_allocbt_blks);
|
|
xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
|
|
|
|
new->s = cpu_to_be32(bno);
|
|
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_allocbt_free_block(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buf *agbp = cur->bc_ag.agbp;
|
|
xfs_agblock_t bno;
|
|
int error;
|
|
|
|
bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
|
|
error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
|
|
bno, 1);
|
|
if (error)
|
|
return error;
|
|
|
|
atomic64_dec(&cur->bc_mp->m_allocbt_blks);
|
|
xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
|
|
XFS_EXTENT_BUSY_SKIP_DISCARD);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the longest extent in the AGF
|
|
*/
|
|
STATIC void
|
|
xfs_allocbt_update_lastrec(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_btree_block *block,
|
|
const union xfs_btree_rec *rec,
|
|
int ptr,
|
|
int reason)
|
|
{
|
|
struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
|
|
struct xfs_perag *pag;
|
|
__be32 len;
|
|
int numrecs;
|
|
|
|
ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
|
|
|
|
switch (reason) {
|
|
case LASTREC_UPDATE:
|
|
/*
|
|
* If this is the last leaf block and it's the last record,
|
|
* then update the size of the longest extent in the AG.
|
|
*/
|
|
if (ptr != xfs_btree_get_numrecs(block))
|
|
return;
|
|
len = rec->alloc.ar_blockcount;
|
|
break;
|
|
case LASTREC_INSREC:
|
|
if (be32_to_cpu(rec->alloc.ar_blockcount) <=
|
|
be32_to_cpu(agf->agf_longest))
|
|
return;
|
|
len = rec->alloc.ar_blockcount;
|
|
break;
|
|
case LASTREC_DELREC:
|
|
numrecs = xfs_btree_get_numrecs(block);
|
|
if (ptr <= numrecs)
|
|
return;
|
|
ASSERT(ptr == numrecs + 1);
|
|
|
|
if (numrecs) {
|
|
xfs_alloc_rec_t *rrp;
|
|
|
|
rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
|
|
len = rrp->ar_blockcount;
|
|
} else {
|
|
len = 0;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
return;
|
|
}
|
|
|
|
agf->agf_longest = len;
|
|
pag = cur->bc_ag.agbp->b_pag;
|
|
pag->pagf_longest = be32_to_cpu(len);
|
|
xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_allocbt_get_minrecs(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
return cur->bc_mp->m_alloc_mnr[level != 0];
|
|
}
|
|
|
|
STATIC int
|
|
xfs_allocbt_get_maxrecs(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
return cur->bc_mp->m_alloc_mxr[level != 0];
|
|
}
|
|
|
|
STATIC void
|
|
xfs_allocbt_init_key_from_rec(
|
|
union xfs_btree_key *key,
|
|
const union xfs_btree_rec *rec)
|
|
{
|
|
key->alloc.ar_startblock = rec->alloc.ar_startblock;
|
|
key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_bnobt_init_high_key_from_rec(
|
|
union xfs_btree_key *key,
|
|
const union xfs_btree_rec *rec)
|
|
{
|
|
__u32 x;
|
|
|
|
x = be32_to_cpu(rec->alloc.ar_startblock);
|
|
x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
|
|
key->alloc.ar_startblock = cpu_to_be32(x);
|
|
key->alloc.ar_blockcount = 0;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_cntbt_init_high_key_from_rec(
|
|
union xfs_btree_key *key,
|
|
const union xfs_btree_rec *rec)
|
|
{
|
|
key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
|
|
key->alloc.ar_startblock = 0;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_allocbt_init_rec_from_cur(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
|
|
rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_allocbt_init_ptr_from_cur(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
|
|
|
|
ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
|
|
|
|
ptr->s = agf->agf_roots[cur->bc_btnum];
|
|
}
|
|
|
|
STATIC int64_t
|
|
xfs_bnobt_key_diff(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_key *key)
|
|
{
|
|
struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
|
|
const struct xfs_alloc_rec *kp = &key->alloc;
|
|
|
|
return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
|
|
}
|
|
|
|
STATIC int64_t
|
|
xfs_cntbt_key_diff(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_key *key)
|
|
{
|
|
struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
|
|
const struct xfs_alloc_rec *kp = &key->alloc;
|
|
int64_t diff;
|
|
|
|
diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
|
|
if (diff)
|
|
return diff;
|
|
|
|
return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
|
|
}
|
|
|
|
STATIC int64_t
|
|
xfs_bnobt_diff_two_keys(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_key *k1,
|
|
const union xfs_btree_key *k2,
|
|
const union xfs_btree_key *mask)
|
|
{
|
|
ASSERT(!mask || mask->alloc.ar_startblock);
|
|
|
|
return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
|
|
be32_to_cpu(k2->alloc.ar_startblock);
|
|
}
|
|
|
|
STATIC int64_t
|
|
xfs_cntbt_diff_two_keys(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_key *k1,
|
|
const union xfs_btree_key *k2,
|
|
const union xfs_btree_key *mask)
|
|
{
|
|
int64_t diff;
|
|
|
|
ASSERT(!mask || (mask->alloc.ar_blockcount &&
|
|
mask->alloc.ar_startblock));
|
|
|
|
diff = be32_to_cpu(k1->alloc.ar_blockcount) -
|
|
be32_to_cpu(k2->alloc.ar_blockcount);
|
|
if (diff)
|
|
return diff;
|
|
|
|
return be32_to_cpu(k1->alloc.ar_startblock) -
|
|
be32_to_cpu(k2->alloc.ar_startblock);
|
|
}
|
|
|
|
static xfs_failaddr_t
|
|
xfs_allocbt_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
xfs_failaddr_t fa;
|
|
unsigned int level;
|
|
xfs_btnum_t btnum = XFS_BTNUM_BNOi;
|
|
|
|
if (!xfs_verify_magic(bp, block->bb_magic))
|
|
return __this_address;
|
|
|
|
if (xfs_has_crc(mp)) {
|
|
fa = xfs_btree_sblock_v5hdr_verify(bp);
|
|
if (fa)
|
|
return fa;
|
|
}
|
|
|
|
/*
|
|
* The perag may not be attached during grow operations or fully
|
|
* initialized from the AGF during log recovery. Therefore we can only
|
|
* check against maximum tree depth from those contexts.
|
|
*
|
|
* Otherwise check against the per-tree limit. Peek at one of the
|
|
* verifier magic values to determine the type of tree we're verifying
|
|
* against.
|
|
*/
|
|
level = be16_to_cpu(block->bb_level);
|
|
if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
|
|
btnum = XFS_BTNUM_CNTi;
|
|
if (pag && xfs_perag_initialised_agf(pag)) {
|
|
if (level >= pag->pagf_levels[btnum])
|
|
return __this_address;
|
|
} else if (level >= mp->m_alloc_maxlevels)
|
|
return __this_address;
|
|
|
|
return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
|
|
}
|
|
|
|
static void
|
|
xfs_allocbt_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_failaddr_t fa;
|
|
|
|
if (!xfs_btree_sblock_verify_crc(bp))
|
|
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
|
|
else {
|
|
fa = xfs_allocbt_verify(bp);
|
|
if (fa)
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
}
|
|
|
|
if (bp->b_error)
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
}
|
|
|
|
static void
|
|
xfs_allocbt_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
xfs_failaddr_t fa;
|
|
|
|
fa = xfs_allocbt_verify(bp);
|
|
if (fa) {
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
return;
|
|
}
|
|
xfs_btree_sblock_calc_crc(bp);
|
|
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_bnobt_buf_ops = {
|
|
.name = "xfs_bnobt",
|
|
.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
|
|
cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
|
|
.verify_read = xfs_allocbt_read_verify,
|
|
.verify_write = xfs_allocbt_write_verify,
|
|
.verify_struct = xfs_allocbt_verify,
|
|
};
|
|
|
|
const struct xfs_buf_ops xfs_cntbt_buf_ops = {
|
|
.name = "xfs_cntbt",
|
|
.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
|
|
cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
|
|
.verify_read = xfs_allocbt_read_verify,
|
|
.verify_write = xfs_allocbt_write_verify,
|
|
.verify_struct = xfs_allocbt_verify,
|
|
};
|
|
|
|
STATIC int
|
|
xfs_bnobt_keys_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_key *k1,
|
|
const union xfs_btree_key *k2)
|
|
{
|
|
return be32_to_cpu(k1->alloc.ar_startblock) <
|
|
be32_to_cpu(k2->alloc.ar_startblock);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_bnobt_recs_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_rec *r1,
|
|
const union xfs_btree_rec *r2)
|
|
{
|
|
return be32_to_cpu(r1->alloc.ar_startblock) +
|
|
be32_to_cpu(r1->alloc.ar_blockcount) <=
|
|
be32_to_cpu(r2->alloc.ar_startblock);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_cntbt_keys_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_key *k1,
|
|
const union xfs_btree_key *k2)
|
|
{
|
|
return be32_to_cpu(k1->alloc.ar_blockcount) <
|
|
be32_to_cpu(k2->alloc.ar_blockcount) ||
|
|
(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
|
|
be32_to_cpu(k1->alloc.ar_startblock) <
|
|
be32_to_cpu(k2->alloc.ar_startblock));
|
|
}
|
|
|
|
STATIC int
|
|
xfs_cntbt_recs_inorder(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_rec *r1,
|
|
const union xfs_btree_rec *r2)
|
|
{
|
|
return be32_to_cpu(r1->alloc.ar_blockcount) <
|
|
be32_to_cpu(r2->alloc.ar_blockcount) ||
|
|
(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
|
|
be32_to_cpu(r1->alloc.ar_startblock) <
|
|
be32_to_cpu(r2->alloc.ar_startblock));
|
|
}
|
|
|
|
STATIC enum xbtree_key_contig
|
|
xfs_allocbt_keys_contiguous(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_key *key1,
|
|
const union xfs_btree_key *key2,
|
|
const union xfs_btree_key *mask)
|
|
{
|
|
ASSERT(!mask || mask->alloc.ar_startblock);
|
|
|
|
return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
|
|
be32_to_cpu(key2->alloc.ar_startblock));
|
|
}
|
|
|
|
static const struct xfs_btree_ops xfs_bnobt_ops = {
|
|
.rec_len = sizeof(xfs_alloc_rec_t),
|
|
.key_len = sizeof(xfs_alloc_key_t),
|
|
|
|
.dup_cursor = xfs_allocbt_dup_cursor,
|
|
.set_root = xfs_allocbt_set_root,
|
|
.alloc_block = xfs_allocbt_alloc_block,
|
|
.free_block = xfs_allocbt_free_block,
|
|
.update_lastrec = xfs_allocbt_update_lastrec,
|
|
.get_minrecs = xfs_allocbt_get_minrecs,
|
|
.get_maxrecs = xfs_allocbt_get_maxrecs,
|
|
.init_key_from_rec = xfs_allocbt_init_key_from_rec,
|
|
.init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
|
|
.init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
|
|
.init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
|
|
.key_diff = xfs_bnobt_key_diff,
|
|
.buf_ops = &xfs_bnobt_buf_ops,
|
|
.diff_two_keys = xfs_bnobt_diff_two_keys,
|
|
.keys_inorder = xfs_bnobt_keys_inorder,
|
|
.recs_inorder = xfs_bnobt_recs_inorder,
|
|
.keys_contiguous = xfs_allocbt_keys_contiguous,
|
|
};
|
|
|
|
static const struct xfs_btree_ops xfs_cntbt_ops = {
|
|
.rec_len = sizeof(xfs_alloc_rec_t),
|
|
.key_len = sizeof(xfs_alloc_key_t),
|
|
|
|
.dup_cursor = xfs_allocbt_dup_cursor,
|
|
.set_root = xfs_allocbt_set_root,
|
|
.alloc_block = xfs_allocbt_alloc_block,
|
|
.free_block = xfs_allocbt_free_block,
|
|
.update_lastrec = xfs_allocbt_update_lastrec,
|
|
.get_minrecs = xfs_allocbt_get_minrecs,
|
|
.get_maxrecs = xfs_allocbt_get_maxrecs,
|
|
.init_key_from_rec = xfs_allocbt_init_key_from_rec,
|
|
.init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
|
|
.init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
|
|
.init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
|
|
.key_diff = xfs_cntbt_key_diff,
|
|
.buf_ops = &xfs_cntbt_buf_ops,
|
|
.diff_two_keys = xfs_cntbt_diff_two_keys,
|
|
.keys_inorder = xfs_cntbt_keys_inorder,
|
|
.recs_inorder = xfs_cntbt_recs_inorder,
|
|
.keys_contiguous = NULL, /* not needed right now */
|
|
};
|
|
|
|
/* Allocate most of a new allocation btree cursor. */
|
|
STATIC struct xfs_btree_cur *
|
|
xfs_allocbt_init_common(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
xfs_btnum_t btnum)
|
|
{
|
|
struct xfs_btree_cur *cur;
|
|
|
|
ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
|
|
|
|
cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
|
|
xfs_allocbt_cur_cache);
|
|
cur->bc_ag.abt.active = false;
|
|
|
|
if (btnum == XFS_BTNUM_CNT) {
|
|
cur->bc_ops = &xfs_cntbt_ops;
|
|
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
|
|
cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
|
|
} else {
|
|
cur->bc_ops = &xfs_bnobt_ops;
|
|
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
|
|
}
|
|
|
|
cur->bc_ag.pag = xfs_perag_hold(pag);
|
|
|
|
if (xfs_has_crc(mp))
|
|
cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
|
|
|
|
return cur;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new allocation btree cursor.
|
|
*/
|
|
struct xfs_btree_cur * /* new alloc btree cursor */
|
|
xfs_allocbt_init_cursor(
|
|
struct xfs_mount *mp, /* file system mount point */
|
|
struct xfs_trans *tp, /* transaction pointer */
|
|
struct xfs_buf *agbp, /* buffer for agf structure */
|
|
struct xfs_perag *pag,
|
|
xfs_btnum_t btnum) /* btree identifier */
|
|
{
|
|
struct xfs_agf *agf = agbp->b_addr;
|
|
struct xfs_btree_cur *cur;
|
|
|
|
cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
|
|
if (btnum == XFS_BTNUM_CNT)
|
|
cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
|
|
else
|
|
cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
|
|
|
|
cur->bc_ag.agbp = agbp;
|
|
|
|
return cur;
|
|
}
|
|
|
|
/* Create a free space btree cursor with a fake root for staging. */
|
|
struct xfs_btree_cur *
|
|
xfs_allocbt_stage_cursor(
|
|
struct xfs_mount *mp,
|
|
struct xbtree_afakeroot *afake,
|
|
struct xfs_perag *pag,
|
|
xfs_btnum_t btnum)
|
|
{
|
|
struct xfs_btree_cur *cur;
|
|
|
|
cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
|
|
xfs_btree_stage_afakeroot(cur, afake);
|
|
return cur;
|
|
}
|
|
|
|
/*
|
|
* Install a new free space btree root. Caller is responsible for invalidating
|
|
* and freeing the old btree blocks.
|
|
*/
|
|
void
|
|
xfs_allocbt_commit_staged_btree(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp)
|
|
{
|
|
struct xfs_agf *agf = agbp->b_addr;
|
|
struct xbtree_afakeroot *afake = cur->bc_ag.afake;
|
|
|
|
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
|
|
|
|
agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
|
|
agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
|
|
xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
|
|
|
|
if (cur->bc_btnum == XFS_BTNUM_BNO) {
|
|
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
|
|
} else {
|
|
cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
|
|
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
|
|
}
|
|
}
|
|
|
|
/* Calculate number of records in an alloc btree block. */
|
|
static inline unsigned int
|
|
xfs_allocbt_block_maxrecs(
|
|
unsigned int blocklen,
|
|
bool leaf)
|
|
{
|
|
if (leaf)
|
|
return blocklen / sizeof(xfs_alloc_rec_t);
|
|
return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
|
|
}
|
|
|
|
/*
|
|
* Calculate number of records in an alloc btree block.
|
|
*/
|
|
int
|
|
xfs_allocbt_maxrecs(
|
|
struct xfs_mount *mp,
|
|
int blocklen,
|
|
int leaf)
|
|
{
|
|
blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
|
|
return xfs_allocbt_block_maxrecs(blocklen, leaf);
|
|
}
|
|
|
|
/* Free space btrees are at their largest when every other block is free. */
|
|
#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
|
|
|
|
/* Compute the max possible height for free space btrees. */
|
|
unsigned int
|
|
xfs_allocbt_maxlevels_ondisk(void)
|
|
{
|
|
unsigned int minrecs[2];
|
|
unsigned int blocklen;
|
|
|
|
blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
|
|
XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
|
|
|
|
minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
|
|
minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
|
|
|
|
return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
|
|
}
|
|
|
|
/* Calculate the freespace btree size for some records. */
|
|
xfs_extlen_t
|
|
xfs_allocbt_calc_size(
|
|
struct xfs_mount *mp,
|
|
unsigned long long len)
|
|
{
|
|
return xfs_btree_calc_size(mp->m_alloc_mnr, len);
|
|
}
|
|
|
|
int __init
|
|
xfs_allocbt_init_cur_cache(void)
|
|
{
|
|
xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
|
|
xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
|
|
0, 0, NULL);
|
|
|
|
if (!xfs_allocbt_cur_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
xfs_allocbt_destroy_cur_cache(void)
|
|
{
|
|
kmem_cache_destroy(xfs_allocbt_cur_cache);
|
|
xfs_allocbt_cur_cache = NULL;
|
|
}
|